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Multicentre validation of CT grey‑level 
co‑occurrence matrix features for overall 
survival in primary oesophageal 
adenocarcinoma
Robert O’Shea1, Samuel J. Withey1,2, Kasia Owczarczyk1,3, Christopher Rookyard1, James Gossage4, 
Edmund Godfrey5, Craig Jobling6, Simon L. Parsons7, Richard J. E. Skipworth8, Vicky Goh1,9*    on behalf of the 
OCCAMS Consortium 

Abstract 

Background  Personalising management of primary oesophageal adenocarcinoma requires better risk stratification. 
Lack of independent validation of proposed imaging biomarkers has hampered clinical translation. We aimed to pro-
spectively validate previously identified prognostic grey-level co-occurrence matrix (GLCM) CT features for 3-year 
overall survival.

Methods  Following ethical approval, clinical and contrast-enhanced CT data were acquired from participants 
from five institutions. Data from three institutions were used for training and two for testing. Survival classifiers were 
modelled on prespecified variables (‘Clinical’ model: age, clinical T-stage, clinical N-stage; ‘ClinVol’ model: clinical fea-
tures + CT tumour volume; ‘ClinRad’ model: ClinVol features + GLCM_Correlation and GLCM_Contrast). To reflect cur-
rent clinical practice, baseline stage was also modelled as a univariate predictor (‘Stage’). Discrimination was assessed 
by area under the receiver operating curve (AUC) analysis; calibration by Brier scores; and clinical relevance by thresh-
olding risk scores to achieve 90% sensitivity for 3-year mortality.

Results  A total of 162 participants were included (144 male; median 67 years [IQR 59, 72]; training, 95 participants; 
testing, 67 participants). Median survival was 998 days [IQR 486, 1594]. The ClinRad model yielded the greatest test 
discrimination (AUC, 0.68 [95% CI 0.54, 0.81]) that outperformed Stage (ΔAUC, 0.12 [95% CI 0.01, 0.23]; p = .04). The 
Clinical and ClinVol models yielded comparable test discrimination (AUC, 0.66 [95% CI 0.51, 0.80] vs. 0.65 [95% CI 0.50, 
0.79]; p > .05). Test sensitivity of 90% was achieved by ClinRad and Stage models only.

Conclusions  Compared to Stage, multivariable models of prespecified clinical and radiomic variables yielded 
improved prediction of 3-year overall survival.

Clinical relevance statement  Previously identified radiomic features are prognostic but may not substantially 
improve risk stratification on their own.

Key Points 

• Better risk stratification is needed in primary oesophageal cancer to personalise management.
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• Previously identified CT features—GLCM_Correlation and GLCM_Contrast—contain incremental prognostic information to  
  age and clinical stage.

• Compared to staging, multivariable clinicoradiomic models improve discrimination of 3-year overall survival.

Keywords  Oesophageal neoplasms, Adenocarcinoma, Radiomics, Prognosis, Precision medicine

Introduction
Oesophageal cancer presents a major burden world-
wide [1]. A multimodal treatment approach (sur-
gery with chemotherapy or chemoradiotherapy) is 
standard of care following landmark trials [2–4] and 
offers the best chance of survival for resectable can-
cer. However, despite this, outcome remains poor 
for patients treated with curative intent with mor-
tality rates of 45–53% in the first year post diagno-
sis [5] and median post-progression survival of only 
13  months [6]. There is a greater need for person-
alisation of management to obviate treatment in 
patients who may not benefit substantially. Alongside 
this, with the growing interest in total neoadjuvant 
therapy, and ongoing trials of perioperative immuno-
therapy, better initial risk stratification of patients at 
diagnosis is needed to guide management.

Currently, the clinical TNM (tumour-node-metasta-
sis) stage guides management [7] but it has a low pre-
dictive accuracy with contemporaneous pathological 
stage for early stage cancers [8], as well as limitations 
in prognostication. Prognostic information has central 
importance for patient decision-making, with cancer 
patients ranking prognosis, diagnosis and treatment 
options as their highest information priority [9].

Modelling studies have demonstrated scope to 
improve upon prognostication in oesophageal adeno-
carcinoma, including through CT imaging radiomic 
approaches  [10–12]. Initial publications have high-
lighted the potential of different locoregional features. 
For example, Piazzese et al identified an association of 
CT grey-level zone distance variance with overall sur-
vival in a multicentre cohort (n = 213), which was inde-
pendent of dimensionality and contrast administration 
[11], whilst Larue et al developed a random forest radi-
omic model including 40 CT features to predict 3-year 
overall survival (OS) in oesophageal cancer patients 
treated with chemoradiotherapy (n = 239) [12].

