Does size really matter
Jabbal, Sunny; Poli, Gianluigi; Lipworth, Brian

Published in:
Journal of Allergy and Clinical Immunology

DOI:
10.1016/j.jaci.2016.11.036

Publication date:
2017

Document Version
Peer reviewed version

Citation for published version (APA):
Title: Does size really matter—relationship of particle size to lung deposition and exhaled fraction.

Article Type: Letter to the Editor

Section/Category: Asthma and Lower Airway Disease

Keywords: particle size; exhaled fraction; lung deposition; asthma

Corresponding Author: Prof. Brian Lipworth, MD

Corresponding Author's Institution: University of Dundee

First Author: Sunny Jabbal, Mb ChB

Order of Authors: Sunny Jabbal, Mb ChB; Gianluigi Poli, M.Sc; Brian Lipworth, Mb ChB, MD

Manuscript Region of Origin: UNITED KINGDOM

Abstract: Particle size is the major determinant in the deposition and distribution of inhaled drug within the lungs and hence is related to local efficacy. It has been previously thought that however, extra fine particles are mostly exhaled. Our data demonstrates that extra fine particles are not associated with an appreciably higher exhaled fraction.
Does size really matter - relationship of particle size to lung deposition and exhaled fraction.

1 Sunny Jabbal Mb ChB, 2 Gianluigi Poli MSc, 1 Brian Lipworth MD

1 Scottish Centre for Respiratory Research, Ninewells Hospital & Medical School, Dundee UK.

2 Global Clinical Development, Chiesi Farmaceutici S.p.A., Parma, Italy.

Correspondence to: Dr BJ Lipworth, Scottish Centre for Respiratory Research, Ninewells Hospital & Medical School, University of Dundee, Dundee, DD1 9SY. Tel: +44 1382 383188

b.j.lipworth@dundee.ac.uk

Declaration of funding: Unrestricted grants from Department and from Chiesi

Capsule summary: We demonstrate that extra-fine particles are not associated with an appreciably higher exhaled fraction, hence explaining their efficacy profile in asthma.

Keywords: Particle size, exhaled, lung deposition, asthma

Word Count: 944

Particle size is the major determinant in the deposition and distribution of inhaled drug within the lungs and hence is related to local efficacy. The particle size distribution of an aerosol is usually expressed in terms of its mass median aerodynamic diameter (MMAD). Particles deposit in the respiratory tract by inertial impaction (3-6µm), sedimentation (1-3µm) and diffusion (<1µm). In order to reach the lower respiratory tract past the carina the MMAD of inhaled particles should be less than 5µm in diameter, specifically the particle size with the most efficient deposition in the small airways, so called extra fine particle fraction is said to be <2µm (1). It has been demonstrated that smaller particles of inhaled salbutamol achieve greater overall lung deposition, along with greater peripheral lung distribution (2). Moreover smaller particles of long acting beta-agonist are also associated with improved small airways responses measured by impulse oscillometry (3).

Whilst it is widely accepted that for efficient lung deposition, the MMAD should be lower than 5µm, it is more controversial what happens to small particles with MMAD lower than 1µm. It conventionally believed that, particles <1µm are mainly exhaled and therefore may not able to elicit any therapeutic activity within the lungs, due to their extremely low settling velocity. Conversely, it could be argued that although small particles have a greater potential to be exhaled, this is counterpoised by their capability
to be distributed throughout the whole lungs and reach the distal airways with a high pulmonary deposition. We have therefore evaluated the relationship between in vitro MMAD and in vivo lung deposition (LD), and the exhaled fraction (EF) expressed as fraction of the delivered dose, using pooled analysis from relevant literature using scintigraphic studies conducted in healthy volunteers and asthmatic patients using pMDI or DPI. Moreover the relationship between the ratio of EF to LD and MMAD was also evaluated.

We used pooled data (supplementary table) from 18 different studies, comprising 32 separate inhaled formulations, in healthy subjects (n=173) and asthmatics (n=124), 21 formulations in healthy volunteers, 15 with pressurised metered dose inhalers (pMDI) and 6 with dry powder inhalers (DPI); and 11 formulations in asthmatic patients, 8 with pMDI and 3 with DPI were evaluated. All participants were aged 18-65, and asthmatic patients had a mean FEV₁ of 85% predicted, we combined the data in asthma patients with that of healthy volunteers. All subjects were non smokers.

