THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Overview

Stephen PH Alexander¹, Eamonn Kelly², Neil Marrion², John A Peters³, Helen E Benson⁴, Elena Faccenda⁴, Adam J Pawson⁴, Joanna L Sharman⁴, Christopher Southan⁴, O Peter Buneman⁵, William A Catterall⁶, John A Cidlowski⁷, Anthony P Davenport⁸, Doriano Fabbro⁹, Grace Fan¹⁰, John C McGrath¹¹, Michael Spedding¹², Jamie A Davies⁴ and CGTP Collaborators

¹School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
²School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
³Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
⁴Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
⁵Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, United Kingdom
⁶Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
⁷National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
⁸Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
⁹PIQUR Therapeutics, Basel 4057, Switzerland
¹⁰The Agnes Irwin School, Rosemont, Pennsylvania, USA
¹¹School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
¹²Spedding Research Solutions SARL, Le Vésinet 78110, France

Abstract

The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13347/full. This compilation of the major pharmacological targets is divided into eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.

Table of contents

5729 Overview
5734 Other Protein Targets
5734 Adiponectin receptors
5735 Blood coagulation components
5735 Non-enzymatic BRD containing proteins
5736 Carrier proteins
5737 CD molecules
5738 Methyllysine reader proteins
5739 Cytokines and growth factors
5739 Fatty acid-binding proteins
5741 Sigma receptors
5742 Tubulins
5744 G protein-coupled receptors
5746 Orphan and other 7TM receptors
5746 Class A Orphans
5746 Class C Orphans
5746 Taste 1 receptors
5747 Taste 2 receptors
5748 Other 7TM proteins
5758 S-Hydroxytryptaminereceptors
5759 Acetylcholine receptors (muscarinic)
5760 Adenosine receptors
5768 Adhesion Class GPCRs
5770 Adrenoceptors
5774 Angiotensin receptors
5775 Apelin receptor

Searchable database: http://www.guidetopharmacology.org/index.jsp
5777 Bile acid receptor
5778 Bombesin receptors
5779 Bradykinin receptors
5781 Calcitonin receptors
5783 Calcium-sensing receptors
5784 Cannabinoid receptors
5785 Chemerin receptor
5786 Chemokine receptors
5787 Cholecystokinin receptors
5789 Class Frizzled GPCRs
5790 Complement peptide receptors
5791 Corticotropin-releasing factor receptors
5792 Dopamine receptors
5793 Endothelin receptors
5794 G protein-coupled estrogen receptor
5795 G protein-coupled receptor family
5796 G protein-coupled receptors
5798 G protein-coupled receptors
5799 G protein-coupled receptors
5800 Formylpeptide receptors
5801 Free fatty acid receptors
5803 GABAB receptors
5805 Galanin receptors
5806 Gb receptor family
5807 Glucagon receptor family
5808 Glycoprotein hormone receptors
5809 Gonadotrophin-releasing hormone receptors
5810 GPR18, GPR55 and GPR119
5811 G protein-coupled receptors
5812 G protein-coupled receptors
5813 G protein-coupled receptors
5814 Hydroxyproline receptors
5815 Kappa opioid receptors
5816 Leucokine receptors
5817 Leukotriene receptors
5818 Lysoosphospholipid (LPA) receptors
5819 Lysoosphospholipid (SIP) receptors
5820 Melanocortin receptors
5821 Melanocortin receptors
5822 Melatonin receptors
5823 Metabotropic glutamate receptors
5824 Metabotropic glutamate receptors
5825 Metabotropic glutamate receptors
5826 Motilin receptor
5827 Neuropeptide Y receptors
5828 Neuropeptide Y receptors
5829 Neuropeptide Y receptors
5830 Neuropeptide Y receptors
5831 Neuropeptide Y receptors
5832 Neuropeptide Y receptors
5833 Opioid receptors
5835 Orexin receptors
5836 Oxoglutamate receptor
5837 Parathyroid hormone receptors
5838 Parathyroid hormone receptors
5839 Platelet-activating factor receptor
5840 Prokineticin receptors
5841 Prolactin-releasing peptide receptor
5842 Prostanoid receptors

5843 Proteinase-activated receptors
5844 QRFP receptor
5845 Relaxin family peptide receptors
5846 Somatostatin receptors
5850 Succinate receptor
5851 Tachykinin receptors
5852 Thyrotropin-releasing hormone receptors
5853 Trace amine receptor family
5854 Urotensin receptor family
5855 Vasopressin and oxytocin receptors
5856 VIP and PACAP receptors