To date, clinical translation of imaging radiomic 
models has been hampered by a relative paucity of 
independent external validation. Thus, we aimed to val-
idate a prognostic model for 3-year OS including pre-
specified clinical features and previously proposed CT 
radiomic features in a prospective multicentre setting 
for patients with primary oesophageal adenocarcinoma 
planned for curative treatment.

Methods
Participants and datasets
Following ethical approval, clinical data and CT imaging 
were obtained prospectively from five institutions par-
ticipating in the OCCAMS (Oesophageal Cancer Clinical 
and Molecular Stratification) Consortium. Consecutive 
participants with non-metastatic, pathologically proven 
oesophageal adenocarcinoma who underwent staging 
contrast-enhanced CT imaging and planned for defini-
tive treatment were eligible. Participants were excluded 
if (1) no tumour was visible on CT; (2) CT images were 
unavailable/corrupted; and (3) concurrent malignancy 
was present. Data from three institutions were used 
for model development and two institutions for model 
testing.

CT imaging and analysis
Contrast-enhanced CT was performed according to 
institutional practice and included arterial phase imag-
ing of the thorax and upper abdomen. CT acquisition 
and reconstruction parameters for the training and test 
datasets are summarised in Supplementary Table 1. Pre-
processing of CT images was undertaken as per Image 
Biomarker Standardisation Initiative recommendations 
[13]. CT slice thickness was linearly interpolated to 2 mm 
and attenuation values were converted to Hounsfield 
units with PyDICOM [14]. The primary tumour was seg-
mented by a radiologist (with 5  years’ experience), who 
was blinded to clinical outcomes, on the arterial phase 
thoraco-abdominal CT images. The rationale for using 
the arterial versus portal venous phase was prior stud-
ies showing better tumour conspicuity [15] and tumour 
staging accuracy [16] for the arterial phase. Tumour seg-
mentations were reviewed and adjusted as required by a 
second radiologist (with > 20 years’ experience). Examples 
of tumour segmentations are shown in Supplementary 
Figs. 1 and 2. 3D Radiomic features were extracted from 
the segmented volume of interest using PyRadiomics ver-
sion 3.0.1 under default parameters (no image filters, no 
normalisation, no voxel array shift, grey-level discretisa-
tion at fixed bin width of 25 Hounsfield units) [17].

Radiomic feature selection
Following recommendations [18], radiomic features were 
pre-selected based on previous published studies. This 
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obviated data-driven feature selection thereby reducing 
the risk of data overfitting. Published studies were evalu-
ated using the ‘Transparent reporting of a multivariable 
prediction model for individual prognosis’ (TRIPOD) 
[19] and ‘Radiomics Quality Score’ checklists [20]. Iden-
tifiable Image Biomarker Standardisation Initiative fea-
tures were sought [13].

Of the identified published studies [11, 12, 21, 22], fea-
tures proposed by Piazzese et  al were excluded as the 
interpolation strategy employed (2 mm isotropic) would 
have resulted in a significant reduction of the axial image 
resolution [11]. Features proposed by Larue et  al were 
excluded as they evaluated nonlinear effects in a high-
dimensional feature set using a random forest method, 
complicating the extraction of a few individually inform-
ative linear predictions [12]. Zhang et al achieved a high 
TRIPOD score of 30 [21] and examined a limited num-
ber of previously proposed predictors, each of which 
was identifiable; thus, these features were extracted—
GLCM_Contrast, GLCM_Correlation and GLCM_Inver-
seDifferenceMoment. Furthermore, GLCM correlation 
was independently identified as a predictor of response 
in Klaasen et  al [22]. Following Peduzzi and Concato’s 
guideline recommendation of more than 10 events per 
modelled feature [23], an unsupervised method was 
applied to identify the most suitable two of the three pro-
posed features. The most collinear GLCM feature with 
respect to tumour volume and the other GLCM features 
was excluded.

Statistical analysis
Differences of participant characteristics between train-
ing and testing datasets were tested with the Fisher test 
for categorical variables or the two-sided t-test for con-
tinuous variables. For modelling, unpenalised logistic 
regression models were fitted to predict 3-year OS using 
base R. With a median survival of 24  months follow-
ing surgery alone and 46 months following neoadjuvant 
chemoradiotherapy and surgery, 3-year OS is a meaning-
ful endpoint in oesophageal cancer and has been used in 
clinical trials assessing the efficacy of neoadjuvant treat-
ment [24].

