Identification of RNF168 as a PML Nuclear Body Regulator

Kathy Shire1, Andrew I. Wong1, Michael H. Tatham2, Oliver F. Anderson2, David Ripsman1, Stephanie Gulstene1, Jason Moffat1, Ronald T. Hay2 and Lori Frappier1*

1Department of Molecular Genetics, University of Toronto

2 Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee

* Author for Correspondence (lori.frappier@utoronto.ca)

Running title: RNF168 as a PML Regulator

Word count: 6,503
Abstract

Promyelocytic leukemia (PML) proteins form the basis of PML nuclear bodies (NBs), which control many important processes. We screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs and identified RNF8 and RNF168 DNA damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the level of PML NBs and proteins, while overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML proteins. In addition, RNF168 was found to associate with SUMO2/3 modified proteins in a manner dependent on its ubiquitin binding sequences, suggesting that hybrid SUMO-ubiquitin chains might be bound. In vitro assays confirmed that RNF168 preferentially binds hybrid SUMO2-K63 ubiquitin chains over individual SUMO2 or K63 ubiquitin chains. Our study identified previously unrecognized roles for RNF8 and RNF168 in PML regulation and a previously unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.

INTRODUCTION

Promyelocytic leukemia (PML) nuclear bodies (NBs) are discreet foci in mammalian cells formed on the basis of PML proteins. PML proteins were so named because a translocation resulting in a PML-retinoic acid receptor alpha (RARα) fusion protein results in the development of acute promyelocytic leukemia (APL) (Salomoni et al. 2008). Considerable evidence now indicates that PML proteins and NBs are tumour suppressors in general and that increasing PML levels is an effective way of inhibiting the growth of tumour cells (Scaglioni et al. 2006; Wu et al. 2014; Salomoni et al. 2008). The tumour-suppressing properties of PML NBs stems from their important contributions to multiple cellular processes including apoptosis, p53 activation, DNA repair and senescence (Salomoni et al. 2008; Lallemand-Breitenbach and de The 2010; Nisole et al. 2013).

PML NBs contain six different nuclear PML isoforms (PML I to VI) that are derived from alternative splicing events in the C-terminal portion of the protein, and there is evidence that specific PML isoforms mediate distinct functions associated with the NBs (Bernardi and Pandolfi 2007; Condemine et al. 2006; Nisole et al. 2013). PML proteins contain a SUMO interacting motif (SIM) and multiple SUMO-modified sites that mediate interactions between the PML proteins allowing for
the formation of the NB (Bernardi and Pandolfi 2007; Shen et al. 2006b). In addition to PML proteins, the NBs contain many other proteins that vary in their dynamics of association and mediate the various NB functions. Many proteins (eg. Daxx) associate with PML NBs through SUMO-SIM interactions with PML core sequences, while others (eg. p53) associate with the C-terminal tail sequences specific to a particular isoform (Bernardi and Pandolfi 2007; Nisole et al. 2013).

In addition to their cellular roles, PML NBs are part of the innate immune response that suppresses infection by several viruses (Geoffroy and Chelbi-Alix 2011; Everett and Chelbi-Alix 2007; Nisole et al. 2013; Tavalai and Stamminger 2011; Sivachandran et al. 2012b). To overcome PML suppression, these viruses encode proteins that disrupt PML NBs by a variety of mechanisms that include inducing degradation of PML proteins, interfering with PML protein interactions by inhibiting SUMOylation, and restructuring of PML NBs into tracts (Tavalai and Stamminger 2009; Nisole et al. 2013; Geoffroy and Chelbi-Alix 2011; Everett and Chelbi-Alix 2007; Sivachandran et al. 2008). These studies showed that PML NB functions can be regulated by manipulating PML proteins and provided a framework for studies on cellular regulation of PML NBs. In addition, considerable information on the regulation of PML NBs has come from studying how they are affected by arsenic trioxide, a treatment for APL that induces the loss of NBs formed by PML-RARα fusion proteins, allowing restoration of NBs formed by the nonmutated copy of PML (Ablain et al. 2014; de The et al. 2012). Arsenic induces hyper-SUMOylation of PML proteins, resulting in recruitment of the SUMO-targeted E3 ligases RNF4 and Arkadia (Erker et al. 2013; Lallemand-Breitenbach et al. 2008; Tatham et al. 2008). RNF4 in particular has been shown to be important for the arsenic-induced PML degradation (Lallemand-Breitenbach et al. 2008; Tatham et al. 2008).

Under normal cell growth conditions, the level of PML proteins also appears to be largely regulated by ubiquitylation and proteasomal-mediated degradation (Rabellino and Scaglioni 2013). PML proteins contain a phosphodegron that, upon phosphorylation by casein kinase 2 (CK2), triggers polyubiquitylation (Scaglioni et al. 2006; Scaglioni et al. 2008). However the E3 ligase responsible for this ubiquitylation has not been identified. A few ubiquitin E3 ligases have been reported to promote PML loss under specific circumstances. For example, the KLHL20-Cul3-ROC1 complex down-regulates PML in response to hypoxia (Yuan et al. 2011) and SIAH1 and SIAH2 can induce PML degradation upon overexpression (Fanelli et al. 2004). In addition, E6AP has been identified as a PML regulator in Burkitt’s lymphoma (Wolnyiec et al. 2012). The ubiquitin specific protease USP7 has also been shown to negatively regulate PML NBs in nasopharyngeal carcinoma cells, by...
promoting the degradation of PML proteins in a manner independent of its catalytic activity (Sarkari et al. 2011; Sivachandran et al. 2008). Despite these specific studies, there is still much to be learned about which ubiquitin pathway proteins regulate the levels of PML proteins and NBs. To gain a more comprehensive understanding of cellular ubiquitin pathway proteins that regulate PML NBs, we screened an shRNA library targeting ~500 ubiquitin pathway proteins for effects on PML NBs. The screen identified RNF8 and RNF168, known to work together in DNA repair, as E3 ubiquitin ligases whose depletion increases the number and intensity of PML NBs. Additional studies confirmed that silencing of RNF8 or 168 increased PML NBs and protein levels, while overexpression of either protein induced loss of PML NBs. RNF168 was further shown to localize to PML NBs through the UMI/MIU1 sequence in a PML isoform-independent manner, and to bind to hybrid SUMO2-ubiquitin chains. The results suggest additional roles for RNF8 and 168 in PML regulation.

