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Abstract 

 

Control of B-cell signal transduction is critical to prevent production of pathological 

autoantibodies. Tandem PH domain containing proteins (TAPPs) specifically bind PI(3,4)P2, a 

phosphoinositide product generated by PI 3-kinases and the phosphatase SHIP. TAPP KI mice 

bearing PH domain-inactivating mutations in both TAPP1 and TAPP2 genes, uncoupling them 

from PI(3,4)P2, exhibit increased BCR-induced activation of the kinase Akt and develop lupus-

like characteristics including anti-DNA antibodies and deposition of immune complexes in 

kidneys. Here we find that TAPP KI mice develop chronic germinal centers (GCs) with age and 

show abnormal expression of B cell activation and memory markers. Upon immunization with T-

dependent Ag, TAPP KI mice develop functional but abnormally large GCs, associated with 

increased GC B cell survival.  Disruption of chronic GCs in TAPP KI mice by deletion of the 

costimulatory molecule ICOS abrogate anti-DNA and anti-nuclear antibody production in TAPP 

KI mice, indicating an essential role for GCs. Moreover, TAPP KI B cells are sufficient to drive 

chronic GC responses and recapitulate the autoimmune phenotype in bone marrow chimeric mice. 

Our findings demonstrate a B cell-intrinsic role of TAPP-PI(3,4)P2 interaction in regulating GC 

responses and autoantibody production and suggest that uncontrolled Akt activity in B cells can 

drive autoimmunity. 

  



Introduction 

 

Phosphoinositide 3-kinases (PI3K) play critical roles in B cell activation via their antigen receptor 

(BCR) and other key receptors [1-3]. Class I PI3Ks mediate downstream signaling by 

phosphorylating plasma membrane lipids to generate the phosphoinositide second messengers 

PI(3,4,5)P3 and PI(3,4)P2. The dynamics of these lipid second messengers are tightly regulated 

by PI phosphatases PTEN, INPP4 and SHIP which dephosphorylate the 3, 4 or 5 position of the 

PI headgroup, respectively [4, 5]. PI phosphatases, together with PI3Ks, can thus control the 

plasma membrane localization and function of specific PI-binding signaling proteins that 

collectively determine the downstream response. PI3K plays an essential role in maintaining 

mature B cell survival, which depends on tonic BCR signaling [6, 7]. In B cell malignancies that 

depend on aberrant chronic BCR signaling, blockade of PI3K signaling has been found to be an 

effective therapeutic strategy [1, 8]. 

Dysregulation of the PI3K pathway has been associated with lupus-like autoimmune disease in 

mouse models and in humans. SHIP-/- mice exhibited B cell hyper-responsiveness, splenomegaly 

and abnormally elevated antibody production [9, 10].  SHIP was found to be activated in anergic 

B cells and B cell-specific deletion of SHIP resulted in development of lupus-like phenotype [11].  

B cell-specific deletion of SHIP also resulted in failure to develop tolerance to artificial 

autoantigens in BCR transgenic models [11, 12]. The inhibitory receptor Fc!RIIB functions in part 

through activation of SHIP [13], and polymorphisms in fcgr2b have been linked to lupus in mouse 

models and humans [14-16]. Thus, regulation of phosphoinositide accumulation is critical for 

control of autoreactive B cells and failure to properly control the PI3K pathway can contribute to 

development of autoimmunity. 



B cell proliferation and death in germinal centers (GC) is critical for generation of both protective 

antibodies and pathogenic autoantibodies. Selective survival and expansion of B cells capable of 

producing mutated, high affinity antibody depends on both BCR signaling and Ag presentation to 

follicular helper T cells (Tfh).  The PI3K pathway is known to critical roles in both GC B cell and 

Tfh functions [17]. Genetic disruption of the p110" PI3K leads to a virtual absence of GCs [18, 

19].  The PI3K pathway appears to be highly active within GC B cells based on high levels of 

phosphorylation of the PI3K-dependent kinase Akt [20], which may be important to maintain 

survival of GC B cells by promoting expression of BCL-2 family member Mcl-1 [21]. p110" PI3K 

also plays a role in induction of the key GCB transcriptional regulator BCL6 [22] and can modulate 

expression of the enzyme AID [23] which drives antibody diversification within GC. 