5870 Ligand-Gated Ion Channels
5871 S-HT3 receptors
5872 Acid-sensing (proton-gated) ion channels (ASICs)
5873 Epithelial sodium channels (ENaC)
5874 GABA receptors
5875 Glycine receptors
5876 Ionotropic glutamate receptors
5877 IP3 receptor
5878 Nicotinic acetylcholine receptors
5879 P2X receptors
5880 Byranodine receptor
5881 ZAC

5904 Voltage-gated ion channels
5905 Caten and Two-Pore channels
5906 Caten and Two-Pore channels
5907 Caten and Two-Pore channels
5908 Caten and Two-Pore channels
5909 Caten and Two-Pore channels
5910 Caten and Two-Pore channels
5911 Caten and Two-Pore channels
5912 Caten and Two-Pore channels
5913 Caten and Two-Pore channels
5914 Caten and Two-Pore channels
5915 Caten and Two-Pore channels
5916 Caten and Two-Pore channels
5917 Voltage-gated potassium channels
5918 Voltage-gated potassium channels
5919 Voltage-gated potassium channels
5920 Transient Receptor Potential channels
5921 Voltage-gated calcium channels
5922 Voltage-gated calcium channels
5923 Voltage-gated calcium channels
5924 Voltage-gated calcium channels
5925 Voltage-gated calcium channels
5926 Voltage-gated calcium channels
5927 Voltage-gated sodium channels
5928 Voltage-gated sodium channels

5942 Other ion channels
5943 Aquaporins
5944 Chloride channels
5945 Chloride channels
5946 Chloride channels
5947 CFTR
5948 Calcium activated chloride channel
5949 Maxi chloride channel
5950 Volume regulated chloride channels
5951 Connexins and Pannexins
5952 Connexins and Pannexins
5953 Connexins and Pannexins
5954 Sodium leak channel, non-selective

5956 Nuclear hormone receptors
5958 1A. Thyroid hormone receptors
5959 1B. Retinoid acid receptors
5960 1C. Peroxisome proliferator-activated receptors
5961 1D. Rev-Erb receptors
5962 1E. Retinoic acid receptors
5963 1F. Liver X receptor-like receptors
5964 2A. PPAR gamma receptors
5965 2B. Retinoid X receptors
5966 2C. Testicular receptors
5967 2D. Taillless-like receptors
5968 2F. COUP-TF-like receptors
5969 3B. Estrogen-related receptors
5970 4A. Nerve growth factor receptors
5971 5A. Fushi tarazu F1-like receptors
5972 6A. Germ cell nuclear factor receptors
5973 6B. Germ cell nuclear factor receptors
5974 6C. Germ cell nuclear factor receptors
5975 7A. Estrogen receptors
5976 7B. Estrogen receptors
5977 7C. Estrogen receptors
5978 7D. Estrogen receptors
5979 7E. Estrogen receptors
5980 7F. Estrogen receptors
5981 8A. Estrogen receptors
5982 8B. Estrogen receptors
5983 8C. Estrogen receptors
5984 8D. Estrogen receptors
5985 8E. Estrogen receptors
5986 8F. Estrogen receptors
5987 9A. Estrogen receptors
5988 9B. Estrogen receptors
5989 9C. Estrogen receptors
5990 9D. Estrogen receptors
5991 9E. Estrogen receptors
5992 9F. Estrogen receptors
5993 10A. Estrogen receptors
5994 10B. Estrogen receptors
5995 10C. Estrogen receptors
5996 10D. Estrogen receptors
5997 10E. Estrogen receptors
5998 10F. Estrogen receptors