RESULTS

Identification of RNF8 and RNF168 as PML regulators

We have previously identified a mechanism by which an Epstein-Barr virus (EBV) protein, EBNA1, induces loss of PML NBs and degradation proteins in nasopharyngeal carcinoma (NPC) and gastric carcinoma, two EBV-associated cancers (Sivachandran et al. 2012a; Sivachandran et al. 2008; Sivachandran et al. 2010). However, little is known about the cellular ubiquitin pathway proteins that regulate PML proteins in these cells. To identify cellular ubiquitin pathway proteins that regulate PML NBs in NPC cells, we conducted a high-content screen in which ~2500 lentiviruses expressing shRNAs designed to silence ~500 ubiquitin pathway proteins (E1s, E2s, E3s and deubiquitylating proteins) were used to infect the NPC cell line CNE2Z in triplicate. Several days later, cells were stained for PML and imaged by confocal microscopy and the number and intensity of PML NBs was determined. Target proteins in which two or more of the five shRNAs increased the average PML NB number 1.5 fold or more or increased average PML NB intensity 2-fold or more were considered for further study. The E3 ligases RNF8 and RNF168, which are known to work together to repair double stranded DNA breaks (Al-Hakim et al. 2010), met these criteria. As shown in Figure 1, multiple shRNAs targeting RNF8 or RNF168 increased the number and/or intensity of PML NBs relative to uninfected cells and also to a negative control lentivirus expressing shRNA targeting RNF111. The
latter lentivirus serves as a negative control for lentivirus infection, because RNF111 expression levels are already undetectable in these cells (data not shown).

The effect of RNF8 and RNF168 on PML NBs was further examined, first by depleting these proteins with siRNA. siRNA-mediated depletion of either protein resulted in an obvious increase in the number and intensity of the PML NBs (Fig. 2A and B). In keeping with these results, Western blots showed that the total level of PML proteins was increased upon silencing RNF8 or RNF168 (Fig. 2C). siRNA-mediated depletion of RNF8 or RNF168 also increased the levels of PML NBs and proteins in U2OS cells, showing that the effects are not cell line specific (Fig. 2D to F). Conversely, overexpression of FLAG-tagged RNF8 or RNF168 decreased the number of PML NBs (Fig. 3).

RNF168 can modulate PML NBs independently from RNF8

In response to DNA damage, RNF8 is recruited to sites of double-stranded DNA breaks (DSBs) where it ubiquitylates histones H2A/H2AX, which results in recruitment of RNF168. Therefore the role of RNF168 in the DNA damage response (DDR) depends on RNF8. We asked whether a similar relationship exists for the roles of RNF8 and RNF168 in regulating PML NBs. To this end, we treated CNE2Z cells with siRNA targeting RNF8 or negative control siRNA, then transfected them with a plasmid expressing FLAG-RNF168 (to overexpress RNF168) or an empty plasmid (pcDNA3). Cells were then stained for FLAG and PML and the number of PML NBs in FLAG-positive cells were compared to the empty plasmid control (Fig. 4). As expected, RNF8 silencing (which was confirmed by Western blotting; Fig 4B) in the presence of pcDNA3 resulted in a notable increase in PML NBs (from 11 to 16 on average; Fig. 4A and C). Also as expected, in control siRNA samples, RNF168 overexpression notably decreased the number of PML NBs relative to the pcDNA3 control (from 11 to 6 on average; Fig. 4A and C). However, RNF168 overexpression was also found to induce the loss of PML NBs in RNF8-silenced samples (from 16 to 9 on average; Fig. 4A and C). The results indicate that RNF168 is able to induce PML loss in the absence of RNF8, at least under conditions of RNF168 overexpression. For completeness, we also did the opposite experiment, in which the ability of overexpressed RNF8 to induce PML NB loss was tested with and without RNF168 silencing (Fig. S1). RNF8 retained the ability to induce loss of PML NBs after RNF168 depletion, indicating the RFN8 and RNF168 can work independently of each other. We focused our further studies on RNF168.
Localization of RNF168 to PML NBs

To gain insight into whether RNF168 was acting directly at PML NBs, we asked whether RNF168 localized to PML NBs. To this end, FLAG-tagged RNF168 with and without deletions of previously characterized functional elements were expressed in CNE2Z cells, followed by staining for FLAG and PML (Fig. 5A and B). As previously reported, overexpression of WT RNF168 results in the formation of aggregates interfering with assessment of nuclear localization (Pinato et al. 2009). This aggregation is not seen with RNF168 mutants lacking the RING domain (ΔRING) or MIU2 ubiquitin-binding sequence (ΔMIU2). Both of these proteins showed nuclear diffuse staining with some foci that localize to the PML NBs (Fig. 5B). The localization to PML NBs was not an artifact of overexpression, as ΔRING localized to PML NBs even at very early post-transfection times, when ΔRING expression levels were close to those of endogenous RNF168 (Fig. S2A). The localization to PML NBs was not particular to CNE2Z cells, as ΔMIU2 was also found to form foci in U2OS cells, some of which coincide with PML NBs (Fig. S2B). The localization to PML NBs was abrogated when the UMI and MIU1 ubiquitin-binding sequences were deleted individually or together within the context of ΔMIU2 (compare ΔMIU2 to Δ100-201ΔMIU2, ΔMIU1ΔMIU2 or ΔUMIΔMIU2 in Fig 5B), implicating the UMI/MIU1 region as a PML-targeting sequence. While the expression level of the different mutants examined for PML localization varied considerably (Fig. 5C), there was no correlation between PML NB localization and expression level. The ability of the UMI/MIU1 region to interact with PML NBs was further examined by expressing an RNF168 fragment containing amino acids 100-201 fused to GFP (Fig. 5C and D). GFP-100-201 formed prominent foci that localized to PML NBs, whereas no such foci were seen with the expression of GFP alone (Fig. 5D). In addition, removal of MIU1 from this construct (GFP-100-166) resulted in the loss of prominent PML-localizing foci, confirming that MIU1 plays a role in recruitment to PML NBs.

Since RNF168 is known to have a role in the DNA damage response (DDR) involving its recruitment to DNA repair sites, we examined whether RNF168 can also associate with PML NBs during the DNA damage response. To this end, FLAG-ΔRING was expressed in CNE2Z cells, which were then treated with etoposide to induce the DDR (as evidenced by 53BP1 foci formation; Fig. 5E top panels), followed by staining for FLAG and PML. As shown in Fig. 5E, ΔRING was still detected at PML NBs, indicating that RNF168 retains its ability to associate with PML NBs during the DDR. This result is similar to studies on the localization of the Bloom (BLM) DDR protein,
which localizes with PML NBs both before and after induction of DNA damage (Bischof et al. 2001).