Phosphoinositides mediate their cellular functions by binding to effector proteins containing PI-

binding modules such as PH domains [24, 25]. Well-characterized PI binding proteins functioning 

in B cell activation include the protein kinases Akt and Btk, which have distinct specificity in 

binding PI species. Akt binds with similar affinity to the SHIP substrate PI(3,4,5)P3 and its product 

PI(3,4)P2 [26], while Btk exclusively binds PI(3,4,5)P3 [27]. PI(3,4)P2 binding can activate Akt 

activity in vitro [26, 28]; however its function in vivo remains unclear. Tandem PH domain 

containing adaptor proteins 1 and 2 (TAPP1 and TAPP2) are the best characterized proteins that 

specifically interact with the product of SHIP PI(3,4)P2, but not its substrate PI(3,4,5)P2 [29, 30]. 

Co-engagement of BCR and Fc!RIIB enhances activation of SHIP, leading to more conversion of 

PI(3,4,5)P3 to PI(3,4)P2 [31-33]. Thus SHIP can function to inhibit membrane recruitment of 

PI(3,4,5)P3-binding proteins such as Btk, but can also enhance recruitment of PI(3,4)P2-binding 

proteins such as TAPP1&2 [33]. 



TAPP adaptors contain a unique and well-characterized phosphoinositide binding pocket in their 

C-terminal PH domain [29], which has enabled introduction of mutations that specifically disrupt 

PI(3,4)P2 binding [34]. Mice bearing inactivating mutations in the C-terminal PH domains of both 

TAPP1 and TAPP2 (TAPP KI) were found to develop lupus-like characteristics including 

generation of anti-DNA and anti-nuclear antibodies [35]. In this study, we have explored the 

mechanisms underlying autoimmunity in TAPP KI mice. We find that uncoupling TAPPs from 

PI(3,4)P2 in B cells leads to abnormal germinal centre responses which are critical for driving 

autoantibody production. These findings implicate TAPPs as important regulators of the germinal 

center response which control autoreactive B cells via binding to the phosphoinositide product of 

SHIP. 

  



Results 

Abrogation of TAPP - PI (3,4)P2 interaction results in spontaneous B cell activation and 

chronic GCs 

We previously found that mice bearing inactivating mutations in the PI(3,4)P2-binding PH 

domains of TAPP1 and TAPP2 (TAPP KI) develop a lupus-like autoimmune disease manifesting 

as autoantibody production detectable by 20 weeks of age [35].  To investigate the basis for this 

autoimmune pathology we assessed whether middle aged TAPP KI mice display any abnormalities 

in their B cell populations. At 28-30 weeks of age, TAPP KI splenic B cells exhibited increased 

frequencies of cells expressing germinal centre B cell (GCB) markers GL7 and Fas (Figure 1A 

and Supplementary Figure 1). This elevated frequency of GCB was associated with a proportional 

increase in the PD1+ ICOS+ T follicular helper (Tfh) cell population (Figure 1B).  Flow cytometry 

gating of GCB and Tfh populations was controlled using age-matched mice genetically deficient 

in p110" PI3K activity, which lack these populations [17, 19].  Middle-aged TAPP KI mice also 

showed a significant increase of CD80+ B cells in the spleen and a trend toward elevated CD86 

expression (Figure 1C and Supplementary Figure 2). Similar increases in GCB and CD80+ B cells 

were observed in mesenteric lymph nodes of TAPP KI mice (Figure 1D).  Together these results 

demonstrate that TAPP KI mice develop B cell hyper-activation and chronic GC formation. 

Development of chronic GC in TAPP KI mice is age and gene dose dependent  

Abnormal chronic GCs have been associated with autoimmunity in mice as well as humans [36, 

37]; thus we further examined the kinetics and gene dose dependence of chronic GC development 

in the TAPP KI model.  Increased GCB and Tfh populations were detectable by 12 weeks of age 

and increased over time (Figure 2A/B). Frequencies of GCB and Tfh cells were found to be highly 



sensitive to WT TAPP gene dosage, with heterozygote mice bearing a single normal TAPP1 and 

TAPP2 allele showing GCB and Tfh frequencies similar to controls (Figure 2C/D).  The 

frequencies of CD80+ splenic B cells also showed progressive increase with age (Figure 2E) and 

a similar dependence on WT TAPP gene dosage (Figure 2F), suggesting that generation of this B 

cell population may be related to the chronic GC response. 