Lung deposition increased in relation to decreased MMAD, such that when the MMAD was around 1 µm the lung deposition exceeded 50% of the delivered dose and became markedly lower when MMAD approaches 4 µm (Figure 1a). Pointedly this pattern was similar in healthy and asthmatic patients. The exhaled fraction remained low irrespective of particle size. The mean amount of particles exhaled amounted to approximately 5% of the emitted dose thus demonstrating that such extra fine particles are suitable for inhalation. Furthermore, the ratio of the amount exhaled to the amount deposited in the lung was found to be independent from the MMAD (Figure 1b).

Our findings are consistent with previous data with inhaled salbutamol which similarly demonstrated that total lung deposition was greatest in particles with a MMAD of 1.5µm compared to particles of 3µm and 6µm (4). It could be argued that the ability to correctly perform the inhalation including an adequate breath-holding is likely to decrease the amount of exhaled drug. In this regard in all of the included studies in our cohort, inhaler technique with a given device was standardised. Previous data(5) have demonstrated that extra-fine particles are able to reach the small airways more effectively and hence achieve better drug distribution throughout the whole bronchial tree. Interestingly they also indicate that the exhaled fraction is approximately 12% of the dose deposited in the lung and is totally independent from the MMAD further confirming that extra-fine particles are suitable for inhalation. The clinical relevance of extra-fine particles <2um has been demonstrated by Nicolini and colleagues (6) who compared extra-fine (MMAD 1.1µm) versus coarse particle HFA-beclometasone (MMAD 3.5µm), in individuals with asthma, and demonstrated the extra-fine particles significantly reduced both
bronchial and alveolar exhaled nitric oxide unlike coarse particle, which only reduced bronchial exhaled nitric oxide. Moreover, extra-fine HFA-flunisolide (MMAD 1.2um) has been shown to reduce histological evidence of eosinophilic and interleukin 5 mediated inflammation in peripheral and central airways after 6 weeks of treatment (7). If these extra-fine particles were mostly exhaled, as conventionally believed, one would not expect there to be an improvement in small airway inflammation as evidenced invasively and non-invasively. It should be appreciated that there will be a normal distribution of particle size around the MD , such with an MMAD of 1.1um there will be a proportion of particles <1um. In this regard such smaller particles may be absorbed from the alveoli and potentially increase systemic adverse effects, although such alveolar deposition might also contribute to anti-asthmatic efficacy as shown in association with the nocturnal phenotype (8). Our asthma cohort of asthma patients had an FEV1 of 85% predicted, in this regard it has been shown that there is evidence of small airways dysfunction in terms of a raised peripheral airways resistance occurring in approximately of half of patients who have a preserved FEV1 >80% predicted (9).

In summary the present data demonstrate that the EF/LD ratio is independent from the MMAD, suggesting that extra-fine particles will not be associated with an appreciably higher exhaled fraction. Further prospective studies are required to assess how this relates to clinical efficacy in patients with more severe asthma, perhaps using impulse oscillometry to better assesses the small airways (10).

References:

Does size really matter—relationship of particles size to lung deposition and exhaled fraction.

Figure 1.a

Lung deposition (circles) and Exhaled drug (squares) as function of MMAD (µm). Regression line and the 95% confidence intervals are also shown. Pooled data from 18 different studies, comprising 32 separate inhaled formulations, each point represents a particular formulation. Lung deposition (circles) and Exhaled drug (squares) as function of MMAD (µm). Regression line and the 95% confidence intervals are also shown.

Figure 1.b

Ratio of Exhaled vs lung deposited drug as function of MMAD (µm). Regression line and the 95% confidence intervals are also shown.
Figure 1.a
Pooled data from 18 different studies, comprising 32 separate inhaled formulations, each point represents a particular formulation. Lung deposition (circles) and Exhaled drug (squares) as function of MMAD (µm). Regression line and the 95% confidence intervals are also shown.

Figure 1.b
Ratio of Exhaled vs lung deposited drug as function of MMAD (µm). Regression line and the 95% confidence intervals are also shown.
Supplementary Table 1:

Source data

<table>
<thead>
<tr>
<th>Source</th>
<th>Study Details</th>
</tr>
</thead>
</table>

Unpublished data:
Chiesi Clinical Study CHF4226 HFA MDI 19.10.2006
Chiesi001 Formoterol 19.10.2006 Chiesi Report CCD0815CSR0036
Supplementary Table 1:

Source data

<table>
<thead>
<tr>
<th>Source</th>
<th>Journal</th>
</tr>
</thead>
</table>

Unpublished data:
Chiesi Clinical Study CHF4226 HFA MDI 19.10.2006
Chiesi Report CCD0815CSR0036