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ABSTRACT 

Holliday junction-resolving enzymes are nucleases that are highly specific for the structure of the 

junction, to which they bind in dimeric form. Two symmetrically-disposed cleavages are made. These 

are not simultaneous, but the second cleavage is accelerated relative to the first, so ensuring that 

bilateral cleavage occurs during the lifetime of the DNA-protein complex. In eukaryotic cells there are 

two known junction-resolving activities. GEN1 is similar to enzymes from lower organisms. A 

crystallographic structure of a fungal GEN1 bound to the product of resolution has been determined. 

These complexes are dimerized within the crystal lattice such that the strands of the products may be 

simply reconnected to form a junction. These structures suggest a trajectory for the resolution process. 

 

TEXT 

 

Holliday junctions and their processing  

Holliday junctions (1) are DNA branchpoints in which four helices are covalently connected by the 

exchange of strands. They can be generated by strand invasion into a double helix, and by the reversal 

of a fork, and thus are central intermediates in genetic recombination, the repair of double-strand 

DNA breaks and the processing of blocked replication forks. They must be processed back into 

duplex DNA species, and this can occur in a variety of ways. The most widespread is by the action of 

junction-resolving enzymes, nucleases that are selective for branched DNA. Such resolution activities 

have been isolated from a wide range of organisms and viruses. In eukaryotes there is an important 

alternative to resolution, called dissolution, in which junctions are pushed along by the Bloom's 

helicase and then decatenated by a topoisomerase. 
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endonuclease VII (32), Ydc2 (25) and RecU (30,31), while two ions have been observed in that of T7 

endonuclease I (33,34). The structures of two enzymes of phage origins have been determined for the 

complex of a dimer bound to a DNA junction (35,36). These structures are quite unalike. T4 

endonuclease VII presents a flat S-shaped surface to which the junction binds in a flat, open H-shaped 

conformation (35). In the complex with T7 endonuclease I the junction retains a pairwise coaxial 

alignment of arms, although base stacking is interrupted at the centre. The enzyme binds the junction 

on the major groove side, interacting with each phosphate of both continuous strands over 8 

nucleotides. Formation of the endonuclease I dimer creates two hemi-cylindrical clefts each 30 Å long 

that are mutually perpendicular, and the DNA arms are bound along the length of these basic 

channels. The enzyme selects for a DNA structure that can adopt the geometry of the junction where 

the two axes are almost perpendicular to each other. 

 

The key properties that a Holliday junction-resolving enzyme should exhibit  

It is self evident that a junction-resolving enzyme must be able to bind highly selectively to a four-

way helical junction, and introduce symmetrically-paired bilateral cleavages (Figure 1). It has been 

long known that the phage enzymes bind to DNA junctions in dimeric form with at least a 1000-fold 

greater affinity than for a duplex of the same sequence (10). The affinity for junctions is typically 

around nM for most of these enzymes (10-12,37). While these properties are clearly essential, we 

know nothing about how these enzymes find DNA junctions in the crowded and complex milieu of 

the cell. It seems probable that the d would bind to duplex DNA and slide or hop along it until it finds 

a junction in order to reduce the dimensionality of the search. Upon encountering a junction the 

greater affinity would keep it in place, but there are no experimental data that currently address this.  

 

Although it has been demonstrated unequivocally that the active form of a resolving enzyme bound to 

a four-way junction is a dimer (10,19,37-39), the monomer-dimer equilibrium in solution in the 

absence of the junction varies widely in affinity and rate of association (10,19,38,40) 

 

In order to resolve a junction into duplex species two phosphodiester linkages must be hydrolyzed. 

Upon binding to the junction, DNA strands must enter the active sites of the dimer, and be cleaved. 

This can occur 5' or 3' to the point of strand exchange, and the distance is not critical, but it must be 

the same for both sides, i.e. the cleavage sites must be symmetrically disposed. Moreover it is 

important that the cleavages are coordinated in some manner such that both are made before the 

enzyme dissociates. Otherwise a unilaterally cleaved junction will result that is likely to be toxic to 

the cell. This is discussed further in the following section.  