PML NBs contain 6 different PML isoforms that vary in the length and sequence of their C-terminal regions. Some proteins associate with PML NBs through isoform-specific sequences while others associate with the conserved PML core sequence. To determine if a specific PML isoform was responsible for RNF168 recruitment to PML NBs, we examined the localization of RNF168 ΔMIU2 in CNE2Z cells that express single PML isoforms. These cells were previously generated by silencing total PML with lentivirus-delivered shRNA, then adding back a silencing-resistant PML isoform with a second lentivirus (Sarkari et al. 2011; Cuchet et al. 2011). Each PML isoform forms NBs and this system has been previously used to reveal isoform specificities of some viral and cellular proteins (Sarkari et al. 2011; Sivachandran et al. 2012b; Cuchet-Lourenco et al. 2012). Examination of the localization of RNF168 ΔMIU2 in cells with single PML isoforms, revealed that this protein can localize to NBs formed by any PML isoform, indicating that the interaction is not through the PML C-terminal tails (Fig 6).

RNF168 increases PML ubiquitylation and SUMOylation

The loss of PML NBs can result from either polyubiquitylation and degradation of PML proteins, or from interference with SUMOylation of PML proteins, which interferes with the ability of the PML proteins to interact to form NBs. Therefore we examined the effect of RNF168 overexpression on the ubiquitylation and SUMOylation of PML proteins (Fig. 7). To this end, CNE2Z cells were co-transfected with a plasmid expressing HA-tagged ubiquitin and a second plasmid expressing FLAG-tagged RNF168, an RNF168 mutant or empty plasmid, then treated with proteasomal inhibitor (MG132) to inhibit degradation of the ubiquitylated proteins. PML proteins were immunoprecipitated (IP) with antibody recognizing all PML isoforms under denaturing conditions, then immuno-blotted for PML and HA (Fig. 7A). Both full-length and ΔMIU2 versions of RNF168 were found to induce the accumulation of polyubiquitylated forms of PML, whereas an RNF168 mutant lacking all 3 ubiquitin interacting motifs (ΔUMI1ΔMIU1ΔMIU2 called ΔUb) resembled the empty plasmid negative control. Therefore the sequences that are necessary for RNF168 to associate with PML NBs are also needed for RNF168 to induce PML ubiquitylation. An RNF168 mutant lacking the catalytic RING domain (ΔRING) was also tested for the induction of
PML ubiquitylation and found to be impaired relative to RNF168 or ΔMIU2. However the very low expression level of this mutant relative to other RNF168 proteins makes the result inconclusive.

To further examine the nature of the ubiquitin modifications of PML that are induced by RNF168, we repeated the above experiment in the presence and absence of MG132 and, in addition to detecting total ubiquitin (HA blot), we also blotted with antibodies specific for K48- and K63-linked ubiquitin chains (Fig. 7B). As expected, MG132 treatment resulted in increased levels of total ubiquitylated products (HA blot; input lanes) and K48-linked ubiquitin products (K48 blot; input lanes). In addition, a smaller increase in K63-linked ubiquitin products (K63 blot; input lanes) was detected in the presence of MG132, consistent with reports that hybrid chains containing SUMO2 and K63 ubiquitin can trigger proteasomal degradation (Tatham et al. 2011). Consistent with the known role of RNF168 in synthesizing K63 ubiquitin chains, total levels of these chains (in input lanes) were increased when RNF168 was overexpressed (relative to the pcDNA3 control lane). PML IP experiments showed induction of PML ubiquitylation (detected in HA blot) by RNF168 and ΔMIU2 (relative to the control lane) only when proteasomal degradation was blocked, consistent with a role of this ubiquitylation in PML degradation. Immunoprecipitated PML showed some reactivity with both K48 and K63 ubiquitin antibodies under all conditions, but RNF168 and ΔMIU2 were only found to increase levels of K48 ubiquitin (and to a lesser degree, K63 ubiquitin) on PML (compared to control lanes) when the proteasome was blocked. Together the results suggest that RNF168 can increase the levels of both K48 and K63 ubiquitin chains on PML.

PML proteins are modified by the addition of SUMO1, SUMO2 and SUMO3. These modifications are needed for nuclear body formation, while hyper-SUMOylation can be a step in PML degradation (as induced by arsenic trioxide). We examined the effect of RNF168 overexpression on PML SUMOylation by co-transfecting CNE2Z cells with a plasmid expressing myc-tagged SUMO2 and the indicated FLAG-tagged RNF168 protein or empty plasmid, followed by IP of total PML (Fig. 7C). Relative to the empty plasmid negative control, RNF168 was consistently found to increase the levels of SUMO2-modified PML proteins, whereas ΔUb (ΔUMIΔMIU1ΔMIU2) did not exhibit this effect and ΔMIU2 and ΔRING had an intermediate effect. The results suggest that RNF168-induced loss of PML NBs is not due to interference with PML SUMOylation, but rather that RNF168 can increase PML SUMOylation. In addition, the fact that the low-expressing ΔRING still induced PML SUMOylation to some degree, suggests that the increase in PML SUMOylation is independent of the ubiquitylation activity of RNF168.
RNF168 associates with hybrid SUMO2-ubiquitin chains

The findings that RNF168 associated with PML core sequences, which are known to be SUMOylated, and could increase SUMOylation of PML proteins prompted us to further examine the ability of RNF168 to bind SUMO. To this end, CNE2Z cells were co-transfected with a plasmid expressing myc-tagged SUMO1, SUMO2 or SUMO3 and a plasmid expressing FLAG-tagged RNF168 or ΔUb (ΔUMIΔMIU1ΔMIU2) or empty plasmid. FLAG-RNF168 was recovered by IP and recovery of Myc-SUMO examined by Western blots (Fig. 8A). Consistent with previous reports, input lanes showed that SUMO2 and SUMO3 formed high molecular weight chains more efficiently than SUMO1. In addition, an increase in the total level of SUMO2 or SUMO3 chains was consistently seen in the presence of RNF168 relative to the empty plasmid control (compare lane 2 to lane 5 and lane 3 to lane 6). FLAG IPs showed that full length RNF168 associates with the SUMO2 and SUMO3 chains (compare lanes 11 and 12 to lanes 14 and 15), and that this interaction is greatly decreased by deletion of the three ubiquitin interacting regions in the ΔUb mutant (lanes 17 and 18). We did not detect any shifted forms of FLAG-RNF168 in either the input or FLAG-IP samples (see FLAG blots), suggesting that RNF168 itself is not SUMO-modified, but rather can bind to SUMO2/3 chains. However, a direct interaction between purified RNF168 and free SUMO2 or SUMO3 chains was not detected in *in vitro* binding assays (data not shown). This suggests that RNF168 is not simply recognizing SUMO2/3 but rather SUMO2/3 in a particular context.