Searchable database: http://www.guidetopharmacology.org/index.jsp
<table>
<thead>
<tr>
<th>Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6024 Enzymes</td>
</tr>
<tr>
<td>6028 Protein Kinases (EC 2.7.x.x)</td>
</tr>
<tr>
<td>6028 Rho kinase</td>
</tr>
<tr>
<td>6029 Protein kinase C (PKC)</td>
</tr>
<tr>
<td>6029 Alpha subfamily</td>
</tr>
<tr>
<td>6029 Delta subfamily</td>
</tr>
<tr>
<td>6030 Era subfamily</td>
</tr>
<tr>
<td>6030 FKB subfamily</td>
</tr>
<tr>
<td>6031 CDK4 subfamily</td>
</tr>
<tr>
<td>6031 GSK subfamily</td>
</tr>
<tr>
<td>6032 Polo-like kinase (PLK) family</td>
</tr>
<tr>
<td>6032 STE7 family</td>
</tr>
<tr>
<td>6033 Abl family</td>
</tr>
<tr>
<td>6033 Ack family</td>
</tr>
<tr>
<td>6034 Janus kinase (JAK) family</td>
</tr>
<tr>
<td>6034 Src family</td>
</tr>
<tr>
<td>6035 Tec family</td>
</tr>
<tr>
<td>6035 RAF family</td>
</tr>
<tr>
<td>6036 Peptidases and proteinases</td>
</tr>
<tr>
<td>6036 A1: Pepsin</td>
</tr>
<tr>
<td>6036 A2: Presenilin</td>
</tr>
<tr>
<td>6036 A3: Caspase</td>
</tr>
<tr>
<td>6036 M1: Aminopeptidase N</td>
</tr>
<tr>
<td>6036 M2: Angiotensin-converting (ACE and ACE2)</td>
</tr>
<tr>
<td>6036 M10: Matrix metallopeptidase</td>
</tr>
<tr>
<td>6036 M28: Aminopeptidase Y</td>
</tr>
<tr>
<td>6040 M19: Membrane dipetidase</td>
</tr>
<tr>
<td>6040 M1: Aminopeptidase N</td>
</tr>
<tr>
<td>6040 M3: Angiotensin-converting (ACE and ACE2)</td>
</tr>
<tr>
<td>6040 M10: Matrix metallopeptidase</td>
</tr>
<tr>
<td>6040 M28: Aminopeptidase Y</td>
</tr>
</tbody>
</table>
In order to allow clarity and consistency in pharmacology, there is a need for a comprehensive organisation and presentation of the targets of drugs. This is the philosophy of the IUPHAR/BPS Guide to PHARMACOLOGY presented on the online free access database (http://www.guidetopharmacology.org/). This database is supported by the British Pharmacological Society (BPS), the International Union of Basic and Clinical Pharmacology (IUPHAR), the Wellcome Trust and the University of Edinburgh. Data included in the Guide to PHARMACOLOGY are derived in large part from interactions with the subcommittees of the Nomenclature Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR). The Editors of the Concise Guide have compiled the individual records, in concert with the team of Curators, drawing on the expert knowledge of these latter subcommittees. The tables allow an indication of the status of the nomenclature for the group of targets listed, usually previously published in Pharmacological Reviews. In the absence of an established subcommittee, advice from several prominent, independent experts has generally been obtained to produce an authoritative consensus on nomenclature, which attempts to fit in within the general guidelines from NC-IUPHAR. This current edition, the Concise Guide to PHARMACOLOGY 2015/16, is the latest snapshot of the database in print form, following on from the Concise Guide to PHARMACOLOGY 2013/14. It contains data drawn from the online database as a rapid overview of the major pharmacological targets. Thus, there are fewer targets presented in the Concise Guide (1761) compared to the online database (2761, as of August 2015). The priority for inclusion in the Concise Guide is the presence of quantitative pharmacological data. This means that often orphan family members are not presented in the Concise Guide.
The Concise Guide to PHARMACOLOGY 2015/16: Overview.

This edition of the Concise Guide to PHARMACOLOGY is dedicated to Tony Harmar (1951-2014). Tony was a friend and colleague, who was involved with IUPHAR for over 15 years and worked on the IUPHAR database for over a decade at Edinburgh, working hard to establish the curators as a team of highly informed and informative individuals imbued with Tony’s passion and dogged determination to focus on high-quality data input, ensuring high-quality data output. With time and the resources of the BPS and Wellcome Trust, combined with the expertise of the NC-IUPHAR committee members mentioned above, Tony established the online database at http://www.guidetopharmacology.org/ as the exceptional resource it is today.

Acknowledgements

We are extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website. We are also tremendously grateful to the long list of collaborators from NC-IUPHAR subcommittees and beyond, who have assisted in the construction of the Concise Guide to PHARMACOLOGY 2015/16 and the online database www.GuideToPHARMACOLOGY.org

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Other Protein Targets

Family structure

- Adiponectin receptors
 - B-cell lymphoma 2 (Bcl-2) protein family
 - Bromodomain-containing proteins
 - Non-enzymatic BRD containing proteins
 - Carrier proteins
 - CD molecules
 - Chromatin-interacting transcriptional repressors
 - Circadian clock proteins
 - Cytokines and growth factors
 - EF-hand domain containing
- Fatty acid-binding proteins
- Heat shock proteins
- Immunoglobulins
- Inhibitors of apoptosis (IAP) protein family
- Kelch-like proteins
- Kinesins
- Mitochondrial-associated proteins
- Notch receptors
- Pentaxins
- Regulators of G protein signaling (RGS) proteins
- RZ family
- R4 family
- R7 family
- R12 family
- Reticulons
- Ribosomal factors
- Sigma receptors
- Tubulins
- Tumour-associated proteins
- WD repeat-containing proteins