Uncoupling of TAPP adaptors from PI(3,4)P2 results in abnormal GC responses upon 

immunization  

To assess the impact of TAPP–PI(3,4)P2 interaction on the GC response induced by immunization, 

8-10 week old TAPP KI mice were immunized with T dependent antigens NP-OVA/alum or sheep 

red blood cells. Flow cytometry analyses revealed that approximately 2 fold increases in the 

frequency of GC B cells in immunized TAPP KI mice (Figure 3A). Immunofluorescence staining 

of spleen sections showed that TAPP KI GCs show no obvious abnormality in structure or 

positioning near the interface of B and T cell zones (Figure 3B and Supplementary Figure 3) but 

have a larger average area. Follicular helper T cell frequencies were correspondingly increased in 

immunized TAPP KI mice (Figure 3C), however the GCB:Tfh ratio was not significantly different 

from controls. TAPP KI mice show no significant difference in generation of high affinity anti-NP 

Abs (Figure 3D), but produced significantly increased levels of polyclonal IgG after immunization 

(Figure 3E).   

TAPP KI B cells were previously found to have a relatively normal response to BCR cross-linking 

in vitro, with the exception of increased phosphorylation of the PI3K-dependant protein kinase 

Akt [35]. We thus further examined the GC B cell population to assess Akt phosphorylation, cell 

division and cell survival.  Akt phosphorylation was examined by flow cytometry and found to be 



significantly elevated within the TAPP KI GCB population (Figure 4A).  GC B cell division was 

examined by pulse BrdU labeling and was not significantly altered (Figure 4B). TAPP KI GC B 

cells did however exhibit significantly increased cell viability ex vivo, based on DAPI and Annexin 

V staining (Figure 4C). Together these results suggested that uncoupling TAPP adaptors from the 

SHIP product PI(3,4)P2 results in abnormal levels of Akt phosphorylation and B cell survival 

within GC, which is is associated with larger GC size and increased production of non-Ag specific 

Abs. 

Ablation of GCs blocks development of autoantibodies in TAPP KI mice  

To investigate the role of chronic GCs in the development of autoantibody-mediated disease in 

TAPP KI mice, ICOS-/- mice [38] were crossed with TAPP KI mice to generate ICOS-/- TAPP KI 

mice or ICOS+/-  TAPP KI mice. Immunization of young adult mice revealed that loss of one ICOS 

allele diminished the GC response in TAPP KI mice to levels comparable to wild-type control 

mice, while deletion of ICOS substantially ablated TAPP KI GC responses (Figure 5A).  

Development of chronic germinal centers in unimmunized middle-age TAPP KI mice showed a 

similar pattern of dependence on ICOS (Figure 5B). ICOS was also required for abnormal 

accumulation of the CD80+ and CD86+ B cell population (Figure 5C/D). Significantly, ICOS-/- 

TAPP KI mice did not show development of anti-dsDNA autoantibodies in the serum with age 

(Figure 5E/F). Anti-nuclear antibodies (Figure 5G) and IgG deposition in kidney (Figure 5H) were 

observed in TAPP KI mice but not in ICOS-/- TAPP KI mice.  These results demonstrate that 

genetic disruption of chronic GC responses in TAPP KI mice impairs development of 

autoimmunity. 

B cell-intrinsic role of TAPP-PI(3,4)P2 interaction in preventing autoantibody production 



TAPP KI B cells were previously shown to be hyper-responsive to BCR cross-linking [35], 

suggesting that B cell-intrinsic signaling defects may underlie abnormal GC responses and 

development of autoantibodies in TAPP KI mice.  We utilized an established mixed bone marrow 

chimera method [39] to reconstitute B cell deficient mice with either wild-type or TAPP KI B cells 

and thus assess whether TAPP KI B cells can drive autoimmune disease in an otherwise normal 

environment.  Wild-type or TAPP KI bone marrow reconstituted the B cell compartment in µmT 

mice to a similar extent (Figure 6A), however circulating TAPP KI B cells showed increased levels 

of CD80 or CD86 within 6 weeks of reconstitution (Figure 6B). Unimmunized TAPP KI B cell 

chimeras developed increased GCB and Tfh populations in the spleen, as well as increased markers 

of chronic B cell activation compared to WT B cell chimeras (Figure 6C). TAPP KI B cell chimeric 

mice also exhibited circulating anti-dsDNA antibodies (Figure 6D), anti-nuclear antibodies 

(Figure 6E) and deposition of IgG in kidney glomeruli (Figure 6F).  Together these results indicate 

that uncoupling TAPP adaptors from PI(3,4)P2 in B cells confers intrinsic hyper-activation 

properties that can drive autoimmune disease.   

