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Learning and its application to Retinal Nerve

Fiber Layer Visibility Classification
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1 CVIP, School of Science and Engineering (Computing), University of Dundee, UK
2 Department of Ophthalmology, NHS Ninewells, Dundee, UK

Abstract. We propose a novel multiple instance learning method to
assess the visibility (visible/not visible) of the retinal nerve fiber layer
(RNFL) in fundus camera images. Using only image-level labels, our
approach learns to classify the images as well as to localize the RNFL
visible regions. We transform the original feature space to a discrimi-
native subspace, and learn a region-level classifier in that subspace. We
propose a margin-based loss function to jointly learn this subspace and
the region-level classifier. Experiments with a RNFL dataset containing
576 images annotated by two experienced ophthalmologists give an agree-
ment (kappa values) of 0.65 and 0.58 respectively, with an inter-annotator
agreement of 0.62. Note that our system gives higher agreements with
the more experienced annotator. Comparative tests with three public
datasets (MESSIDOR and DR for diabetic retinopathy, UCSB for breast
cancer) show improved performance over the state-of-the-art.

1 Introduction

This paper introduces an automatic system assessing the visibility and location
of the RNFL in fundus camera (FC) images from image-level labels. The optic
nerve transmits visual information from the retina to the brain. It connects to
the retina in the optic disc, and its expansion form the RNFL, the innermost
retinal layer. The RNFL has been recently considered as a potential biomarker
for dementia [1], by assessing its thickness in optical confocal tomography (OCT)
images. However, screening of high numbers of patients would be enabled if the
RNFL could be assessed with FC, still much more common than OCT for retinal
inspection, and increasingly part of routine optometry checks.

Very little work exists on RNFL-related studies with FC images on studying
associations with dementia [2]. This is contrast with RNFL analysis via OCT,
supported by a rich literature [1]. The RNFL is not always visible in FC images,
and its visibility itself has been posited as a biomarker for neurodegenerative
conditions. This motivates our work, part of a larger project on multi-modal
retina-brain biomarkers for dementia 3.
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Fig. 1: RNFL visibility in the green channel: (a) an image with visible RNFL
(the marked region indicates its visibility), (b) an image with invisible RNFL,
(c) examples of RNFL-visible regions, (d) examples of RNFL-invisible regions,
(e) a synthetic image showing RNFL (pink) and blood vessels (blue).

We report an automatic system to identify FC images with visible RNFL
regions and simultaneously localize visible regions. A crucial challenge is ob-
taining ground truth annotations of visible RNFL regions from clinicians, no-
toriously a difficult and time-consuming process. We take therefore a Multiple
Instance Learning (MIL) approach, requiring only image-level labels (RNFL vis-
ible/invisible), which can be generated much more efficiently. In MIL, images
are regarded as bags, and image regions as instances.

Visible RNFL regions have significant intra-class variations, and can be dif-
ficult to distinguish from RNFL-invisible regions. To address this, we embed the
instances in a discriminative subspace defined by the outputs of a set of subcat-
egory classifiers. An instance-level (IL) classifier is then learned in that subspace
by maximizing the margin between positive and negative bags. A margin-based
loss is proposed to learn the IL and the subcategory classifiers jointly.

Our two main contributions are the following.

1. To our best knowledge, we address a new problem with significant im-
pact potential for biomarker discovery, i.e. classifying FC images as RNFL-
visible/invisible, including region localization.

2. We improve experimental performance compared to state-of-the-art MIL sys-
tems by proposing a novel MIL approach with a novel margin-based loss (in-
stead of the cross-entropy loss commonly used in comparable MIL systems).

The differences between our and recent, comparable work are captured in Sec-
tion 2 after a concise discussion of related work.

We evaluated our approach on a local dataset (“RNFL”) of 576 FC images,
and with three public datasets (MESSIDOR [3] and DR [4] for diabetic retinopa-
thy, UCSB [5] for breast cancer). Table 1 summarizes the datasets and the ex-
perimental settings used. The images (green channel) in our RNFL dataset were
annotated (image-level annotations) independently by two experienced ophthal-
mologists (A1 and A2, A1 the more experienced). Overall, they agreed ' 83%
of the time (P ' 83%) with a kappa value of K ' 0.62. Our experiments suggest
that our system highly agrees with A1 than A2 (system agreement with A1,
P ' 84% with K ' 0.65 and A2, P ' 82% with K ' 0.58). Our approach also
improves the state-of-the-art results on the public datasets (see Table 2).