Adiponectin receptors

Other protein targets → Adiponectin receptors

Overview: Adiponectin receptors (provisional nomenclature, ENSMF0050000070960) respond to the 30 kDa complement-related protein hormone adiponectin (also known as AdipoQ: adipocyte, C1q and collagen domain-containing protein; ACRP30, adipose most abundant gene transcript 1; apM-1; gelatin-binding protein: Q15848) originally cloned from adipocytes [49]. Although sequence data suggest 7TM domains, immunological evidence indicates that, contrary to typical 7TM topology, the carboxyl terminus is extracellular, while the amino terminus is intracellular [86]. Signalling through these receptors appears to avoid G proteins. Adiponectin receptors appear rather to stimulate protein phosphorylation via AMP-activated protein kinase and MAP kinase pathways [86], possibly through the protein partner APPL1 (adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1, Q9UKG1 [52]). The adiponectin receptors are a class of proteins (along with membrane progesterin receptors), which contain seven sequences of aliphatic amino acids reminiscent of GPCRs, but which are structurally and functionally distinct from that class of receptor.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Adipo1 receptor</th>
<th>Adipo2 receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>ADIPOR1, Q96A54</td>
<td>ADIPOR2, Q86V24</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>globular adiponectin (ADIPOQ, Q15848) = adiponectin (ADIPOQ, Q15848)</td>
<td>globular adiponectin (ADIPOQ, Q15848) = adiponectin (ADIPOQ, Q15848)</td>
</tr>
</tbody>
</table>

Comments: T-Cadherin (CDH13, P55290) has also been suggested to be a receptor for (hexameric) adiponectin [35].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Blood coagulation components

Other protein targets → Blood coagulation components

Overview: Coagulation as a patho/physiological process is interpreted as a mechanism for reducing excessive blood loss through the generation of a gel-like clot local to the site of injury. The process involves the activation, adhesion (see Integrins), degranulation and aggregation of platelets, as well as proteins circulating in the plasma. The coagulation cascade involves multiple proteins being converted to more active forms from less active precursors, typically through proteolysis (see Proteases). Listed here are the components of the coagulation cascade targeted by agents in current clinical usage.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>coagulation factor V (proaccelerin, labile factor)</th>
<th>coagulation factor VIII, procoagulant component</th>
<th>serpin peptidase inhibitor, clade C (antithrombin), member 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>F5, P12259</td>
<td>F8, P00451</td>
<td>SERPINC1, P01008</td>
</tr>
<tr>
<td>Selective activators</td>
<td>–</td>
<td>–</td>
<td>heparin (pKd 7.8) [25], fondaparinux (pKd 7.5) [65], dalteparin [34], danaparoid [15, 58], enoxaparin [17], tinzaparin [19]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>drotrecogin alfa (Inhibition) [40, 41]</td>
<td>drotrecogin alfa (Inhibition) [40, 41]</td>
<td>–</td>
</tr>
</tbody>
</table>

Further Reading

Non-enzymatic BRD containing proteins

Other protein targets → Bromodomain-containing proteins → Non-enzymatic BRD containing proteins

Overview: bromodomains bind proteins with acetylated lysine residues, such as histones, to regulate gene transcription. Listed herein are examples of bromodomain-containing proteins for which sufficient pharmacology exists.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Nomenclature

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>HGNC, UniProt</th>
<th>Selective inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>bromodomain adjacent to zinc finger domain, 2A</td>
<td>BAZ2A, Q9UIF9</td>
<td>GSK2801 (pK_\text{d} 6.6) [73]</td>
</tr>
<tr>
<td>CREB binding protein</td>
<td>CREBBP, Q92793</td>
<td>I-CBP112 (pK_\text{d} 6.8) [72]</td>
</tr>
<tr>
<td>polybromo 1</td>
<td>PBRM1, Q86UB8</td>
<td>PFI-3 (Binding) (pK_\text{d} 7.7) [79]</td>
</tr>
<tr>
<td>SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4</td>
<td>SMARCA4, P51532</td>
<td>PFI-3 (Binding) (pK_\text{d} 7.1) [79]</td>
</tr>
</tbody>
</table>