A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Properties of a fungal GEN1 enzyme 

Human GEN1 was first identified, along with the yeast ortholog Yen1 (55), followed a little later by 

an ortholog from Caenorhabditis elegans (56). West and coworkers characterized the cleavage of 

junction species by human GEN1 (57). However the human GEN1 was subject to aggregation on 

DNA such that no discrete complex of GEN1 bound to a DNA junction could be observed in the 

absence of competitor DNA, although more discrete binding was demonstrated in the presence 

of poly dI.polydC (78). We also found that human GEN1 formed multiple complexes with four-way 

DNA junctions so that a proper biophysical or structural study of the interaction was not possible 

(unpublished). We therefore searched for a GEN1 ortholog with properties more amenable to 

quantitative biophysical analysis, and turned to the thermophilic fungi as a possible source. 

Thermostable proteins are frequently better behaved than their mesophilic equivalents. Using 

bioinformatic analysis we identified all the FEN1/XPG superfamily orthologs in these species, 

including GEN1. Alignment of the protein sequence of the putative GEN1 from Chaetomium 

thermophilum with that of the flap endonuclease FEN1 showed that there were seven strongly 

conserved acidic amino acids in common that corresponded to metal ion-binding residues in the 

active site of FEN1. We expressed and purified GEN1 from C. thermophilum as an N-terminal 1-

487 amino acids fragment (hereafter termed CtGEN1) by construction of a synthetic gene with 

optimized codon usage for E. coli (40). 

 

CtGEN1 was shown to be a nuclease that is highly selective for four-way DNA junctions, cleaving 1 

nucleotide 3' to the point of strand exchange on two strands symmetrically disposed about a diagonal 

axis (40) (Figure 3A). Importantly, we showed that it bound to DNA junctions as a discrete 

homodimer with nanomolar affinity (Figure 3B). However, in contrast to the enzymes of phage and 

lower organisms it was found to be predominantly monomeric in solution. Binding is strongly 

cooperative and thus it is likely that GEN1 dimerizes on the DNA junction; this is currently under 

investigation using single molecule methods. Using supercoiled cruciform substrates we showed that 

CtGEN1 dimer makes sequential cuts, with a ten-fold acceleration of the second cleavage. 

 

Aside from the oligomeric state of the free protein, the properties of CtGEN1 are closely similar to 

those of the resolving enzymes from bacterial, phage and mitochondrial origins discussed above. All 

the basic principles of the modus operandi of the enzymes of the lower organisms apply very well to 

GEN1. 

 

 





A
cc

ep
te

d 
A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The active site of CtGEN1 is strongly electronegative, containing six conserved acidic amino acids 

(colored magenta in Figure 4B) that bind two divalent cations. The 5' end of the 3' strand generated by 

nucleolytic cleavage is directed into the active center. The active site conforms to the standard two-

metal ion model of phosphoryl transfer reactions (82) where the metal ions position the reactants, 

activate the nucleophilic water molecule and stabilize the anionic transition state. 

 

A complex of CtGEN1 bound to a DNA junction 

In addition to the product of resolution, the crystal of CtGEN1 also provided a very strong indication 

of the likely structure of structure of a CtGEN1 dimer bound to a four-way junction (79). Careful 

examination of the crystal lattice showed that two product complexes were dimerized through contact 

between three alpha helices from each monomer arranged as a kind of tripod (Figure 5). The dimer 

interface is relatively small (a buried surface area of 530 Å2), consistent with the bias to the monomer 

in free solution. This dimeric unit has a coaxial alignment of the uncleaved DNA helices (top left and 

bottom right in Figure 5), while the helical arms containing the cleavage sites (these are effectively 

marked by the metal ions, shown as magenta spheres in Figure 5) are rotated towards each other on 

the major groove side to include an angle of close to 90°. This is very different from the stacked X-

formation of protein-free junction in the presence of divalent metal ions, but the global geometry in 

this complex is identical with that deduced by comparative gel electrophoretic analysis (79), so 

providing complete agreement between structure in the crystal and in solution. It is not known at what 

point the structural change occurs; this might occur by conformational selection or induced fit. 

