Abstract—Capsule endoscopy represents a highly convenient but limited means of imaging inflammatory conditions of the small bowel. The inclusion of high frequency microultrasound into a capsule endoscope has the potential to enhance diagnostic capabilities with subsurface imaging of the bowel wall. Experimental studies on abattoir-obtained porcine small bowel have been carried out as an ethical means to characterize healthy and altered tissue in a preclinical setting as well as to explore other means of imaging pathology. Samples of small bowel were cannulated and perfused with phosphate buffered saline followed by variable dilutions of polystyrene microspheres. All samples were scanned with a purpose built step scanner employing a 47 MHz single element transducer. Results indicated that tissue high frequency ultrasound demonstrated sufficient sensitivity to detect the disruption normal histology with microsphere infusion. The combination of microultrasound and capsule endoscopy has the potential to enhance the diagnostic capabilities with improved qualitative and quantitative dimensions.

Keywords—Small Bowel; Inflammation; Leukocytes; Microultrasound; Capsule Endoscopy

I. INTRODUCTION

Inflammatory small bowel conditions such as Crohn’s disease and Celiac disease represent commonly encountered gastrointestinal disorders that significantly impact on the health and well-being of patients. Diagnosis and management often require imaging techniques ranging from CT and MRI to endoscopic methods. Video capsule endoscopy (VCE) has been indicated in the management of both conditions because of its ease of use and patient acceptance as compared to standard endoscopy [1]. However, despite wide acceptance there are a number of shortcomings associated with its use.

A salient limitation of VCE is the restricted imaging capability which presents a view of the surface mucosa only, without the benefit of transmural penetration into the depth of the tissue. This reduces sensitivity as diagnosis is dependent on optical manifestations of disease which are generally associated with later (i.e. overt) stages. Furthermore, differentiation between disorders with similar visual appearance and assessment of submucosal disease are difficult. The latter point is particularly important when assessing Crohn’s disease for an acute flare, as it manifests itself as a transmural disease [2].

The authors aim to address this deficiency by developing Ultrasound Capsule Endoscopy (USCE) that will allow full thickness ultrasound imaging of the bowel wall. Specifically work is under way to utilize microultrasound (µUS) to provide a high resolution image of the walls of the bowel for improved diagnosis and management of gastrointestinal disorders.

µUS refers to frequencies typically a minimum factor of 1.5 times higher than the conventional clinical maximum of 20 MHz [3]. µUS has already demonstrated its ability to characterize gastrointestinal (GI) tissue with a high degree of correspondence to histological analysis [4, 5] (Fig. 1). Part of this high fidelity correlation between µUS imaging and histology is inherent in the ability of high frequency US to provide high resolution images, at micrometer resolution. However, this ability is balanced by a decreasing depth of tissue penetration with increasing frequency because of increased interaction of the ultrasound with tissue microstructures, with subsequent energy loss to scattering and absorption.

This paper describes experimental work in determining the suitability of µUS for the detection and characterization specifically of inflammatory bowel conditions. Our objective is to characterize healthy and altered small bowel tissue ex vivo with a mechanically scanned single-element high frequency ultrasound transducer.
II. MATERIALS AND METHODS

A. Materials

Porcine small bowel samples were obtained from an abattoir (Medical Meat Supplies, Rochdale, UK). Individual porcine bowel sections measuring 15 - 20 cm in length were obtained with attached mesentery and mesenteric vessels. Samples were individually vacuum packed and frozen prior to delivery.

Prior to each experiment an individual section was thawed with a running cold water bath whilst still vacuum packed. The thawed tissue lumen was rinsed with tap water. Next, the tissue was pinned using Microlances (Becton Dickinson, Oxford, UK) and a mesenteric vessel was cannulated with a 23G Butterfly Winged Infusion Set (Hospira, Warwickshire, UK). Successful cannulation was checked by infusing approximately 1 - 2 ml red dyed fluid. Cannulation was considered successful when the dye would track through the bowel vasculature (Figure 2). After the vessel patency check, the infusion tubing was connected to a B.Braun Perfusor pump (B.Braun, Sheffield, UK). The pump is equipped with a pressure alarm that halts perfusion if pressure rises above 9 mmHg, thus avoiding potential tissue damage. Post perfusion, the tissue was cut along the upper edge where the mesentery inserts into the bowel. This allowed for µUS scanning across the short axis of the bowel. It should be noted that the tissue was assumed pathology free as it was collected from animals for consumption.

The purpose of perfusion was to return the tissue to near physiologic conditions and rehydrate, to improve signal clarity of the respective histological layers, and to allow the infusion of microspheres to mimic leukocyte infiltration. Samples were perfused with 50 ml degassed phosphate buffered saline (dPBS) in total. A 10x strength PBS solution (Fisher Scientific, Loughborough, UK) was mixed with deionized water and boiled for 3 minutes to ensure thorough degassing. The solution was then allowed to cool to room temperature.