Further Reading

Carrier proteins

Other protein targets → Carrier proteins

Overview: TTR is a homo-tetrameric protein which transports thyroxine in the plasma and cerebrospinal fluid and retinol (vitamin A) in the plasma. Many disease causing mutations in the protein have been reported, many of which cause complex dissociation and protein mis-assembly and deposition of toxic aggregates amyloid fibril formation [66]. These amyloidogenic mutants are linked to the development of pathological amyloidoses, including familial amyloid polyneuropathy (FAP) [1, 13], familial amyloid cardiomyopathy (FAC) [37], amyloidotic vitreous opacities, carpal tunnel syndrome [57] and others. In old age, non-mutated TTR can also form pathological amyloid fibrils [85]. Pharmacological intervention to reduce or prevent TTR dissociation is being pursued as a therapeutic strategy. To date one small molecule kinetic stabilising molecule (tafamidis) has been approved for FAP, and is being evaluated in clinical trials for other TTR amyloidoses.
CD molecules

Other protein targets → CD molecules

Overview: Cluster of differentiation refers to an attempt to catalogue systematically a series of over 300 cell-surface proteins associated with immunotyping. Many members of the group have identified functions as enzymes (for example, see CD73 ecto-5’-nucleotidase) or receptors (for example, see CD41 integrin, alpha 2b subunit). Many CDs are targeted for therapeutic gain using antibodies for the treatment of proliferative disorders. A full listing of all the Clusters of Differentiation is not possible in the Guide to PHARMACOLOGY; listed herein are selected members of the family targeted for therapeutic gain.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>CD2</th>
<th>CD3ε molecule, epsilon (CD3-TCR complex)</th>
<th>CD20 (membrane-spanning 4-domains, subfamily A, member 1)</th>
<th>CD33</th>
<th>CD52</th>
<th>CD80</th>
<th>CD86</th>
<th>cytotoxic T-lymphotocyte-associated protein 4 (CD152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common abbreviation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>CTLA-4</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>CD2, P06729</td>
<td>CD3ε, P07766</td>
<td>MS4A1, P11836</td>
<td>CD33</td>
<td>CD52</td>
<td>P31358</td>
<td>CD80, P33681</td>
<td>CD86, P42081</td>
</tr>
<tr>
<td>Selective inhibitors</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>abatacept [84], belatacept [16], abatacept [84], belatacept [16]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>alefacept (Inhibition) [56, 89]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antibodies</td>
<td>–</td>
<td>catumaxomab (Binding) [46], muromonab-CD3 (Binding) [24], otezolizumab (Binding) [7]</td>
<td>ofatumumab (Binding) (pKd 9.9) [47], rituximab (Binding) (pKd 8.5) [78], ibritumomab tiuxetan (Binding), obinutuzumab (Binding) [2, 68], tositumomab (Binding)</td>
<td>lintuzumab (Binding) (pKd ~10) [8], gemtuzumab ozogamicin (Binding) [6]</td>
<td>alemtuzumab (Binding) [22]</td>
<td>–</td>
<td>–</td>
<td>ipilimumab (Binding) (pKd ~9) [28], tremelimumab (Binding) (pKd 8.9) [30]</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp

Nomenclature
programmed cell death 1 (CD279)

Common abbreviation
PD-1

HGNC, UniProt
PDCD1, Q15116

Antibodies
pembrolizumab (Binding) (pK_d ~10) [9], nivolumab (Binding) (pK_d 9.1) [29, 42, 43]

Comments
The endogenous ligands for human PD-1 are programmed cell death 1 ligand 1 (PD-L1 aka CD274 [CD274, Q9NZQ7]) and programmed cell death 1 ligand 2 (PD-L2; PDCD1LG2). These ligands are cell surface peptides, normally involved in immune system regulation. Many types of cancer cells evolve mechanisms to evade control and elimination by the immune system. Such mechanisms can include inhibition of so-called ‘immune checkpoints’, which would normally be involved in the maintenance of immune homeostasis. An increasingly important area of clinical oncology research is the development of new agents which impede these evasion techniques, thereby switching immune vigilance back on, and effecting immune destruction of cancer cells. Three molecular targets of checkpoint inhibitors which are being extensively pursued are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD-1), and programmed cell death ligand 1 (PD-L1). Using antibody-based therapies targeting these pathways, clinical responses have been reported in various tumour types, including melanoma, renal cell carcinoma [64] and non-small cell lung cancer [39, 51]. pembrolizumab is the first-in-class, anti-PD-1 antibody to be approved by the US FDA, with ongoing clinical trials for nivolumab (e.g. NCT01673867, NCT01721746) and pidilizumab (NCT02077959, NCT01952769).