 

Computationally it was possible to reconnect the strands to generate a covalently-intact four-way 

junction, requiring only that the base pair located at the junction-proximal end of each uncleaved helix 

be unpaired and unstacked. This local distortion was confirmed in solution by permanganate probing 

and unquenching of 2-aminopurine fluorescence (79). Importantly, the spectroscopic study further 

revealed that the region around the point of strand exchange was significantly more unstacked in the 

intact junction compared to that in the product, indicating a degree of refolding of the central region 

following strand cleavage. 

 

Progress towards the trajectory of the resolution process  

We are now in a position to fill in some structural detail for the scheme shown in Figure 1 as it applies 

to GEN1. First, we have found out that in free solution CtGEN1 exists mainly in monomeric form. It 

therefore most probably assembles as a dimer in the course of binding to a four-way DNA junction. 

GEN1 binds selectively to DNA junctions with nM affinity, and in doing so both radically changes 
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the global disposition of the arms and opens the center, leading to a strained conformation. After 

binding, sequential cleavages are introduced on two diametrically-opposite strands 1 nt 3' to the point 

of strand exchange, with a ten-fold acceleration of the second cleavage. Although this requires more 

in-depth study, particularly using experiments at the single-molecule level, it seems quite probable 

that relaxation of a strained structure in the intact junction complex is relieved upon introducing the 

first cleavage, and this accelerates the cleavage at the second site. The net effect is that the second 

cleavage rapidly follows the first, ensuring that two cleavages are made before the complex 

dissociates and hence a productive resolution event results. 

 

In conclusion  

We see that as a class the Holliday junction-resolving enzymes have fundamental characteristics in 

common. They must bind selectively with high affinity to four-way DNA junctions in dimeric form, 

and introduce two symmetrically-disposed hydrolytic cleavages of the phosphodiester backbone. 

Although the resolving enzymes are strongly selective for the structure of the junction, paradoxically 

in all cases binding brings about major changes to the DNA structure. Thus these enzymes recognize 

the structure of the distorted junction. This is likely to be critical in their function. It is important that 

bilateral cleavage is completed before dissociation of the protein-junction complex, and this is 

achieved by acceleration of the second cleavage. That increase in the rate of strand cleavage is likely 

achieved due to the release in structural strain after the first cleavage. Eukaryotic GEN1 exhibits all 

these properties, and we see the structural basis for much of this. At present rather less is known about 

the SLX1-SLX4 resolving enzyme complex, but it is likely that similar mechanisms must operate. 
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FIGURE LEGENDS 

 

Figure 1. Scheme showing binding and cleavage events in the action of a junction-resolving enzyme. 

The resolving enzymes undergo a monomer-dimer equilibrium in solution, the position of which 

differs widely between enzymes. Binding occurs in dimeric form so that symmetrical bilateral 

cleavages are made. Dissociation of the protein leaves a resolved junction, i.e. two nicked duplex 

species. 

 

Figure 2. Scheme showing the principle of using a cruciform-containing supercoiled DNA to study 

uni- and bilateral resolution cleavage of a four-way junction. The cruciform structure is inherently 

unstable in duplex DNA, but enjoys a stable existence in negatively supercoiled circular DNA. If the 

resolving enzyme dissociates after a single cleavage is made, nicked circular DNA results, and no 

further cleavage is possible because reabsorption of the cruciform removes the substrate. Bilateral 

cleavage generates a linear DNA product. Supercoiled, nicked and linear DNA are readily separated 

by agarose gel electrophoresis. 
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