Hybrid SUMO-ubiquitin chains have been described consisting of a SUMO2 chain joined to a K63-linked ubiquitin chain (Tatham et al. 2013), and these can be specifically recognized by some proteins (Geoffroy and Hay 2009; Guzzo et al. 2012; Hu et al. 2012). The UMI/MIU1 sequences of RNF168 that we found to be important for recovery of SUMO2 chains have been previously shown to recognize K63-linked ubiquitin (Panier et al. 2012), raising the possibility that the SUMO2-containing material that we recovered are hybrid SUMO-ubiquitin chains. To investigate this possibility, affinity resins were generated that contain one of the following: K63-ubiquitin polymers (K63-Ub), linear 4xSUMO2 chains (4xSUMO-2), N-terminally monoubiquitinated 4xSUMO2 chains (Ub-4xSUMO2) or hybrid chains containing K63-ubiquitin polymers linked to 4xSUMO2 (K63Ub-4xSUMO2) (see Fig. S3A). Nuclear extracts from cells were incubated with each of these resins as well as with empty resin (blank), and proteins retained on each resin were identified and quantified by mass spectrometry-based label-free...
quantitative proteomics (Fig. S3B). Ratios of the recovery of each protein on a particular
SUMO/ubiquitin resin relative to the blank resin were then determined (Fig. S3C and D).
RNF168 was one of the highest scoring proteins with much higher recovery on resins containing
K63Ub-SUMO2 hybrid chains than any of the other resins (Figs. 8B, S3C and S3D).
To determine whether RNF168 binds directly to the hybrid chains, assays with the above
affinity resins were repeated using purified RNF168 generated in \textit{E. coli}, and eluted proteins were
analysed by SDS-PAGE and Coomassie staining. As shown in Fig. 8C, RNF168 was recovered
most efficiently on the resin containing the hybrid K63Ub-4xSUMO2 chains. Consistent with
previous reports (Panier et al. 2012), some binding was also detected to resin containing K63-
linked polyubiquitin. The results indicate that the association of RNF168 with SUMO2 chains
involves direct binding to hybrid SUMO2-ubiquitin chains.

DISCUSSION
Our screen for proteins that regulate the level of PML NBs identified RNF8 and RNF168 as
proteins whose depletion results in increased number and intensity of PML NBs and increased level
of PML proteins. Conversely overexpression of RNF8 or RNF168 can lead to loss of PML NBs. To
date, RNF8 and RNF168 are known for their important roles in the DDR to double stranded DNA
breaks (Bartocci and Denchi 2013; Al-Hakim et al. 2010). K63-linked ubiquitylation of histones
H2A/H2AX and/or other proteins by RNF8 at DSBs results in the recruitment of RNF168, which
interacts with the ubiquitylated histones through its three ubiquitin-binding motifs (UMI, MIU1, and
MIU2) (Stewart et al. 2009; Bartocci and Denchi 2013; Panier and Durocher 2009; Panier et al.
2012; Mailand et al. 2007; Doil et al. 2009). Further ubiquitylation of H2A/H2AX by RNF168 and
RNF8 then leads to recruitment of additional DNA repair proteins including 53BP1 and BRCA1.
Our current studies indicate additional roles for RNF8 and RNF168 as negative regulators of PML
NBs.

Our studies show that RNF8 and RNF168 can down-regulate PML NBs and proteins. We
focused subsequent studies on RNF168 due to its partial co-localization with PML NBs, which
suggests it is acting directly on the PML NBs. Overexpression of full length RNF168 is known to
aggregate in cells and hence is not typically used for functional studies (Pinato et al. 2009). However
deletion of MIU2 or the RING domain abrogates this aggregation and reveals prominent foci that
correspond to PML NBs. Analyses of additional deletion mutants and GFP-fusion proteins
identified the UMI/MIU1 region as important for PML targeting. Since all of our UMI/MIU1 deletion constructs lacked MIU2, we do not know whether PML targeting is unique to UMI/MIU1 or can also be mediated by MIU2.

The mechanism by which RNF168 induces PML NB loss appears to involve ubiquitylation of PML proteins, since overexpression of RNF168 or ΔMIU2 resulted in increased levels of ubiquitylated PML proteins. The effect on PML ubiquitylation also fits with the increase in PML protein levels that were observed upon RNF168 depletion. Induction of PML ubiquitylation requires UMI/MIU1 PML-targeting sequences in RNF168 (that were deleted in the ΔUb mutant in Fig. 7), consistent with a requirement to associate with the PML NB to induce PML degradation. It remains unclear whether PML is ubiquitylated directly by RNF168, although this is the simplest interpretation. Interestingly, Tikoo et al (Tikoo et al. 2013) previously found that RNF8 could conjugate K63-linked ubiquitin to PML proteins in vitro, although this led to an increase rather than a loss of PML NBs in their system. We also observed that RNF168 but not the ΔUb mutant increased the level of SUMO2-modified PML. SUMO modifications of PML are also factors in the stability of PML proteins. For example, arsenic trioxide triggers the loss of PML proteins by first inducing their hyperSUMOylation (Lallemand-Breitenbach et al. 2008; Lallemand-Breitenbach et al. 2001; Tatham et al. 2008). Therefore the effect of RNF168 on PML SUMOylation may also be a factor in its ability to regulate the level of PML NBs.

RNF168ΔMIU2 was found to localize to NBs formed by any single PML isoform. The PML isoforms are identical except for their C-terminal tails, which differ in length and sequence, and have been shown to mediate some isoform-specific interactions (Cuchet-Lourenco et al. 2012; Sivachandran et al. 2012b; Nisole et al. 2013). The fact that RNF168 localization to PML NBs was not PML isoform-dependent indicates that recruitment of RNF168 to PML NBs involves the PML core sequences. These core sequences contain multiple SUMO interacting motifs (SIM) and SUMO modifications, and proteins that interact with PML core sequences typically do so through SUMO-SIM interactions. This prompted us to examine whether RNF168 is SUMOylated or can bind SUMO-modified proteins (Fig. 8). While RNF168 can be modified by SUMO1 in response to DNA damage (Danielsen et al. 2012), we did not detect any SUMO modifications of RNF168 under our conditions. Rather, RNF168 was found to bind high molecular weight complexes containing SUMO2 and SUMO3 chains. These interactions were dependent on the presence of the UMI/MIU1/MIU2 ubiquitin interacting sequences suggesting, either that these sequences can also interact with
SUMO2/3 chains, or that the SUMO2/3 chains that were bound were hybrid chains that also
contained ubiquitin.

To clarify whether or not RNF168 can bind hybrid SUMO-ubiquitin chains, we conducted in
vitro assays comparing recovery of RNF168 on resin containing chains of SUMO2, K63 ubiquitin or
K63Ub-SUMO2 hybrids. We found that the hybrid chains were most efficiently bound by RNF168,
whereas binding of purified RNF168 to SUMO2 chains was not detected (Fig. 8B, 8C and additional
unpublished data). This suggests that the SUMO2/3-modified proteins that we recovered from cells
contain hybrid SUMO-ubiquitin chains. This would explain the requirement for the ubiquitin-binding
sequences of RNF168 and suggests that RNF168 also contains a weak SIM.