Methyllysine reader proteins

Overview
Methyllysine reader proteins bind to methylated proteins, such as histones, allowing regulation of gene expression.

Nomenclature
I(3)mbt-like 3 (Drosophila)

HGNC, UniProt
L3MBTL3, Q96JM7

Selective agonists
UNC1215 (pK_d 6.9) [38]

Further Reading

Cytokines and growth factors

Other protein targets → Cytokines and growth factors

Overview: cytokines and growth factors are a group of small proteins released from cells, which act upon the same cell or neighbouring cells, often with a role in immune regulation and/or proliferation. Listed herein are examples of cytokines and growth factors targeted for therapeutic benefit.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Interleukin 1, beta</th>
<th>Tumor necrosis factor</th>
<th>Vascular endothelial growth factor A</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>IL1B, P01584</td>
<td>TNF, P01375</td>
<td>VEGFA, P15692</td>
</tr>
<tr>
<td>Antagonists</td>
<td>–</td>
<td>Etanercept (Inhibition) [18, 23]</td>
<td>Aflibercept (Inhibition) [10, 11, 82]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>–</td>
<td>Pegaptanib (Inhibition) [26, 61]</td>
<td>–</td>
</tr>
<tr>
<td>Antibodies</td>
<td>Gevokizumab (Binding) (pKd 12.5) [36, 53, 71], Canakinumab (Binding) (pKd 10.5) [27]</td>
<td>Golimumab (Inhibition) (pIC50 10.7) [77], Infliximab (Inhibition) (pKd 8.7) [44], Adalimumab (Inhibition) (pKd >8) [75], Certolizumab pegol (Inhibition) [60]</td>
<td>Ranibizumab (Inhibition) (pKd ~9.8) [3], Bevacizumab (Inhibition) (pIC50 8–8.3) [3]</td>
</tr>
</tbody>
</table>

Fatty acid-binding proteins

Other protein targets → Fatty acid-binding proteins

Overview: Fatty acid-binding proteins are low molecular weight (100-130 aa) chaperones for long chain fatty acids, fatty acyl CoA esters, eicosanoids, retinols, retinoic acids and related metabolites and are usually regarded as being responsible for allowing the otherwise hydrophobic ligands to be mobile in aqueous media. These binding proteins may perform functions extracellularly (e.g. in plasma) or transport these agents; to the nucleus to interact with nuclear receptors (principally PPARs and retinoic acid receptors [76]) or for interaction with metabolic enzymes. Although sequence homology is limited, crystallographic studies suggest conserved 3D structures across the group of binding proteins.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Fatty acid binding protein 1, liver</th>
<th>Fatty acid binding protein 2, intestinal</th>
<th>Fatty acid binding protein 3, muscle and heart</th>
<th>Fatty acid binding protein 4, adipocyte</th>
<th>Fatty acid binding protein 5 (psoriasis-associated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>FABP1, P07148</td>
<td>FABP2, P12104</td>
<td>FABP3, P05413</td>
<td>FABP4, P15090</td>
<td>FABP5, Q01469</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>Stearic acid, oleic acid -> palmitic acid, linoleic acid -> arachidonic acid, α-linolenic acid [69]</td>
<td>Stearic acid -> palmitic acid, oleic acid -> linoleic acid -> arachidonic acid, α-linolenic acid [69]</td>
<td>Stearic acid, oleic acid, palmitic acid -> linoleic acid, α-linolenic acid, arachidonic acid [69]</td>
<td>Stearic acid, oleic acid, palmitic acid -> linoleic acid, α-linolenic acid, arachidonic acid [69]</td>
<td>Stearic acid, oleic acid, palmitic acid, stearic acid, linoleic acid -> α-linolenic acid, arachidonic acid [69]</td>
</tr>
<tr>
<td>Comments</td>
<td>A broader substrate specificity than other FABPs, binding two fatty acids per protein [83].</td>
<td>Crystal structure of the rat FABP2 [74].</td>
<td>Crystal structure of the human FABP3 [87].</td>
<td>–</td>
<td>Crystal structure of the human FABP5 [33].</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>Description</td>
<td>Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatty acid binding protein 6, ileal</td>
<td>FABP6, P51161</td>
<td>Able to transport bile acids [88].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatty acid binding protein 7, brain</td>
<td>FABP7, O15540</td>
<td>Crystal structure of the human FABP7 [4].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peripheral myelin protein 2, testis</td>
<td>PMP2, P02689</td>
<td>In silico modelling suggests that FABP8 can bind both fatty acids and cholesterol [50].</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatty acid binding protein 9, testis</td>
<td>FABP9, Q0Z758</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fatty acid binding protein 12</td>
<td>FABP12, A6NFH5</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
<th>Rank order of potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>retinol binding protein 1, cellular</td>
<td>RBP1, P09455</td>
<td>–</td>
</tr>
<tr>
<td>retinol binding protein 2, cellular</td>
<td>RBP2, P50120</td>
<td>stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [70]</td>
</tr>
<tr>
<td>retinol binding protein 3, interstitial</td>
<td>RBP3, P10745</td>
<td>–</td>
</tr>
<tr>
<td>retinol binding protein 4, plasma</td>
<td>RBP4, P02753</td>
<td>–</td>
</tr>
<tr>
<td>retinol binding protein 5, cellular</td>
<td>RBPS, P82980</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
<th>Rank order of potency</th>
</tr>
</thead>
<tbody>
<tr>
<td>retinol binding protein 7, cellular</td>
<td>RBP7, Q96R05</td>
<td>–</td>
</tr>
<tr>
<td>retinaldehyde binding protein 1</td>
<td>RLBP1, P12271</td>
<td>11-cis-retinal, 11-cis-retinol > 9-cis-retinal, 13-cis-retinal, 13-cis-retinol, all-trans-retinal, retinol [14]</td>
</tr>
<tr>
<td>cellular retinoic acid binding protein 1</td>
<td>CRABP1, P29762</td>
<td>tretinoin > alitretinoin stearic acid > palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [70]</td>
</tr>
<tr>
<td>cellular retinoic acid binding protein 2</td>
<td>CRABP2, P29373</td>
<td>–</td>
</tr>
</tbody>
</table>