2 Related Work

MIL approaches can be divided in two broad classes, (1) instance-level (IL) and
(2) bag-level (BL). In both cases a classifier is trained to separate positive from
negative bags using a loss function defined at the bag-level. IL approaches:
the classifier is trained to classify instances, obtaining IL predictions. Here, BL
predictions are usually obtained by aggregating IL decisions, e.g. MI-SVM [6],
MCIL [7]. BL approaches: a classifier is trained to classify bags. Usually a
feature representation is computed for each bag from its instances, then used to
learn a supervised classifier. As this is trained at the BL, IL predictions cannot
be obtained directly; e.g. JC2MIL [8], and RMC-MIL [9].

The original feature space may not be discriminative. Hence embedding-based
(EB) approaches try to embed the instances in a discriminative space [8–10]. The
bag representation computed in this space is used to learn a BL classifier.

MIL approaches have also been explored within the recent, successful Con-
volutional Neural Networks (CNN) paradigm for visual recognition [11]. Here, a
MIL pooling layer is introduced at the end of the deep network architecture to
aggregate (pool) IL predictions and compute the BL ones.

Our approach is an EB approach; but it learns an IL classifier instead of the
BL one learned in [8, 9]. Therefore it can provide both IL and BL predictions.
CNN+MIL [11], EB approaches [8,9,12] as well as other approaches [7] minimize
cross-entropy loss. However, recent results suggest that margin-based loss is bet-
ter than the cross-entropy loss for classification problems [13]. Considering this,
we propose a novel soft-margin loss where the bags which violate the margin are
penalized, and show improved performance over the cross-entropy loss.

3 Method

3.1 Motivation and the overview of the method

Most MIL approaches do not make explicit assumptions about the inter or intra-
class variations of the positive and negative bags (e.g. [6, 14]). However, with
high intra-class variation and low inter-class distinction these approaches may
not perform well. This is the case for our RNFL dataset: the visible RNFL
regions have a high intra-class variations, and they are difficult to distinguish
from RNFL-invisible regions (Fig. 1). To overcome this, we assume there exists
a set of discriminative sub-categories, and learn a set of classifiers for them.
These sub-categories, for instance, may capture different variations (or visual
appearance) of the RNFL. Each classifier in this pool is learned specifically to
separate a particular sub-category from others. Each instance is thus transformed
from its original feature space to a discriminative subspace defined by the output
of these classifiers. An IL classifier is then learned in this space by maximizing
the margin between the positive and the negative bags. For each bag, the BL
prediction is obtained by aggregating (pooling) the decisions of its instances. An
overview of the proposed approach is illustrated in Fig. 2.



Fig. 2: Overview of the proposed approach.

3.2 Sub-category classifiers for MIL

Let the training dataset contain {(Bi, yi)}Ni=1, where Bi is the ith bag (image),
yi ∈ {−1, 1} is its label, and N is the number of bags. Each bag Bi consists of Ni

instances (image regions), so that Bi = {xij}Ni
j=1, where xij ∈ Rd is the feature

representation of the jth instance of the ith bag.
Let M = [µ1, . . . , µK ] ∈ Rd×K be a set of sub-category classifiers, where

each classifier is learned to separate a particular sub-category from others. The
probability of an instance xij belonging to the kth sub-category vs rest can be
given as qijk = σ(µT

k xij), where σ(x) = 1/(1 + exp(−x)). The new instance-
representation zij in the discriminative sub-space is defined by the outputs of
these sub-category classifiers, i.e. zij = [qij1, . . . , qijk]. Let w ∈ RK define the IL
classifier which is learned in this discriminative subspace, and pij = σ(wT zij)
the probability of the instance xij belonging to the positive class.

The BL probability, Pi, of a bag Bi can be obtained by aggregating (pool-
ing) the probabilities of the instances inside the bag. In this work, we use the

generalized-mean operator (G) for aggregation: Pi =
(

1
Ni

∑Ni

j=1 p
r
ij

)1/r
, where

r is a pooling parameter. When r = 1, G becomes average-pooling, and large r
values (r →∞) approximate max-pooling.