  



Discussion 

Autoimmune diseases such as SLE are characterized by chronic GC that are important for 

generation of mutated and class-switched autoantibodies [36, 40]. In TAPP KI mice we have 

detected a progressive increase in GCB cell frequencies with age as well as chronic activation of 

B cells based on increased expression of costimulatory molecules. Abnormal germinal centre 

responses can be driven by defects in either GCB or TFH subsets, which can bi-directionally 

activate each other and contribute to autoimmunity [41, 42]. Ablation of the GC response in TAPP 

KI mice by crossing with ICOS KO mice led to loss of anti-DNA Abs and also normalized the 

frequencies of CD80 or CD86+ cells. This indicates that GCB-TFH interaction is critical for driving 

autoimmunity in this model, but does not resolve whether TAPP mutations in the B or T cell 

compartment is driving the response. Our µmT bone marrow chimera results indicate that 

uncoupling of TAPPs from PI(3,4)P2 in B cells is sufficient to drive chronic GCs (including 

expansion of the TFH population) and recapitulate the autoimmune phenotype of the TAPP KI 

mice. It remains possible that disruption of TAPP function in TFH cells or other immune cell 

populations may contribute to generation of the autoimmune or inflammatory state; this is a 

potential avenue of further investigation. 

GC responses are highly dependent on PI3K signaling as demonstrated by PI3K! mutant mice that 

lack germinal centers [18, 19]. While proximal BCR signaling seems to be inhibited within most 

GC B cells, phosphorylation of Akt and its target S6K remains active in GC B cells [20], indicating 

that the PI3K/Akt pathway may have a critical role in GC B cells. Recent evidence indicates that 

PI3K and Akt are most active in the GC light zone and play a role in regulating isotype switch and 

selection of antigen-specific cells [43]. We previously found that TAPP KI B cells show elevated 

phosphorylation of Akt upon activation [35], thus our working hypothesis is that the abnormal GC 



response in TAPP KI mice is a result of uncontrolled activity of Akt. Consistent with this 

hypothesis, we found increased Akt phosphorylation within TAPP KI GC B cells using phosflow 

analysis. Although TAPP KI mice form abnormally large GC upon immunization, their GCB cells 

did not show an increased in rate of DNA synthesis as assessed by BrdU labelling. In contrast, 

survival of GCB cells is significantly increased in TAPP KI mice, suggesting that dysregulation 

of Akt in TAPP KI cells may manifest as increased cell survival, whereas cell division may be 

controlled by other signaling molecules. 

SHIP was found to be hyper-phosphorylated within GC B cells [20], likely via co-engagement of 

the BCR with Fc!RIIB by immune complexes within the GC environment. This high activity of 

SHIP within GCB cells may result in rapid conversion of the PIP3 generated by PI3K into 

PI(3,4)P2, leaving primarily the latter phosphoinositide available to drive Akt activation.  Binding 

of TAPP adaptors to PI(3,4)P2 may dampen Akt activation either by direct competition for this 

phosphoinositide, or by TAPP-mediated recruitment of other inhibitory molecules. TAPPs were 

reported to directly bind to the phosphatase PTPN13 (also known as PTPL1, FAP1 and PTP-BL), 

thus its possible that TAPPs regulate Akt via recruitment this phosphatase to the membrane [44]. 

TAPPs may additionally impact activity of PDK1, the upstream activating kinase for Akt, as PDK1 

also binds to and is activated by PI(3,4)P2 [45].  

A spectrum of chronic autoimmune diseases that includes SLE is associated with defective 

regulation of B cell activation and production of autoantibodies against DNA and nuclear proteins.  

Anti-DNA Abs frequently contain multiple somatic mutations, indicating their germinal center 

origin [40, 46]. Targeting B cells is an important strategy to improve treatment of SLE, however 

antibody-mediated B cell depletion or blockade of BAFF remain only marginally effective. 