Comments: Although not tested at all FABPs, BMS309403 exhibits high affinity for FABP4 (pIC50 8.8) compared to FABP3 or FABP5 (pIC50 ~ 6.6) [20, 81]. HTS01037 is reported to interfere with FABP4 action [31]. Multiple pseudogenes for the FABPs have been identified in the human genome.

Further Reading

Schroeder F et al. (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43: 1-17 [PMID:17882463]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Sigma receptors

Other protein targets → Sigma receptors

Overview: Although termed ‘receptors’, the evidence for coupling through conventional signalling pathways is lacking. Initially described as a subtype of opioid receptors, there is only a modest pharmacological overlap and no structural convergence with the G protein-coupled receptors. A wide range of compounds, ranging from psychoactive agents to antihistamines, have been observed to bind to these sites, which appear to be intracellular.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>sigma non-opioid intracellular receptor 1</th>
<th>α2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>SIGMAR1, Q99720</td>
<td></td>
</tr>
<tr>
<td>Agonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Sub)family-selective agonists</td>
<td>(RS)-PPCC (pKᵢ 8.8) [67]</td>
<td></td>
</tr>
<tr>
<td>Selective agonists</td>
<td>PRE-084 (pIC₅₀ 7.4) [80], (+)-SK&F10047</td>
<td></td>
</tr>
<tr>
<td>Antagonists</td>
<td>(-)-pentazocine</td>
<td></td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>NE-100 (pIC₅₀ 8.4) [62], BD-1047 (pIC₅₀ 7.4) [54]</td>
<td></td>
</tr>
<tr>
<td>Labelled ligands</td>
<td>[³H]pentazocine (Agonist)</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Agonists

PB-28 (pKᵢ 8.3) [5], 1,3-ditolylguanidine (pKᵢ 7.4) [45] – Guinea pig

Antagonists

(-)-pentazocine

SM 21 (pIC₅₀ 7.2) [48]

Labelled ligands

[³H]di-o-toly1guanidine (Agonist)

There is no molecular correlate of the α2 receptor.

Comments: (-)-pentazocine also shows activity at opioid receptors.