Baseline samples were perfused with 50 ml dPBS at 200 ml/hr. Infusion of 1µm diameter fluorescent microspheres (Polysciences Inc, PA, USA) was achieved with an initial 30 ml volume at 200 ml/hr followed by a 10 ml dPBS solution of variable dilution microspheres at variable perfusion rates to facilitate extravasation from capillary lumen to tissue interstitium (Table 1). Following the 10 ml microsphere infusion, 10 ml dPBS at 200 ml/hr was used to flush the line.
Afterwards the sample was rinsed with dPBS to remove any accumulated mucous, debris and luminal microspheres. The tissue was checked with a handheld fluorescent lamp (UVP, Cambridge, UK) to ensure adequate microsphere infusion. This also allowed results to be checked microscopically using air-fixed slides with fluorescent illumination. The tissue was then moved to a \(\mu \)US scanning chamber comprising an acoustic absorber covered with 2% agar (w/w) (Fisher Scientific, Loughborough, UK) in a 135 x 85 x 55 mm\(^3\) plastic tub. The agar was covered with 1 - 2 mm depth ultrasound coupling gel (Diagnostic Sonar Ltd, Livingston, UK) to ensure that the serosa was lifted from the agar, thus producing distinct acoustic signals. The samples were pinned using 4x 25G Microlances (Becton Dickinson, UK) and submerged in dPBS to a level allowing sufficient depth for immersion of the front face of the \(\mu \)US transducer. The transducer was then focused on the mucosa and/or submucosa of the tissue [6].

B. Scanner

Tissue scanning was performing using a custom built micro-stepped mechanical scanner. The scanning system consisted of a transducer stage stepped in 20 \(\mu \)m increments along the short axis of the tissue. The ultrasound transducer was pulsed and receive echoes (P/R) were measured and amplified using a DPR500 (JSR Electronics, USA) the signals digitized using a 2.5 GS/s oscilloscope (MDO3014, Agilent Technologies, USA). Motor and electronic control of the system, as well as digital processing, was achieved through a custom LABVIEW program (National Instruments, UK).

The microultrasound transducer was a single-element, physically-focused piezo-composite with a centre frequency of 47 MHz and a bandwidth of 31% (AFM Ltd, UK). B-scan 2D image reconstruction was accomplished with MatLab (Mathworks, USA) using a Hilbert transform for envelope detection prior to log-compression. The log-compressed data was then mapped to a heat map for analysis, with red corresponding to high echoic areas and blue representing low echoic areas [6].

III. RESULTS

Examination of the microsphere infused tissue under fluorescent illumination indicated that satisfactory particle tissue distribution has been achieved (Figure 3). Microscopic examination of the air-fixed slides indicated that the majority of spheres remained intravascular as indicated by the excellent preservation of the capillary network (Figure 3). This would indicate that, even with prolonged absence of physiologic circulation, the tissue is able to maintain vascular integrity. Fluid perfusion resulted in adequate baseline tissue \(\mu \)US imaging as indicated by separation of the distinct histological layers as shown in Figure 4. This baseline image was then used for comparison with the microsphere perfused tissue. Serial \(\mu \)US scans of the variable concentration of the microspheres also indicate that they are capable of altering the acoustic property of tissue, resulting in a disrupted histological pattern as compared to baseline scans, Figure 4.
IV. CONCLUSIONS AND FUTURE WORK

Our experiments indicate that µUS demonstrates sufficient sensitivity in regards to imaging disruption of the normal histological architecture of the small bowel when infused with microspheres. Additionally, we have demonstrated that the abattoir obtained porcine small bowel is appropriate for preclinical testing of high frequency µUS. Further investigation into leukocyte phantoms is warranted to better mimic the influx of leukocytes during inflammatory periods.

The use of ultrasound in the diagnosis and management of inflammatory bowel conditions is not novel. A number of researchers have used and advocated the use of transabdominal sonography (TABS) to image celiac disease [7 - 9], relying on standard frequencies in the range 5 - 12 MHz to image the bowel. However this practice relies on a collection of nonspecific findings such as bowel thickening, increased luminal fluid, mesenteric lymphadenopathy and enhanced peristalsis. Other difficulties include distinguishing adjacent bowel loops from lesions and body habitus preventing adequate visualization. Furthermore these signs, plus clinical correlation, only serve to heighten physician concern and prompt further testing.

Infiltration and accumulation of leukocytes in the interstitium of the bowel can be considered ideal in terms of detection with µUS. In principle, an increasing aggregation of lymphocytes will produce a new backscatter profile (i.e., echogenicity change due to increased lymphocyte scatterers) as compared with healthy tissue. In turn this will produce an altered mucosal image whilst simultaneously diminishing imaging of deeper structures due to increased interaction with leukocyte nuclei. This concept was explored by Sharma[10] to detect early precancerous changes associated with mutated adenomatous polyposis coli (Apc) in murine bowel models.

By combining the aforementioned principle with USCE, we will be able achieved direct bowel imaging producing high resolution imaging that relies on direct evidence of inflammation via interstitial lymphocyte infiltration that does not rely on nonspecific findings. Furthermore, direct bowel imaging will allow the development of objective imaging based on acoustic property changes that accompany pathologic changes. Quantitative ultrasound techniques that rely on the effects of scatterers in addition to changes to impedance and attenuation will provide information independent of optical variables and provide clinicians with further diagnostic evidence.

ACKNOWLEDGMENTS
We extend our thanks to Robyn Duncan for the histology preparation and Thineskrishna Anbarasan for the baseline µUS scan.

REFERENCES