Inhibition of B cell signaling pathways represents a new frontier beginning to be explored in 



autoimmune disease [47]. Consistent with findings in other mouse models, our results indicate that 

deregulation of the PI3K/Akt pathway can lead to aberrant GCs and SLE-like disease. These 

findings suggest that targeting of PI3Ks and/or Akt may represent viable therapeutic strategies for 

treatment of SLE.   

 

  



Materials and methods  

 

Mice and immunizations 

All animals were housed in a specific pathogen free facility at University of Manitoba, according 

to the Canadian Council on Animal Care guidelines. TAPP2R211L/R211L x TAPP2R218L/R218L (TAPP 

KI) mice contain mutations in the C-terminal PH domains of both TAPP1 and TAPP2 that abrogate 

their binding to the phosphoinositide PI(3,4)P2 as described [34]. p110"D910A/D910A (p110d) mice 

contain a kinase-inactivating mutation in PI 3-kinase delta as described [19].  TAPP KI mice were 

crossed with mice deficient ICOS-/- mice to generate ICOS-/- x TAPP2R211L/R211L x TAPP2R218L/R218L 

triple mutant (ICOS-/- x TAPP KI) mice. B cell deficient µMT mice and ICOS-/- mice were 

purchased from Jackson Laboratory. Mice were used for the experiments between 6-12 weeks of 

age except where otherwise specified. To assess the acute development of GC, mice were injected 

intraperitoneally (i.p) with 2x109 sheep red blood cells (Cedarlane # CL2581-100A) or 10 ug of 

NP-OVA (Biosearch Technologies) precipitated in 2 mg of alum (Imject, Pierce Biotechnology).   

 

Flow cytometry  

Spleens and mesenteric lymph nodes were homogenized to obtain single cell suspensions. RBCs 

were removed by using ACK lysis buffer. Cells were the filtered, re-suspended and counted to 

distribute 2 x 106 cells per FACS tube. Fc receptors were blocked by incubation with 2.4G2 

monoclonal antibody for 30 min on ice prior to surface staining with the indicated antibodies.  

Anti-B220(PercpCy5.5), anti-CD19(V450), anti-CD4(V500), anti-GL7(FITC), anti-FAS (PE-

Cy7), anti-CD80-APC, anti-CD86(APC), anti-Akt phospho-Ser308(PE), anti-PD1(biotin) and 



anti-ICOS(APC) were purchased from BD Biosciences or eBiosciences and diluted in FACS 

buffer (PBS containing 2% FCS). For intracellular staining of phosphor-Akt, splenocytes were 

surface stained, treated with fix/perm buffer (BD Biosciences) and then stained with anti-Akt 

phospho-Ser308.  Flow cytometry was performed using a BD FACS Canto II instrument. Data 

analyses were performed using FlowJo software.  

 
Assessment of germinal center responses 

For immunofluorescence microscopy analysis, spleens were harvested 14 days after NP-OVA 

immunization, embedded in O.C.T. compound (Tissue Tek) and snap frozen in liquid nitrogen. 

Frozen sections were fixed in ice cold acetone, blocked with 5% goat serum (30 min RT) and 

staining with biotinylated anti-IgD (2 hr RT), followed by streptavidin-Alexa 647, anti-GL7-FITC, 

and anti-CD4-PE (1hr RT).  All staining reagents were diluted in PBS+2% BSA.  Sections were 

imaged with an Ultraview LCI confocal microscope (Perkin-Elmer). The size of germinal centers 

were determined using image analysis software to calculate the relative areas of GL7+ IgD- regions. 

 

To measure in vivo DNA synthesis of germinal center B cells, mice were injected with 5 mg of 5-

bromo-2’-deoxyuridine (BrdU) (Sigma Aldrich) in PBS 5 hours before sacrifice. After cell surface 

staining of splenocytes as described above, cells were fixed and permeabilized on ice for 30 min 

using BD Cytofix/Cytoperm solution, followed by PBS+1% saponin for 10 minutes. Sample were 

then treated with deoxyribonuclease I solution (0.15M NaCl, 4.2 mM MgCl2, 10uM HCl, 50 

Kunitz units/ml DNase I) for 30 minutes at 37°C and stained with FITC labeled anti-BrdU antibody 

(eBioscience). Ex vivo apoptosis was determined by staining with Annexin V-FITC (Biovision) 

and DAPI (Invitrogen). Surface stained splenocytes were resuspended in Annexin V Binding 



Buffer (BD Pharmingen), and incubated with 1ul of Annexin V-FITC and 1ul DAPI (100ng/ul 

working solution) at RT for 10 minutes. Cells were then acquired immediately.  

