The "Golden Age" of Biotechnology in Europe
Zhelev, Nikolai

Published in:
Biotechnology and Biotechnological Equipment

DOI:
10.5504/BBEQ.2011.0105

Publication date:
2011

Citation for published version (APA):
The “Golden Age” of Biotechnology in Europe

Nikolai Zhelev

To cite this article: Nikolai Zhelev (2011) The “Golden Age” of Biotechnology in Europe, Biotechnology & Biotechnological Equipment, 25:4, 2688-2688, DOI: 10.5504/BBEQ.2011.0105

To link to this article: https://doi.org/10.5504/BBEQ.2011.0105

© 2011 Taylor and Francis Group, LLC

Published online: 16 Apr 2014.

Submit your article to this journal

Article views: 133

View related articles
ABSTRACT

The European Biotechnology Congress 2011 was held in Istanbul between the 28th of September and the 1st of October 2011. The Congress was organised by the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association and under the aegis of the Presidency of the Republic of Turkey. The Congress attracted scientists not only from Europe but from across the globe. The main topics covered by the congress were: Medical Genetics, Plant Biotechnology, Industrial Biotechnology, Animal Biotechnology, Regenerative Medicine and Stem Cells, Environmental Biotechnology, Biotechnologies in Infectious and Parasitic Diseases, Nanobiotechnology, Pharmaceutical Biotechnology, Bioinformatics, Assisted Reproductive Methods in Biotechnology, Education and Biotechnology. The application of systems biology approaches to biotechnology emerged as one of the main themes in many sections.

Systems Biology and Biotechnology

Undoubtedly one of the hot topics at the Congress was the application of systems biology to biotechnology (1, 3, 6, 8). Systems Biology is defined as the quantitative analysis of the dynamic interactions between several components of a biological system and aims to understand the behaviour of the system as a whole, as opposed to the behaviour of its individual constituents. It applies the concepts of systems engineering to the study of complex biological systems through iteration between computational and/or mathematical modelling and experimentation. Several presentations discussed the application of systems biology to biomedical research, which can be used for rational target identification (7), prediction and avoidance of adverse properties of therapeutics and monitoring of clinical efficacy using surrogate markers and individualized approaches to disease treatment (6). One of the challenges of systems biology is to integrate biology, technology and computation. Once this is achieved it will lead to a great potential of applications in biotechnology and medicine.

REFERENCES