The following four models were fitted, using the follow-
ing sets of features:

1.	 ‘Stage’: overall TNM stage.
2.	 ‘Clinical’: age, clinical T-stage and N-stage, as deter-

mined at tumour board review
3.	 ‘ClinVol’: age, clinical T-stage and N-stage, primary 

CT tumour volume
4.	 ‘ClinRad’: age, clinical T-stage and N-stage, primary 

tumour volume, two GLCM features.

Discrimination and calibration of 3-year OS were 
assessed using the area under the receiver operator curve 
(AUC) and Brier score, respectively, using the riskRegres-
sion R library [25]. Confidence intervals were estimated 
using the method of Blanche [26] and compared using 
the Delong test. Following Van Rossum [27], clinical util-
ity was assessed by thresholding the model prediction in 
training data to maximise specificity whilst maintaining 
sensitivity of > 90%. Confidence intervals for sensitiv-
ity, specificity and accuracy were estimated with 1000 
replacement bootstraps.

To ensure absence of dataset-partitioning bias or insti-
tutional confounding, supplementary post hoc model 
evaluation was performed using each institution in turn 
for testing and the remaining four institutions for model 
fitting. Kaplan–Meier curves were plotted, grouping par-
ticipants according to the target 90% sensitivity threshold 
fitted in training data.

A post hoc analysis was also performed to estimate 
conditional dependencies between radiomic features 
and survival time, using data from training and test-
ing cohorts. A partial Spearman correlation matrix was 
inferred using the de-sparsified graphical least abso-
lute shrinkage and selection operator method via the 
SILGGM package and 95% confidence intervals were 
estimated via bootstrapping with 1000 replicates. Spear-
man correlation was also employed to assess volume con-
founding of radiomic features. Analysis of variance was 
employed to test radiomic stability with respect to scan-
ner manufacturer and study institution.

Results
Participant and dataset characteristics
Of 210 participants recruited, 48 participants were 
excluded, generating a training set of 95 participants and 
a test set of 67 participants. The participant flowchart is 
provided in Fig.  1 showing the reasons for exclusions. 
Participant and dataset characteristics are shown in 
Table 1 and Supplementary Fig. 3.

Performance of model variables
Spearman correlations of the prespecified predictors in 
the training data are shown in Fig.  2A. GLCM_Inver-
seDifferenceMoment was highly correlated with tumour 
volume (r =  + 0.33) and GLCM_Contrast (r =  − 0.94). 
Hence, GLCM_Correlation and GLCM_Contrast were 
selected for modelling (Supplementary Material). Clini-
cal T-stage was the most important prognosticator, with 
each model assigning it a significant positive coefficient 
(representing increasing risk with increasing stage). The 
second most influential predictor was age, which was 
assigned significant positive coefficients in each model. 
Tumour volume was an insignificant predictor in both 
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the ClinVol and ClinRad models. GLCM_Correlation 
was assigned a marginal negative coefficient in the Clin-
Rad model, and GLCM_Contrast was the least influen-
tial model predictor. Model coefficients, their standard 
errors and associated z-tests are reported in Table 2. His-
tograms of model predictions demonstrated that each 
model had similar distributions of predictions in training 
and testing (Fig. 2B). Radiomic features are visualised at 
voxel level in Fig. 3.

Prediction of 3‑year overall survival
The ClinRad model showed best discrimination of 3-year 
OS, achieving similar performance in both training 
(AUC, 0.71 [95% CI 0.60, 0.82]) and testing (AUC, 0.68 
[95% CI 0.54, 0.81]) (Table  3). Test discrimination of 
the ClinRad model was greater than that of Stage alone 
(Δ AUC, 0.12 [95% CI 0.01, 0.23]; p = 0.04). Stage was the 
least discriminative model in both training (AUC, 0.60 
[95% CI 0.49, 0.71]) and testing (AUC, 0.56 [95% CI 0.44, 
0.67]).

The Clinical model achieved similar test discrimination 
to the ClinRad model (AUC, 0.66 [95% CI 0.51, 0.80]; Δ 
AUC, 0.02 [95% CI − 0.04, 0.08]; p > 0.05). The ClinVol 
model attained marginally lower test discrimination than 
the Clinical model (AUC, 0.65 [95% CI 0.50, 0.79]). All 
models yielded similar test calibration. Only Stage and 
ClinRad models achieved target 90% sensitivity in both 
training and testing. Here, the ClinRad model yielded 
slightly higher specificity (specificity, 0.19 [95% CI 0.06, 