 
ELISA 

Blood was collected by tail vein puncture or cardiac puncture and serum obtained after clotting 

centrifugation. For detection of total IgG and IgM, 96 well ELISA plates were coated with capture 

antibodies (Jackson ImmunoResearch) diluted in carbonate buffer (0.015M Na2CO3, 0.035 M 

NaHCO3, 0.05% NaN3, pH 9.6) overnight at 40C. After blocking with 2% BSA in washing buffer 

(PBS, 0.05% Tween 20, 0.02% NaN3, pH 7.4), incubation with diluted serum samples, and 

washing, bound antibodies were detected with biotinylated anti-mouse IgM or IgG antibodies 

(Southern Biotech). Antigen-specific antibodies binding to nitrophenyl (NP) were assayed by 

coating wells with NP3-BSA or NP20-BSA (Biosearch Technologies, Inc.) and detection with 

biotinylated antibodies specific for IgG1 (Southern Biotech).  Plates were developed by incubation 

with streptavidin alkaline phosphatase, washing, addition of p-nitrophenyl phosphate substrate 

(Sigma Aldrich). Molecular Devices plate reader was used to measure the absorbance at 405nm 

and 690nm. Anti-dsDNA IgG antibodies were measured using a kit from Alpha Diagnostics 

International, according to the manufacturers protocol.   

 

Anti-nuclear antibodies and IgG deposition in kidney 

Serum was obtained from peripheral blood of middle-aged mice after cardiac puncture. 

Antinuclear antibodies within the serum were detected by staining slides coated with HEp-2 cells 

(Biorad, cat# 26102).  Slides were blocked for one hour with normal horse serum, then serum 

samples diluted 1:40 were added and slides incubated for 2 hrs.  After washing with PBST (0.01% 



Tween in PBS), FITC tagged rabbit anti-mouse IgG secondary antibody (Life Technologies) was 

added at 1:2000 dilution. Slides were incubated for 30 mins, washed and mounted using ProLong 

Gold anti-fade reagent (Molecular Probes). To detect deposition of IgG within the kidney, freshly 

harvested kidneys were embedded in OCT and snap frozen in liquid nitrogen. 8 uM thick 

cryosections were prepared and stored at -80 C. Sections were fixed in cold acetone prior to 

staining with rabbit polyclonal anti mouse IgG at 1:2000 dilutions. For all staining procedures, 

antibodies were diluted in PBS containing 0.1% BSA and 0.01% Tween20.  Slides were imaged 

using a Zeiss AxioObserver spinning disk confocal microscope. 

Generation of bone marrow chimeras  

Bone marrow chimeras containing wild-type or TAPP KI B cells were generated as described [39]. 

Briefly, 6-8 week old uMT mice were lethally irradiated in a RS2000 irradiator (Rad Source 

Technologies), using two doses of 450 cGy separated by 2hr. Bone marrow (BM) harvested from 

4-6 week old WT or TAPP1/2 KI mice and the BM cells were mixed with uMT BM at a 1:4 ratio 

and used to reconstitute irradiated umT mice.  

Statistical analysis 

Statistical analysis was performed with GraphPad Prism software. P values were calculated using 

two-tailed unpaired student’s T test unless specified. Figures use the following representation for 

significance *P< 0.05, **P< 0.001, ***P< 0.0001 
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Figure Legends  

 

Figure 1.  TAPP1/2 KI mice develop chronic B cell activation and chronic GCs with age. 