Taken together, our data suggest a model in which RNF168 is recruited to PML NBs through
direct interaction with hybrid SUMO-ubiquitin chains which could be on PML proteins themselves
or other PML-NB constituents, such as Daxx, Sp100 and BLM, which are also SUMO-modified
(Seeler and Dejean 2001). In this respect, RNF168 may act downstream of RNF4, a SUMO-targeted
ubiquitin ligase that generates hybrid chains and is known to negatively regulate PML NBs
(Geoffroy and Hay 2009). Once recruited to PML NBs, RNF168 causes increased ubiquitylation and
SUMOylation of PML proteins, which stimulates their proteasomal degradation. It remains to be
determined whether RNF 168 is recruited to PML NBs through interactions with hybrid SUMO-
ubiquitin chains on PML. Conducting experiments in cells expressing PML mutants lacking SUMO-
modified sites may be one way of clarifying whether SUMO or SUMO-ubiquitin chains on PML are
required for RNF168 recruitment and induced ubiquitylation of PML. However, since the lack of
SUMOylation of PML affects the structure and composition of the NBs (Lallemand-Breitenbach et
al. 2001), any changes in RNF168 behaviour could not be conclusively attributed to a direct
requirement for SUMO chains on PML.

Our finding that RNF168 binds hybrid SUMO-ubiquitin chains is also likely to be relevant
for RNF168 recruitment to sites of DNA damage. It has been previous reported that SUMO1,
SUMO2 and SUMO3 accumulate at double stranded DNA breaks due to the action of PIAS4 and
PIAS1, and that PIAS1/PIAS4 are needed for productive recruitment of RNF168 (Galanty et al.
2009). We now suggest that this requirement may be due to the generation of hybrid SUMO-
ubiquitin chains, which are then recognized by RNF168. This would be similar to the recruitment of
RAP80 to double-stranded DNA breaks, which has been shown to involve binding to SUMO-
Our studies have uncovered previously unrecognized roles for the RNF8 and RNF168 DNA damage response proteins in PML regulation. A relationship between DNA repair and PML NBs is well established, in that PML NBs are known to contribute to efficient DNA repair and have been shown to be associated with several DDR proteins (Bischof et al. 2001; Tikoo et al. 2013; Boichuk et al. 2011; Boe et al. 2006; Yeung et al. 2012; Zhong et al. 1999; Dellaire et al. 2006; Dellaire and Bazett-Jones 2004). For example BLM localizes to PML NBs in cells with and without induced DNA damage, and PML is required for the formation of BLM-containing repair foci as well as for BLM function in DNA repair (Zhong et al. 1999; Bischof et al. 2001). However, others report a lack of association of PML with sites of active DNA repair (Dellaire et al. 2006), suggesting that the role of PML in DNA repair may be indirect, for example in facilitating modifications of DNA repair proteins (Lallemand-Breitenbach and de The 2010). Like BLM, we have shown that RNF168 associates with PML NBs and that this interaction also occurs during the DDR. Interestingly, RNF168 is modified by SUMO1 in response to DNA damage (Danielsen et al. 2012), and since PML NBs can promote SUMOylation, this might be one reason for the association of RNF168 with PML NBs. Whether or not the interaction of RNF168 with PML NBs is necessary for its function in the DDR or represents a distinct role of RNF168 in PML regulation remains to be determined.

MATERIALS AND METHODS

Cell lines

The EBV-negative NPC cell line CNE2Z (Sun et al. 1992) was maintained in alpha-MEM (Gibco) supplemented with 10% fetal bovine serum (FBS). CNE2Z cell lines expressing single PML isoforms are described in Sarkari et al (Sarkari et al. 2011). U2OS cells were grown in Dulbecco’s modified essential medium (DMEM) supplemented with 10% FBS.

shRNA screen

CNE2Z cells were seeded in 384-well glass bottom plates (Perkin Elmer 6007550) in 50 µl media containing 8 µg/mL polybrene at a density of 500 cells/well. 1 hr later, 5 µl of shRNA-expressing lentivirus was added, corresponding to culture supernatant from a 96-well plate lentivirus infection. The lentivirus library targeted approximately 500 ubiquitin pathway proteins with 3 to 5 shRNA constructs per gene and is a subset of the library described in Moffat et al (Moffat et al. 2006). Infections with each lentivirus were set up in triplicate. 24 hrs later, 2 µg/ml puromycin was added to...
select for the virus. The puromycin was removed 24 hours later and the cells were grown for 5 days before fixation and fluorescent staining for image acquisition. Cells were washed with PBS, fixed with 3.7% paraformaldehyde for 25 min, washed with PBS, permeabilized with PBS containing 1% Triton X-100 for 5 min, blocked with 4% BSA in PBS for 2 hours and incubated with primary antibody solution (1:100 in 4% BSA in PBS) recognizing PML (Santa Cruz Biotechnology; sc-966) for 18 hours at 4°C. The cells were washed with PBS and incubated with blocking buffer containing 1:700 dilution of goat anti-mouse conjugated Alexa Fluor 488 (Life Technologies; A11029) and 1:1000 dilution of 10 mg/mL Hoechst (Molecular Probes). After 1½ hours at room temperature in the dark, the cells were rinsed 3 times with PBS and stored in PBS. Images from ten areas per well in the green (488) and blue (Hoechst) channels were obtained using a 40X objective on an Opera confocal microscope (PerkinElmer). The number and intensity of PML NBs was determined using Acapella software.

Plasmids and siRNA

Plasmids expressing FLAG-tagged RNF8 (Genecopoeia), RNF168 (pcDNA3:FLAG-RNF168wt) or the RNF168 mutants ΔMIU1 (lacking amino acids 168-191), ΔMIU1 ΔMIU2 (lacking amino acids 168-191 and 439-462), ΔRING (lacking amino acids 1-58), ΔMIU2 (lacking amino acids 439-462) were kindly supplied by Dan Durocher and are described in Stewart et al 2009.

pcDNA3::FLAG ΔUMI ΔMIU1 ΔMIU2 (lacking amino acids 134-191 and 439-462) was generated by PCR amplification of the RNF168 sequences in pGFP-RNF168 ΔUMI ΔMIU1 ΔMIU2 (Panier et al. 2012) and insertion into Asc1 and Xba1 of pcDNA3:FLAG. Δ100-201ΔMIU2 was generated from pcDNA3::FLAG ΔMIU2 by Quik Change site directed mutagenesis. pEGFP:NLS-RNF168aa100-201 was obtained from Dan Durocher and is described in Panier et al (2012).

pEGFP:NLS-RNF168 aa100-166 was generated by PCR amplification of the relevant RNF168 sequences and ligation into Asc1 and Xba1 sites of pEGFP:NLS. Stealth siRNA of RNF168 (CCAUCCAGCCUCAUCUGGACCAGU) and RNF8 (GGGUGUCAGAGCCAGAGAA) were from Invitrogen. AllStar negative-control siRNA was obtained from Qiagen.

