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Editorial
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Introduction

The last two decades have identified and characterized
heterogeneities arising in the genetic structure of the bone
marrowmalignancy, acutemyeloid leukemia (AML), to partly
explain the variation in outcomes among similarly treated
patients.1 In high-income countries, treatment paradigms
for AML have now shifted to include conventional chemo-
therapy and/or small molecule drugs directed against bio-
logical targets, deemed disease-defining.1–3 Apart from the
acute promyelocytic leukemia variant,4 however, AML
remains incurable for a significant number of patientswithin
different disease subgroups. In addition, the incremental
survival gain with small molecule drugs is relatively mod-
est,2,3,5 and the costs associated with therapy, supportive
care, and disease-monitoring remain considerable. In low-
and middle-income countries, financial constraints often
render therapies, considered “standard-of-care” in higher
income countries, prohibitively expensive.6 Increasingly, the
rarity of biological subtypes of AML1 and the availability of
multiple drugs targeting unique disease sub-types2,5,7,8 are
also beginning to present challenges to the design of con-
temporaneous clinical trials. To optimize clinical benefits
and the cost-effectiveness of therapy to patients and health-
care systems, as well as to address key clinical hypotheses, an
innovative approach for hypothesis testing and identifying
best therapy is, therefore, required.

In recent years, the pharmaceutical industry and regu-
lators have increasingly turned to modeling and simulation
to investigate drug–drug interactions,9 assess the exposure
and toxicological impacts of various compounds,10,11 and
reduce reliance on animal experiments for identifying new
products.12 In contrast, physicians have depended solely on

the statistical output of adequately powered clinical trials to
guide treatment decisions. The existence of clinical trial data
and associated publicly available genomic datasets, along
with increasingly sophisticated mathematical and computa-
tional methodologies, presents a significant opportunity to
make progress in the challenging arena of AML therapeutics.
Here, we highlight three problem areas relevant to the
therapy or monitoring of AML that could benefit from an
integrated biological and mathematical approach.

“Plenty”—AML with FLT3 Gene Variants

In AML characterized by the presence of FLT3 gene variants, a
number of FLT3 inhibitors (FLT3i) have been developed.2,5,7,8

In separate randomized clinical trials, these inhibitors have
been shown to confer a small but significant reduction in
relapse risk, with survival benefit when administered se-
quentially with intensive chemotherapy. Despite the abun-
dance of FLT3i on offer, not all patients benefit from their
inclusion in treatment pathways, and unanswered questions
remain regarding the choice of FLT3i and chemotherapy
backbone required to optimize outcomes in individual
patients. Logistical challenges will, however, render direct
comparisons of different treatments and FLT3i clinical trials
infeasible.

“Uncertainty”—Measurable Residual
Disease Monitoring

When faced with uncertainty regarding relapse risk in AML,
the decision to customize therapeutic interventions based on
relapse risk can be guided bymolecular genetic or leukemia-
associated immunophenotypic measurements of residual
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disease, known asmeasurable residual disease (MRD), which
offers greater sensitivity than conventional laboratory tech-
niques including morphological assessment or routine
immunophenotyping.13 While the prognostic value of
MRD detection is well-established for some disease subtypes
at predefined time-points following therapy,14 in others,
disease relapse can occur despite an MRD “negative” test
result. Recent data also indicate the predictive potential of
MRD to inform pre-emptive therapeutic strategies that
improve patient outcomes.15 The prospect of frequent
MRD monitoring, however, often requires repeated bone
marrow biopsies, and is unappealing to many patients.
Additionally, technical and financial considerations pose a
barrier to the universal adoption and reliability of MRD
measurements in the treatment pipeline. Consequently, a
less intrusive, and potentially more reliable, means of
informing therapeutic decisions requires consideration.

“Paucity”—AML with TP53 Gene Variants

In AML characterized by complex karyotypic abnormalities
and biallelic dysfunction of the tumor suppressor gene TP53,
treatment options remain severely limited.16 The median
survival of patients continues to be disappointingly stagnant,
despite various attempted genotoxic or nongenotoxic thera-
peutic approaches, highlighting a substantial unmet need.17

Traditionally, TP53 mutations are categorized under mis-
sense or nonsense mutational subtypes. Efforts to establish
correlative studies betweenmutation subtype and predicted
biological function, clinical phenotype, and functional evo-
lution in response to selective pressures of therapy havebeen
hindered across studies. This is primarily due to restricted
patient numbers with a unique genotype, treatment hetero-
geneity, and limited genomic and functional characteriza-
tion at diagnosis, response, and relapse. An alternative,
strategic, laboratory data-driven approach may be helpful
to overcome the absence of biological information on disease
evolution in patients and to identify novel treatments.

A Proposal for an Integrated Solution

With the increasing diversity of measurable biological varia-
bles, and their subcellular characterization, the opportunities
for mechanistic (bottom-up) modeling have expanded signifi-
cantly in recent decades. In particular, higher-dimensional
partial differential equation (HD-PDE) strategies have been
successfully employed inpredicting resistance phenomena for
solid tumors, allowing the simultaneous exploration of corre-
lated dynamics across multiple biochemical variables.18,19

In the case of AML, where spatial dynamics are more
challenging to measure in clinical practice and are not rou-
tinely considered during disease evaluation, in situ, there is
potential toutilize theseadditional dimensionsof themodel to
predict “leukemiccell escape” to sanctuary sites thatdecreases
exposure to disease-modifying therapy, or results in false-
negative results during MRD testing. Likewise, individual
mutations in, for instance, FLT3 or TP53, can be quantitatively
explored, in conjunction with multiple, existing therapeutic

strategies, with no patient exposure. Downstream effects of
these mutations, such as in ligand modification, can also be
tracked and modeled to produce an intricate and realistic
model of fundamental, intrapatient, tissue-scale dynamics,
informing overall disease response. In addition, increased
biochemical resolution, through integration of pharmacody-
namicsofdiseasemodifying therapieswithpharmacokinetics,
including pharmacogenetics and pharmacogenomics, will al-
low forquantitative simulationof relative drug andmetabolite
concentrations within the cell, and a subsequent investigation
of clinical and biological implications.

For such models to have a meaningful impact, however,
seamless integration into a data-driven modeling pipeline
with multiple parallel processes is essential. Once data is
collected and systematically separated into “fitting” and
“validation” sets, initial HD-PDE modeling can commence.
This involves mechanistically quantifying and modeling
compound-related cell-scale data, ideally within a pharma-
cokinetic model super-structure. Subsequently, outcomes
from these simulations should be compared with the “fit-
ting” dataset (without “validation” data), in an iterative
process that may require modeling updates at every scale.
Finally, the finalized HD-PDE model may undergo compari-
son against the “validation” dataset in a process itself known
as “validation,”where the model’s future predictive capacity
is determined based on howwell it aligns clinical procedures
with outcomes. This iterative process results in a fully
parameterized mechanistic model with clinical relevance.

The exciting step would indeed be the utilization of this
model to explore new clinical territory, such as the novel
comparison of existing treatment options for the same indica-
tion, or in heterogeneous patient groups or subgroups, prog-
nostic andpredictive risk-stratification forMRDmeasurements,
andtherapeuticadvances inareasof significantunmetneed. It is
now prime time for clinical trial-driven attempts, aimed at
optimizing necessary treatment, to be complemented with
bold, cutting-edge, computational solutions.
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