A cohort of wild-type (WT) or TAPP2R211L/R211L x TAPP2R218L/R218L (TAPP KI) mice and 

p110"D910A/D910A (p110d) mice were examined at 28-30 weeks of age.  Splenocytes or mesenteric 

lymph node cells harvested from these mice and were analyzed by flow cytometry. (A) Splenic 

GL7+Fas+ germinal center B cells (GCB) were assessed as a percent of B220+ B cells (for gating 

details see Supplementary Fig. 1). Representative dot plots are shown at left and summary graph 

is shown on the right. (B) Splenic PD1+ ICOS+ TFH subsets were assessed as a percent of CD4+ T 

cells. Representative dot plots are shown at left and summary graph is shown on the right. (C) 

Expression of activation/memory markers CD80 and CD86 within splenic B220+ cells 

(representative histograms and gating shown in Supplementary Figure 2). (D) Frequencies of GCB 

cells, CD80 and CD86 expressing B cells within mesenteric lymph node were determined using 

the same method as for splenocytes. Data are pooled from two independent experiments totaling 

6-7 mice per group. TAPP KI versus WT statistical comparisons were performed by two tailed T-

test and significance is indicated as NS P>0.05, *P< 0.05, **P< 0.001, ***P< 0.0001.  

Figure 2. Development of chronic GC in TAPP KI mice is age and gene dose dependent    

Spleens were harvested from unimmunized young adult (8-12 wk), middle aged (28-30 wk) and 

old (42-45 wk) mice, and analyzed by flow cytometry. (A) Percentage of GCB cells in WT, TAPP 

KI and p110" KI mice in the indicated age groups. (B) Percentage of TFH population in the 

indicated age groups of WT, TAPP KI and p110" KI mice. (C) Effect of mutant TAPP1 and 

TAPP2 gene dose on GCB cell frequencies in young adult mice. (D) Effect of mutant TAPP gene 

dose on TFH frequencies in young adult mice.  (E) Age-dependent expression of CD80 in B cells. 



(F) Effect of mutant TAPP gene dose on CD80 expression in B cells from naïve young adults. 

Graphs A, B and E represent the mean and standard error of 3-7 mice per time point pooled from 

2 independent experiments, and statistical comparisons between TAPP KI versus WT were 

performed by two-way ANOVA. Graphs C, D and F represent the mean and standard error of 3-7 

mice per genotype pooled from 3 independent experiments, and statistical comparisons between 

homozygous TAPP KI and the indicated heterozygous genotypes or were performed by two-tailed 

T-test.  Significance is indicated as NS P>0.05, *P< 0.05, **P< 0.001, ***P< 0.0001. 

Figure 3. Increased GC size generated upon immunization of young adult TAPP KI mice.   

Young adult WT or TAPP KI mice (8-12 weeks of age) were immunized with sheep red blood 

cells (SRBC) or with nitrophenyl-ovalbumin precipitated in alum (NP-OVA/alum) and analyzed 

8 or 10 days later respectively. (A) Spleens were harvested and the frequency of GL7+FAS+ 

germinal center B cells (GCB) determined by flow cytometry. Bar graph shows GCB frequencies 

as a percent of total B cells, with GCB-deficient p110"D910A/D910A (p110d) mice used as controls. 

Results are from a single experiment with 4 mice per group and are representative of 3 similar 

experiments.  (B) Spleen cryosections from NP-OVA/alum-immunized mice were stained to detect 

GL7+IgD- GCs by confocal microscopy. Graph shows the relative area of GCs pooled from 3 mice 

per genotype.  Each dot represents pixel count for a region of interest encompassing one GC. Scale 

bars, 200 µm.  (C) The PD1+ICOS+ TFH population was assessed in SRBC immunized mice. Graph 

displays the percentage of TFH cells among CD4+ T cells from individual mice of the indicated 

genotypes.  Data are pooled from 2 experiments, each with 3 WT and TAPP KI mice.  (D) Sera 

were collected from NP-OVA/alum immunized mice at day 14, 21, 28 and 35 and analyzed by 

ELISA for binding to NP3-BSA or NP20-BSA to detect high and low affinity antigen-specific 

antibody respectively. Graph shows the ratio of NP3/NP20 binding IgG Ab over time after 



immunization. (E) Total IgG antibody levels from the same immunized mice as in D.  TAPP KI 

versus WT statistical comparisons were performed by two tailed T-test (A-C) or two-way ANOVA 

(E) and significance is indicated as *P< 0.05, **P< 0.001, ***P< 0.0001. 