Antibodies
PML antibodies used for microscopy were from Santa Cruz Biotechnology (sc-966: 1:80 dilution) and those used for Western blotting were from Bethyl (A301-167A; 1:2000 dilution). Other antibodies used were mouse anti-FLAG M2 (Sigma; 1:5000 dilution), rabbit anti-FLAG (Bethyl A190-102A; 1:5000 dilution), RNF8 (Santa Cruz 271462; 1:200 dilution), RNF168 (Millipore 06-1130; 1:1000 dilution), HA (Santa Cruz 7392; 1:500 dilution), K63-linked ubiquitin (Millipore 05-1308; 1:1000 dilution), K48-linked ubiquitin (Millipore 05-1307; 1:10,000 dilution), myc (Santa Cruz 40; 1:500 dilution) and actin (Santa Cruz 1616; 1:2000 dilution). Secondary antibodies used for Western Blots (GAM/HRP -2055, GAR/HRP-2004; 1:5000 dilutions) were from Santa Cruz Biotechnology. Secondary antibodies for microscopy were from Invitrogen (GAM488-A11029, GAM555, GAR488, GAR555; all at 1:700 dilution).

Transfections

Approximately 6 x 10^5 CNE2Z cells were plated in 5 mls of medium in 10 cm dishes or on coverslips (for microscopy). They were immediately transfected with 100 pmol of siRNA targeted against either RNF8 or RNF168 or AllStars negative control siRNA (Qiagen) using 2 µL of lipofectamine 2000 (Invitrogen). The cells were subject to second and third rounds of the same transfection after 24 and 48 hours. 48 hours after the third round of transfections cells were harvested and either analyzed by Western blotting or processed for immunofluorescence microscopy. For overexpression experiments, cells plated as above were transfected with 2 µg of the indicated plasmid using PolyJet (FroggaBio) then harvested 24 hrs (for PML NB localization experiments) to 48 hrs (for PML loss experiments) post transfection.

Immunofluorescence microscopy

Cells grown on coverslips were fixed with 3.7% formaldehyde in PBS for 20 min, rinsed twice in PBS, and permeabilized with 1% Triton X-100 in PBS for 5 min. Samples were blocked with 4% bovine serum albumin (BSA) in PBS followed by incubation with primary antibodies as indicated, followed by secondary antibodies. Coverslips were mounted on slides using ProLong Gold antifade medium containing 4’,6-diamidino-2-phenylindole (DAPI) (Invitrogen). Images were obtained using the 40× oil objective on a Leica inverted fluorescence microscope and processed using the OpenLAB (ver.X.0) software program. PML was quantified by counting 100 cells per sample, and
experiments were performed in triplicate. Averages and standard deviations were calculated in Excel. P values were determined using two tailed t-tests in Excel.

Western blotting

Cells were lysed in 9 M urea, 10 mM Tris pH 6.8 followed by sonication. 50 µg of clarified lysates were loaded onto 10% SDS-PAGE and transferred onto nitrocellulose. Membranes were blocked in 5% non-fat dry milk in PBS-T (PBS with 0.1% Tween) for 1 hour, followed by incubation with primary antibody in blocking buffer overnight at room temperature. Membranes were washed three times with PBS-T and then incubated with secondary antibodies conjugated to horseradish peroxidase (Santa Cruz Biotechnology) for 1 hour. Membranes were washed three times with PBS-T and signals were detected by enhanced chemiluminescence (ECL) (Perkin Elmer Life and Analytical Sciences).

PML ubiquitylation and SUMOylation assays

For ubiquitylation assays, CNE2Z cells in a 15 cm dish were transfected with 5 µg of plasmid expressing HA-tagged ubiquitin and 5 µg of FLAG-RNF168 expression plasmid or empty control plasmid (pcDNA3) using Polyjet (FroggaBio Scientific Solutions). 40 hours post-transfection, cells were treated with 10 µM MG132 (Sigma) for 10 hours (except where indicated). Harvested cell pellets were frozen then thawed and boiled in 200 µl of SDS lysis buffer (62.5 mM Tris pH 6.8, 2% SDS, 10% glycerol, 1 mM N-ethyl maleimide). Clarified lysates were diluted with 1 ml IP buffer (50 mM Tris pH 8.0, 150 mM NaCl, 1% NP-40). Lysates were incubated overnight with PML antibody (Bethyl, A301-167A) and Protein A/G agarose (SantaCruz sc-2003). After washing in IP buffer, immunoprecipitates were eluted in loading buffer (60 mM Tris.HCl pH 6.8, 1% SDS, 100 mM DTT, 5% glycerol) prior to western blotting. SUMOylation assays were performed as above except that the plasmid expressing HA-ubiquitin was replaced by myc-tagged SUMO2 (MacPherson et al. 2009) and no MG132 treatment was used. A positive control for SUMOylation was also performed by treating pcDNA3/myc-SUMO2 transfected cells with 4 µM arsenic trioxide for 4 hrs.

Cell-based assay for interaction of RNF168 with SUMO

293T cells were transfected with 10 µg of plasmid expressing myc-tagged SUMO1, SUMO2 or SUMO3 (MacPherson et al. 2009) (kindly supplied by Dr. Paul Sadowski) and 10 µg of FLAG-
RNF168 expression plasmid or empty control plasmid (pcDNA3). 48 hrs later, cells were lysed in 50 mM Tris pH 7.4, 150 mM NaCl, 1% TritonX-100, 1 mM N-ethyl maleimide, P8340 Protease Inhibitor (Sigma). 1.7 mg of lysate was incubated with 20 μl of M2 FLAG affinity resin (Sigma A2220) for 3 hours and then washed 4 times with 1 ml of lysis buffer. Proteins were eluted in 2X SDS loading buffer (4% (w/v) SDS, 0.2% (w/v) bromophenol blue, 20% (v/v) glycerol, 200 mM DTT) then analysed by Western blotting.