The sub-category classifiers (M), the pooling parameter (r), and the IL clas-
sifier (w) can be learned using a cross-entropy loss function (Eq. (1)).

arg min
r,M,w

λ

2
‖w‖22 −

1

N+

∑
i:yi=1

log(Pi)−
1

N−

∑
i:yi=−1

log(1− Pi) (1)

where Pi = Pi(yi = 1|Bi, r,M), λ is a regularization parameter, and N+, N− are
the total number of positive and negative bags in the training set respectively.
Note that, this loss is widely used by the existing MIL approaches in [8,9,11,12].



Instead, we propose a margin-based loss (Eq. (2)) which penalizes the bags
violating the margin, as margin-based loss has two main advantages over the
cross-entropy loss [13]. (1) It tries to improve the classification accuracy of the
training data (by focussing on the wrongly classified images), instead of making
the correct predictions more accurate (as in cross-entropy loss). (2) It improves
training speed, as model updates are only based on the images classified wrongly;
the ones classified correctly will not contribute to the model updates, and can
be avoided altogether in derivative calculations.

arg min
r,M,w

λ

2
‖w‖22 +

1

N+

∑
i:yi=1

Li(yi, Bi, r,M) +
1

N−

∑
i:yi=−1

Li(yi, Bi, r,M))

where, Li(yi, Bi, r,M) = max [0, γ + yi(0.5− Pi)]
2
.

(2)

γ ∈ (0, 0.5] is a margin parameter. In our experiments we set γ = 0.1, λ = 102.

Initialization and optimization: We use gradient descent to optimize Eq. (2),
alternating between optimizing M, w and r until convergence. To initialize M,
first the instances from the training set are clustered using k-means (dictionary
size = K), then a set of one-vs-rest linear SVM classifiers are learned to separate
each cluster from the rest. These classifiers give the initial values to M.

4 Experiments

4.1 Datasets and experimental settings

The experimental settings for different datasets are summarized in Table 1.

(1) Messidor [3]: A public diabetic retinopathy screening dataset, contains
1200 eye fundus images. Well studied in [3] for BL classification. Each image was
rescaled to 700 × 700 pixels and split into 135 × 135 regions. Each region was
represented by a set of features including intensity histograms and texture.

(2) The diabetic retinopathy (DR) screening dataset [4]: 425 FC im-
ages, constructed from 4 publicly available datasets (DiabRetDB0, DiabRetDB1,
STARE and Messidor). Each image is represented by a set of 48 instances.

(3) UCSB breast cancer [5]: 58 TMA H&E stained breast images (26 ma-
lignant, 32 benign). Used in [5,8,12] to compare different MIL approaches; each
image was divided into 49 instances, and each instance is represented by a 708-
dimensional feature vector including SIFT and local binary patterns.

(4) RNFL retinal fundus image dataset: Green channel was considered
for processing. Images were resized preserving their aspect ratio so that their
maximum dimension (row or column) becomes 700 pixels. Each image is then
histogram-equalized. Instances (square image regions) of size 128 × 128 pixels
with an overlap of 64 pixels are extracted, leading to ∼ 90 instances per image.
Inside each instance, SIFT features (patch size of 24×24 pixels, overlap 16 pixels)
are computed and encoded using Sparse Coding with a dictionary size of 200.
Average-pooling was applied to get a feature representation for each instance.



Dataset
no of images

Exp. setup
positive negative total

Messidor [3] 654 546 1200 10 times 2-FCV

DR [4] 265 160 425 fixed train( 2
3
)-test( 1

3
) split

UCSB Breast cancer [5] 26 32 58 10 times 4-FCV

RNFL fundus images
A1 348 228 576

20 times 2-FCV
A2 436 140 576

Table 1: Datasets and experimental settings (FCV-fold cross validation).

Method Acc.

MI-SVM [6] 54.5
SIL-SVM 58.4
GP-MIL 59.2
MILBoost 64.1
mi-Graph [14] 72.5
Ours 73.1

(a) Messidor dataset [3]

Method Acc.

mi-SVM [6] 70.32
MILES 71.00
EMDD 73.50
SNPM [4] 81.30
mi-Graph [14] 83.87
Ours 88.00

(b) DR dataset [4]

Method AUC

MILBoost 0.83
MI-SVM [6] 0.90
BRT [12] 0.93
mi-Graph [14] 0.946
JC2MIL [8] 0.95
Ours 0.965

(c) UCSB cancer [5]

Table 2: Results on the public datasets. All the results except ours and mi-Graph
were copied from [3–5]. Some references are omitted due to space. Different
evaluation measures were used as they were reported in [3–5].