Figure 4. TAPP KI GC B cells show normal proliferation but increased Akt phosphorylation 

and survival 

(A) Splenocytes were surface stained, fixed, permeabilized and intracellularly stained with anti-

phosphoAkt. Histograms of anti-phosphoAkt staining within the GCB population are shown for 

two representative TAPP KI or WT mice from the same experiment. The right panel shows average 

anti-phosphoAkt mean fluorescence intensity (MFI) within GCB or non-GCB populations, pooled 

from 2 experiments with 3 mice per experiment.  (B) OVA/alum-immunized mice were injected 

with BrdU five hours before sacrifice on day 14. Cells were then surface-stained, fixed, 

permeabilized and then intracellularly stained with anti-BrdU to determine BrdU incorporation 

within the GCB and non-GCB populations by flow cytometry. (C) To assess cell survival ex vivo, 

the frequency of annexin V and DAPI negative cells among GCB and non-GCB populations was 

determined by flow cytometry. The AnnexinV/DAPI density plots are representative of 2 

experiments each with 3 mice per group.  The graph on the right shows the frequencies of annexinV 

and DAPI negative cells among GCB from individual WT and TAPP KI mice at the indicated time 

points after immunization. All data show representative experiments containing at least 3 mice per 

group. TAPP KI versus WT statistical comparisons were performed using 2-tailed T-test and 

significance is indicated as NS P>0.05, *P< 0.05, **P< 0.001, ***P< 0.0001. 

Figure 5. Ablation of GCs blocks development of autoantibodies in TAPP KI mice.  



 (A) Young adult mice TAPP KI or ICOS -/- x TAPP KI mice were immunized with sheep red 

blood cells and analyzed for B220+GL7+FAS+ GCB cells at day 8 by flow cytometry. Results are 

pooled from 2 experiments, each with 3 mice per genotype. (B) Middle aged TAPP KI or ICOS -

/- TAPP KI mice were analyzed for chronic GCB. (C, D) Expression of CD80 and CD86. Results 

in B-D are pooled from 3 experiments, totaling 3-5 mice per genotype. TAPP KI versus ICOS -/- 

x TAPP KI statistical comparisons were performed using two tailed T-test and significance is 

indicated as **P< 0.001, ***P< 0.0001. (E, F) Sera collected from mice at the indicated age were 

tested by ELISA for (E) anti-double stranded DNA IgG or (F) anti-double stranded DNA IgM. 

Results are pooled from 3-4 mice per genotype each undergoing multiple serum collections at the 

indicated time points. TAPP KI versus ICOS -/- x TAPP KI statistical comparisons were performed 

using 2-way ANOVA and significance is indicated as *P< 0.05, ***P< 0.0001.  (G) Sera obtained 

from middle aged mice were tested for anti-nuclear antibodies by immunofluorescence staining of 

HEp2 cells. Images are representative of 3 mice tested per genotype.  (H) Kidney cryosections 

from middle aged mice were stained for IgG antibody to detect immune complex deposition in 

glomeruli. Images are representative of 3 mice tested per genotype. Scale bars, 20 µm. 

Figure 6. TAPP KI B cells can drive the development of autoimmunity 

Irradiated B cell-deficient (µmT) mice were reconstituted with a mixture of either TAPP KI or WT 

bone marrow and µmT bone marrow at a 1:4 ratio. Blood cells were collected from recipient µmT 

mice at 6 weeks post-reconstitution and then analyzed by flow cytometry to determine (A) 

reconstitution of B cells and (B) B-cell expression of CD80 and CD86 (right). (C) At 25 weeks 

post-reconstitution, splenic B cells from these mice were analyzed for GCB, CD80+ and CD86+ 

B-cell populations (left) and Tfh cells (right). (D) Sera from B cell reconstituted mice were 

collected at 15, 20 and 25 weeks and tested by ELISA for anti-dsDNA IgG antibody. (E) At 25 



weeks post-reconstitution, sera were tested for anti-nuclear antibody by immunofluorescence 

staining of HEp2 cells.  (F) At 25 weeks post-reconstitution, kidney sections were tested for IgG 

immune complex deposition.  Images in E and F are representative of 3 mice tested per group.  

Graphs A-D are results pooled from 2 experiments, each with 3 mice.  TAPP KI versus WT 

statistical comparisons were performed by two tailed T-test (A-C) or two-way ANOVA (D) and 

significance is indicated as NS P>0.05, *P< 0.05, **P< 0.001, ***P< 0.0001.  
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