Generation of SUMO2/ubiquitin affinity resins

4xSUMO2 (SUMO2 residues 2-92 linked to three copies of SUMO2 residues 12-92) and Ub-4xSUMO2 were expressed and purified as described previously (Tatham et al. 2013). Unanchored K63-linked polyubiquitin chains (K63Ub), and K63-linked polyubiquitin chains conjugated to the N-terminus of 4xSUMO2 (K63Ub-4xSUMO2) were synthesized using recombinant Ubc13 and Ube2v2 as described previously (Branigan et al. 2015). These proteins were coupled to N-hydroxysuccinimide (NHS) resin in 0.2M NaHCO3, 0.5M NaCl as per manufacturer’s instructions (GE Healthcare). The remaining active groups were blocked with ethanolamine, and resins were stored at 4°C.

Identification of cellular proteins with affinity for SUMO2 and ubiquitin polymers.

Nucelar extracts were generated from 293 N3S cells as previously described for U2OS cells (Seifert et al. 2015). Nuclear lysate (10 mls at 5.5 mg/ml) was incubated with 50 μl of the affinity resin overnight at 4°C with rotation, then resins were washed three times with RIPA buffer. Bound proteins were eluted by sequential incubation of the resins with 5 μM USP2 and 5 μM SENP1 for 2 hours at 22°C, followed by a 5 minute incubation at 70°C in denaturing buffer (Novex NuPAGE LDS sample buffer; Life technologies). SENP1 (415-644) was prepared as described previously (Shen et al. 2006a). 6His-USP2(259-605) was purified as described for RNF168 below. Since RNF168 was most abundant in the denaturing elutions, only these elutions were used in further analyses. Eluates were fractionated on a NuPAGE Novex 10% Bis-Tris gel run in MOPS buffer, followed by Coomassie staining. Each lane was cut into upper and lower portions, followed by peptide extraction and in gel tryptic digestion (Shevchenko et al. 2006). Extracted peptides were resuspended in 35μl 0.5% acetic acid, 0.1%TFA and 8 μl was analysed by LC-MS/MS on Q Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific). Data were
analysed with MaxQuant incorporating the Andromeda search engine (version 1.5.2.8) as in Tatham et al (Tatham et al. 2011). Protein intensity values based on extracted ion chromatograms (XICs) were reported for each purification. Protein intensities were arithmetically converted to ratio values and ratios were normalized to the median ratio of the entire group to allow for sample loading errors. Ratio scores were calculated for each protein by comparing data from each affinity resin to the blank resin. Only 69 proteins of the 1827 proteins processed had a ratio score >12 in at least one of the four comparisons. Hierarchical clustering was used to combine the four ratio scores of these proteins into a single heatmap using Perseus.

Assay of purified RNF168 binding to SUMO2/ubiquitin polymers

6His-RNF168 (full length) was expressed in *E.coli* and purified by nickel affinity chromatography, followed by removal of the 6His-tag by TEV protease digestion and repurification of the untagged product as previously described (Branigan et al. 2015). 10 μM purified RNF168 was incubated with 20 μl of each affinity resin in 100 μl of binding buffer (50 mM Tris, 150 mM NaCl, 0.5 mM TCEP, 0.05% NP-40) overnight at 4°C. Resins were collected by centrifugation at 500 x g for 1 minute, then washed twice with binding buffer. Bound proteins were eluted by sequential incubation with USP2, SENP1 and denaturing buffer as described above. Proteins from the denaturing elution were analysed by SDS-PAGE and Coomassie staining.

Acknowledgements

We are grateful to Daniel Durocher for providing several constructs for RNF8 and RNF168 expression and for helpful advice throughout the course of this work. We thank Patricia Mero and Cameron Landry for assistance in setting up the shRNA screen. We also thank Paul Sadowski and Melissa MacPherson for the plasmids expressing myc-tagged SUMO.

Competing interests

The authors declare no competing or financial interests.

Author Contributions
L.F., K.S. and R.T.H. conceived of and designed the experiments. K.S., A.I.W., M.H.T., O.F.A.,
D.R. and S.G. performed the experiments. J.M. provided the lentivirus shRNA library and
microscope for the initial screen. L.F. wrote the manuscript.

Funding
This work was supported by a Canadian Institutes of Health Research (CIHR) operating grant to LF
and by a Programme grant from Cancer Research UK to RTH. OFA was supported by a studentship
from the Biotechnology and Biological Sciences Research Council. LF is a tier one Canada Research
Chair. RTH is a Senior Investigator of the Wellcome Trust.
REFERENCES

Sarkari F, Wang X, Nguyen T, Frappier L (2011). The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS ONE 6 (1),e16598. doi,10.1371/journal.pone.0016598

Seeler JS, Dejean A (2001). SUMO: of branched proteins and nuclear bodies. Oncogene 20 (49),7243-7249. doi,10.1038/sj.onc.1204758

Sivachandran N, Cao JY, Frappier L (2010). Epstein-Barr virus nuclear antigen 1 Hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol 84 (21),11113-11123

FIGURE LEGENDS

Fig. 1. An shRNA screen identifies RNF8 and RNF168 as regulators of PML NBs. CNE2Z cells were infected with a lentivirus expressing an shRNA targeted to RNF111 (negative control), RNF168 (shRNAs 1 to 5) or RNF8 (shRNAs 1 to 5) or left uninfected (none). Cells were then fixed, stained with Hoechst and with PML-specific antibody, then imaged by confocal microscopy. A. The number of PML NBs per cell and intensity of PML NBs was determined. Average values with standard deviation are shown. B. Sample images for the indicated shRNAs from A.

Fig. 2. siRNA targeting RNF8 and RNF168 increases PML NBs and PML protein levels. A. CNE2Z cells were transfected with siRNA targeting RNF8 or RNF168 or negative control siRNA (control), then stained for PML. B. The number of PML NBs per cell was determined for 100 cells in 3 independent experiments and average values with standard deviation were plotted. P values (determined by t-tests) are indicated as follows: * = 0.01<P < 0.05; ** = 0.001<P < 0.01; *** = P < 0.001. C. CNE2Z cells treated with siRNA as in A were lysed and analysed by Western blotting using the indicated antibodies. PML bands were quantified by densitometry and normalized to actin, and values for each lane are shown relative to the Control lane under the gel. D to F. The same experiment as in A to C but performed in U2OS cells.

Fig. 3. Overexpression of RNF8 or RNF 168 induces loss of PML NBs. A. CNE2Z cells were transfected with plasmids expressing FLAG-tagged RNF8 or RNF168 then stained for FLAG and PML. Sample images showing fewer PML NBs in FLAG-positive cells are shown. B. PML NBs were counted for cells expressing FLAG-RNF8 or FLAG-RNF168 and compared to cells transfected with empty plasmid (pcDNA3). Average values with standard deviation are shown from 3 independent experiments, with P values defined as in Fig. 2.