4.2 Experiments with public medical image datasets

Table 2 reports the comparative results on the public datasets. For fair compar-
ison we use directly the features made publicly available 4, and follow the same
experimental set-up used by the existing approaches.

With Messidor, our approach gives a competitive accuracy of 73.1% (with a
standard error of ±0.12) compared to the accuracy obtained by mi-Graph,which
however cannot provide IL predictions as a BL approach. With DR, our approach
improves the state-of-the-art accuracy by ∼ 4%. With UCSB, our approach
achieves an AUC of 0.965 with a standard error of 0.001. Our Equal Error Rate
was 0.07± 0.002, much smaller than the one reported in [12] (0.16± 0.03).

The figure on the right shows K (x-axis) vs. accuracy
values (y-axis) for the DR dataset. As expected, increasing
K improves the accuracy, saturating for K > 150. This
figure also shows that the margin-based loss (Eq. (2)) out-
performs the cross-entropy loss (Eq. (1)). The advantages
of the margin-based loss are discussed in Section 3.

4.3 RNFL visibility classification

We used the public code from [3] for MILBoost and mi-SVM, taking care
to select the parameters guaranteeing the fairest possible comparison. As a

4Messidor and UCSB cancer: http://www.miproblems.org/datasets/;
DR: https://github.com/ragavvenkatesan/np-mil

http://www.miproblems.org/datasets/
https://github.com/ragavvenkatesan/np-mil


Fig. 3: Example region-level predictions for test images. Top row: Images with
rough annotations for visible RNFL regions. In the last two images RNFL is
invisible. Second row: Region-level probabilities obtained by the proposed ap-
proach, where the high values (red) indicate the probable RNFL visible regions.

Method
Percentage of images agreed (P) Kappa values (K)

A1 A2 A1 A2

mi-SVM 73.11± 0.27 71.92± 0.62 0.4354± 0.0042 0.3942± 0.0063
MIL-Boost 80.53± 0.09 78.35± 0.09 0.5865± 0.0020 0.4940± 0.0029
BL-SVM 83.64± 0.09 80.72± 0.09 0.6523± 0.0017 0.5526± 0.0024
Ours 83.78± 0.08 82.09± 0.09 0.6539± 0.0017 0.5798± 0.0020

Table 3: Approaches and their agreements (P and K ± standard error) with
different annotators (A1 and A2) for RNFL visibility classification. Note that
the agreement between the two annotators is P = 82.99% and K = 0.6190.

further basline, we implemented BL-SVM, a supervised linear SVM classifier
trained on the image-level feature representations obtained by average-pooling
the dictionary-encoded (size 200) SIFT features. The training images with con-
sensus labels from the annotators were used for training for each cross-validation.

Table 3 reports the results. Our approach gives better agreement with the an-
notators than other approaches. Over the entire RNFL dataset we found that the
inter-annotator agreement is P = 82.99% with a kappa value of K = 0.6190. Our
approach gives higher agreement with the experienced annotator (A1) than the
less-experienced one (A2). Notice that, although BL-SVM gives a competitive
performance compared to our approach, it cannot give region-level predictions
as a BL method. Fig. 3 shows some region-level predictions by our approach.

5 Conclusions

The RNFL thickenss and its visibility have been posited as biomarkers for neu-
rodegenerative conditions. We have proposed a novel MIL method to assess
the visibility (visible/not visible) of the RNFL in fundus camera images, which
would enable screening of much larger patient volumes than OCT. In addition,
our approach locates visible RNFL regions from image-level training labels.

Experiments suggest that our margin-based loss solution performs better
than the cross-entropy loss used by existing EB MIL approaches [8, 9, 12]. Ex-



periments with a local RNFL and 3 public medical image datasets show consid-
erable improvements compared to the state-of-the-art. Future work will address
the associations of RNFL visibility with brain features and patient outcome.
Acknowledgement: S. Manivannan is supported by EPSRC grant
EP/M005976/1. The authors would like to thank Prof. Stephen J. McKenna
and Dr. Jianguo Zhang for valuable comments.
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