Fig. 1  Study participant flowchart

Table 1  Participant characteristics in training and testing datasets

Variable Value Training Test p-value

Age (mean, SD) Years 65 ± 9 65 ± 9 .89

Sex (n, %) Male 11 (12) 7 (10)

Female 84 (88) 60 (90) .99

Clinical T-stage (n, %) T1 1 (1) 0 (0) .45

T2 16 (17) 11 (16)

T3 77 (81) 53 (79)

T4 1 (1) 3 (4)

Clinical N-stage (n, %) N0 24 (25) 13 (19) .12

N1 36 (38) 38 (57)

N2 32 (34) 14 (21)

N3 3 (3) 2 (3)

Location (n, %) Oesophagus, mid 5 (5) 0 (0) < .001

Oesophagus, lower 51 (54) 12 (18)

Gastrooesophageal junction 39 (41) 55 (82)

Treatment (n, %) Chemotherapy +/- radiotherapy and surgery 81 (85) 65 (97) .005

Chemoradiotherapy only 1 (1) 2 (3)

Surgery only 13 (14) 0 (0)

Survival status at 3 years (n, %) Deceased 57 (60) 30 (45) .08

Survived 38 (40) 37 (55)
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0.33]) than Stage (specificity, 0.14 [95% CI 0.03, 0.26]) at 
this threshold.

Supplementary per-institution model testing results 
were consistent with the main external validation results 
(Supplementary Table 2). Kaplan–Meier curves are pro-
vided in Fig.  4. Survival statistics are provided in Sup-
plementary Table 3. In the test data, risk groups assigned 
by the ClinRad model separated survival curves for the 
initial 3 years, and convergence was observed at 5 years. 
However, few participants were assigned to the high-risk 
group (9/67, 13%). Risk groupings assigned by Clini-
cal and ClinVol models achieved little separation of 
survival curves in testing. Post hoc partial correlation 
analysis confirmed that, over both training and valida-
tion datasets, the most informative predictors of overall 
survival time were clinical N-stage (partial ρ, −0.15 [95% 
CI − 0.33, 0.02]) and age (partial ρ, − 0.14 [95% CI − 0.3, 
0.02]). The level of independent predictive informa-
tion contributed by GLCM_Correlation (partial ρ, 0.10 
[95% CI − 0.05, 0.25]) was comparable to that of clinical 
T-stage (partial ρ, − 0.12 [95% CI − 0.26, 0.04]). Partial 

Fig. 2  Spearman correlations of predictor variables in training data (A) and histograms of model predictions in training and testing data (B) are 
shown

Table 2  Summary of model coefficients

Logistic regression coefficients and p-values from unadjusted two-tailed z-tests 
are reported

Model Variable Coefficient Standard error p-value

Clinical (Intercept)  − 7.49 2.57 .004

Age 0.05 0.03 .05

cT-stage 1.45 0.61 .02

cN-stage 0.32 0.30 .28

ClinVol (Intercept)  − 5.75 4.09 .16

Age 0.05 0.03 .06

cT-stage 1.50 0.62 .02

cN-stage 0.39 0.32 .23

Volume (log cm^3)  − 0.18 0.33 .59

ClinRad (Intercept)  − 5.16 4.43 .24

Age 0.05 0.03 .05

cT-stage 1.41 0.64 .03

cN-stage 0.48 0.33 .14

Volume (log cm^3)  − 0.10 0.34 .76

GLCM_Correlation  − 2.45 2.20 .26

GLCM_Contrast  − 0.03 0.32 .92
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correlation analysis results are provided in Supplemen-
tary Table  4. Feature variability with respect to scanner 
manufacturer and study institution are also presented in 
Supplementary Material.

Discussion
The ability to provide individualised risk–benefit anal-
ysis would help to optimise management decisions in 
potentially resectable oesophageal cancer. Improving 
prognostication is a step in this direction as prognosis 
influences treatment decisions made by doctors and 
patients. Surgery may have an impact on quality of life 
for up to 12  months post treatment [28] and patients 
with a poorer prognosis may not fully benefit from 
a multimodal approach. Initial imaging studies have 
suggested that radiomic features may have additive 

prognostic value [11, 12, 18, 21]. However, prespeci-
fied models have to demonstrate reliable prediction in 
external datasets without local refitting. Accordingly, 
studies need to transition to the evaluation of previ-
ously proposed predictors and models, rather than 
continuing to fit new models with many degrees of 
freedom to new clinical data [18].