Further Reading

Searchable database: http://www.guidetopharmacology.org/index.jsp

Tubulins

Overview: Tubulins are a family of intracellular proteins most commonly associated with microtubules, part of the cytoskeleton. They are exploited for therapeutic gain in cancer chemotherapy as targets for agents derived from a variety of natural products: taxanes, colchicine and vinca alkaloids. These are thought to act primarily through β-tubulin, thereby interfering with the normal processes of tubulin polymer formation and disassembly.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>tubulin, alpha 1a</th>
<th>tubulin, alpha 4a</th>
<th>tubulin, beta class I</th>
<th>tubulin, beta 3 class III</th>
<th>tubulin, beta 4B class IVb</th>
<th>tubulin, beta 8 class VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>TUBA1A, Q71U36</td>
<td>TUBA4A, P68366</td>
<td>TUBB, P07437</td>
<td>TUBB3, Q13509</td>
<td>TUBB4B, P68371</td>
<td>TUBB8, Q3ZCM7</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>–</td>
<td>–</td>
<td>vinblastine (pIC₅₀ 9), vincristine</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(Sub)family-selective inhibitors</td>
<td>–</td>
<td>–</td>
<td>eribulin (pIC₅₀ 8.2) [59], paclitaxel (Mitotic cell cycle arrest in A431 cells) (pEC₅₀ 8.1) [63], colchicine (pIC₅₀ 8) [12], cabazitaxel, docetaxel, ixabepilone</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Further Reading

References

1. ANDRADE C. (1952) [12978172]
2. Alduaij W et al. (2011) [21378274]
4. Balandran G et al. (2000) [10854433]
5. Berardi F et al. (1996) [8568804]
7. Bolt S et al. (1993) [8436176]
8. Caron PC et al. (1992) [1458463]
10. Chang AA et al. (2013) [24144450]
11. Chu QS. (2009) [19236257]
12. Cifuentes M et al. (2006) [16504507]
13. Coelho T. (1996) [27328599]
15. Crabb JW et al. (1998) [9541407]
16. Czikraky MJ et al. (1993) [8137606]
17. El-Charabaty E et al. (2012) [22992146]
18. Eriksson BI et al. (1995) [7667822]
19. Feldman M et al. (1998) [9863520]
20. Friedel HA et al. (1994) [7528134]
21. Furuhashi M et al. (2007) [17554340]
22. Garcia-Calvo M et al. (2005) [13928087]
23. Giraldo L et al. (1998) [9393475]
24. Goldberg MM. (1999) [10090426]
26. Gotti R et al. (2013) [23598032]
27. Gragoudas ES et al. (2004) [15625332]
30. Hall RD et al. (2013) [23302904]
32. Hertz P et al. (2009) [19754198]
33. Hoffmann HM et al. (2008) [18668853]
34. Hohoff C et al. (1999) [10493790]
35. Holzner E et al. (1986) [3744129]
37. Issafras H et al. (2014) [21949526]
38. Jacobson DR et al. (1997) [9017939]
39. James LJ et al. (2013) [23292653]
40. Johnson DB et al. (2014) [25096781]
41. Kanji J et al. (2001) [11741212]
42. Kapur S et al. (2001) [11463021]
43. Kline J et al. (2010) [21154117]
46. Lo FK et al. (2006) [16463398]
47. Linke R et al. (2010) [20190561]
49. Mach RH et al. (1999) [10096443]
50. Maeda K et al. (1996) [8619847]
51. Maiya V et al. (2010) [20421974]
52. Malas S et al. (2014) [24969230]
53. Mao X et al. (2006) [16622416]
55. Matsumoto RR et al. (1995) [8566098]
56. McDermott MF. (2009) [19649332]
57. Mitchell P. (2002) [12089534]
58. Murakami K et al. (1999) [10403814]
59. Nakase J et al. (2009) [19398784]
60. Narayanan S et al. (2011) [21324687]
61. Nesbitt A et al. (2007) [17636564]
62. Nye SM et al. (2005) [15660527]
63. Okuyama S et al. (1993) [7901723]
64. Ouyang X et al. (2006) [16777187]
65. Pal SK et al. (2014) [24899254]
66. Paolucci F et al. (2002) [12383040]
67. Pengchala SC et al. (2013) [23716704]
68. Prezaventino O et al. (2007) [17328523]
69. Reslan L et al. (2013) [23537278]
70. Richieri GV et al. (1994) [7929039]
71. Richieri GV et al. (2000) [10852178]
72. Roell MK et al. (2010) [20410301]
75. Sacchettini JC et al. (1989) [2671390]
77. Schroeder F et al. (2008) [17882463]
78. Shealy DJ et al. (2010) [20519961]
79. Stein R et al. (2004) [15102696]
81. Su TP et al. (1991) [16583023]
82. Sultsky R et al. (2007) [17592136]
83. Tang PA et al. (2013) [24179482]
84. Thompson J et al. (1997) [9054409]
85. Vicente Rabaneda EF et al. (2013) [23899231]
86. Westermarck P et al. (1990) [2320592]
87. Yamauchi T et al. (2003) [12802337]
88. Young AC et al. (1994) [7922029]
89. Zwicker BL et al. (2013) [23603567]