Fig. 4. RNF168 can induce loss of PML NBs independent of RNF8. CNE2Z cells were treated with siRNA targeting RNF8 (siRNF8) or negative control siRNA (control) then transfected with the FLAG-RNF168 expression plasmid (bottom two rows in A) or empty control plasmid pcDNA3 (top two rows in A). Cells were then either fixed and stained for PML and FLAG (A) or lysed and analysed by Western blotting using RNF8 specific antibody to confirm RNF8 silencing (B). C. PML NBs in A were counted for 100 cells in three independent experiments. For RNF168 samples, PML
NBs were counted only in FLAG-positive cells. Average values with standard deviations are plotted with \(P \) values (***) = \(P < 0.001 \) for RNF168 overexpression shown relative to the pcDNA3 control in each condition.

Fig. 5. RNF168 localization to PML NBs. A. Schematic representation of RNF168 showing the positions of the catalytic RING domain, ubiquitin binding sequences (UMI, MIU1, MIU2) and LR motifs (LRM) (Panier et al. 2012). B. CNE2Z cells were transiently transfected with plasmids expressing FLAG-tagged RNF168 with WT sequence or the indicated deletions or with pcDNA3 empty plasmid. Cells were then stained for FLAG and PML and imaged by fluorescence microscopy. C. Western blots for FLAG-tagged and GFP-tagged proteins expressed in B and D. D. CNE2Z cells were transfected with plasmids expressing GFP fused to RNF168 amino acids 100-201 (containing LRM1, UMI and MIU1) or 100-166 (containing LRM1 and UMI) or GFP alone, then stained for PML and imaged for GFP and PML. E. In the bottom panels, CNE2Z cells were transiently transfected with plasmids expressing FLAG-ΔRING, treated with etoposide (10 \(\mu \)g/ml) for 5 hours then stained for FLAG and PML and imaged by fluorescence microscopy. In the top panels, CNE2Z cells were treated with etoposide as in bottom panels or left untreated as indicated, then stained for 53BP1 to confirm that DDR foci were induced by etoposide.

Fig. 6. RNF168 localizes to NBs formed by any PML isoform. A plasmid expressing FLAG-tagged RNF168 ΔMIU2 was used to transflect CNE2Z cells or CNE2Z cells that lack WT PML but express a single recombinant PML isoform (PML I to PML VI) (Sarkari et al. 2011; Sivachandran et al. 2012b). Cells were then stained for FLAG and PML.

Fig. 7. RNF168 induces PML ubiquitylation and SUMOylation. A. CNE2Z cells were transfected with a plasmid expressing HA-tagged ubiquitin and a second plasmid expressing RNF168 or the RNF168 mutants ΔMIU2, ΔUb (ΔUMIΔMIU1ΔMIU2) or ΔRING or empty plasmid (pcDNA3) in the presence of proteasomal inhibition. Total PML was then immunoprecipitated from cell lysates and analysed by Western blotting for PML and HA (IP). A sample of the cell lysate prior to immunoprecipitation is also shown (INPUT). B. Experiments were performed as in A in either the presence (+) or absence (-) of MG132 proteasomal inhibitor. Ubiquitylated proteins in input and IP samples were detected by Western blotting using antibodies against HA, K48-linked ubiquitin or
K63-linked ubiquitin. C. The same experiments as in A except that the plasmid expressing HA-tagged ubiquitin was replaced by one expressing myc-tagged SUMO2. In addition, a positive control for PML SUMOylation is shown, in which cells transfected with pcDNA3 were treated with arsenic trioxide (pcDNA3+As). Two exposures of the Input FLAG blot are shown.

Fig. 8. RNF168 associates with SUMO2/3-modified proteins in cells and preferentially binds hybrid ubiquitin-SUMO chains *in vitro*. A. 293T cells were co-transfected with a plasmid expressing FLAG-tagged RNF168 (wt), RNF168ΔUb (ΔUMIΔMIU1ΔMIU2) or empty plasmid (Control) and a second plasmid expressing myc-tagged SUMO1, SUMO2 or SUMO3. After cell lysis, a sample was analysed by Western blotting (Input), while the remaining sample was subjected to FLAG IP, followed by Western blotting for Myc and FLAG. The positions of molecular weight markers are indicated on the right. B. Comparison of retention of RNF168 from 293 cell extracts on affinity resins containing K63-ubiquitin polymers (K63-Ub), a linear 4xSUMO2 chain (4xSUMO-2), an N-terminally monoubiquitinated 4xSUMO2 chain (Ub-4xSUMO-2), hybrid chains containing K63-ubiquitin polymers linked to 4xSUMO-2 (K63Ub-4xSUMO-2) or no protein (blank). Total intensity of RNF168 peptides retained on each resin are shown. RNF168 identification was based on 26 unique peptides, 47% sequence coverage. C. Purified RNF168 was incubated with the affinity resins or blank resin from B and, after washing was eluted with denaturing buffer. A Coomassie stained gel is shown of the protein loaded onto the resins (load) and eluted from the indicated resins (Pulldown).
Table A

<table>
<thead>
<tr>
<th>Lentivirus</th>
<th>PML bodies/cell</th>
<th>Intensity/NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>10.4 +/- 2.2</td>
<td>124.2 +/- 20</td>
</tr>
<tr>
<td>RNF111</td>
<td>11 +/- 3.0</td>
<td>122 +/- 19</td>
</tr>
<tr>
<td>RNF168-1</td>
<td>14.5 +/- 1.7</td>
<td>282 +/- 38</td>
</tr>
<tr>
<td>RNF168-2</td>
<td>11.8 +/- 1.5</td>
<td>180 +/- 10</td>
</tr>
<tr>
<td>RNF168-3</td>
<td>11.8 +/- 1.5</td>
<td>149 +/- 27</td>
</tr>
<tr>
<td>RNF168-4</td>
<td>19.5 +/- 1.3</td>
<td>417 +/- 39</td>
</tr>
<tr>
<td>RNF168-5</td>
<td>13.5 +/- 1.3</td>
<td>167 +/- 20</td>
</tr>
<tr>
<td>RNF8-1</td>
<td>18.5 +/- 2.1</td>
<td>218 +/- 9.9</td>
</tr>
<tr>
<td>RNF8-2</td>
<td>8.0 +/- 2.2</td>
<td>235 +/- 30</td>
</tr>
<tr>
<td>RNF8-3</td>
<td>10.3 +/- 3.1</td>
<td>154 +/- 18</td>
</tr>
<tr>
<td>RNF8-4</td>
<td>18.0 +/- 4.8</td>
<td>172 +/- 16</td>
</tr>
<tr>
<td>RNF8-5</td>
<td>13.0 +/- 3.8</td>
<td>196 +/- 55</td>
</tr>
</tbody>
</table>

Figure B

![Images of Hoechst and PML staining for different conditions](image-url)