In this prospective multicentre study, we have dem-
onstrated that a multivariate clinicoradiomic prog-
nostic model (ClinRad) incorporating previously 
identified CT features improved discrimination of 
3-year OS compared to TNM staging with an AUC 
of 0.68 in the test dataset, but offered similar calibra-
tion. The Clinical model had similar performance as 
the ClinRad model with an AUC of 0.66. Both Clinical 
and ClinRad models retained discriminative capacity 

Fig. 3  Visualisation of CT images and voxel-level radiomic features (GLCM correlation and GLCM contrast) in four study participants. Participant A: 
71-year-old female with a clinically staged T2 tumour [correlation 0.67, contrast 1.22]; participant B: 78-year-old female with a clinically staged T3 
tumour [correlation 0.5, contrast 2.56]; participant C: 62-year-old male with a clinically staged T2 tumour [correlation 0.48, contrast 3.01]; participant 
D: 56-year-old male with a clinically staged T3 tumour [correlation 0.57, contrast 2.10]
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between training and testing, though calibration 
deteriorated, suggesting a distributional mean shift 
between institutions.

Our findings are concordant with previously published 
data of Larue et al [12], where the high-dimensional ran-
dom forest radiomic model with other features achieved 
AUCs of 0.69 and 0.61 in training and testing, respec-
tively. The direction of radiomic coefficients fitted in this 
study is consistent with previously published results by 
Zhang et  al [21], who observed increasing GLCM_Cor-
relation in patients with oesophageal adenocarcinoma 
who responded to chemoradiotherapy. In our model, low 
GLCM_Correlation was an adverse prognosticator. Our 
finding that GLCM correlation was the most informative 
predictor also concurs with Klaasen et al [22]. However, 
as Klaasen’s model employed a random forest architec-
ture, the directional concordance of results could not be 
verified.

Zhang et  al [21] also observed decreasing GLCM 
contrast in chemoradiotherapy responders. In our 
study, GLCM contrast did not affect model predic-
tions substantially, indicating that any prognostic 
information it encoded was already provided by the 
other clinical and image-based predictors already 
modelled.

An advantage of our study is that it incorporated 
multicentre prospective data, thereby providing realis-
tic conditions for the estimation of model informative-
ness and generalisability. The imaging equipment and 
protocols were representative of the varying conditions 

encountered in clinical practice. The imaging acquisi-
tion parameters in this dataset reflected typical clini-
cal practice and variations between institutions, which 
a radiomic model must be able to accommodate. We 
noted that GLCM correlation and GLCM contrast var-
ied according to institution and scanner manufacturer 
respectively. This variability introduces noise which can 
complicate modelling of the underlying prognostic signal. 
Clinical deployment of radiomic models requires either 
that this noise is accommodated or that clinical imaging 
protocols adapt to acquire images under more standard 
conditions.

Model validation was performed in test data from 
three institutions which were unobserved during model 
development, yielding a realistic estimate of model gen-
eralisability in our healthcare system. However, our study 
had limitations. First, manual segmentation especially of 
early-stage cancers is subject to intra-reader and inter-
reader variability [29]. Second, radiomic approaches 
are not typically well suited for the identification of 
new imaging biomarkers, due to the low ratio of events 
to evaluated variables [18, 20]. It is noteworthy that the 
ClinRad model fitted here is simpler than that of Larue, 
whilst matching its training performance, and margin-
ally improving upon its generalisation [12]. However, 
a necessary cost of this study design is that the other 
informative radiomic features may have been omit-
ted. Third, although both the ClinRad model and TNM 
staging demonstrated 90% sensitivity, the low specific-
ity achieved at this threshold is a limitation. Fourth, the 

Table 3  Model discrimination and calibration metrics with respect to 3-year overall survival

*Sensitivity, specificity and accuracy were measured at a risk threshold which achieved at least 90% sensitivity in training data. 95% confidence intervals are provided 
in square brackets

Dataset Model AUC​ Brier score Sensitivity* Specificity* Accuracy*

Train Stage 0.60
[0.49, 0.71]

0.24
[0.21, 0.28]

0.95
[0.89, 1.00]

0.21
[0.09, 0.35]

0.65
[0.56, 0.74]

Train Clinical 0.69
[0.57, 0.80]

0.22
[0.18, 0.27]

0.91
[0.83, 0.98]

0.35
[0.21, 0.50]

0.69
[0.60, 0.78]

Train ClinVol 0.70
[0.58, 0.81]

0.22
[0.18, 0.27]

0.91
[0.84, 0.98]

0.34
[0.20, 0.49]

0.68
[0.58, 0.77]

Train ClinRad 0.71
[0.60, 0.82]

0.22
[0.17, 0.26]

0.93
[0.86, 0.98]

0.29
[0.14, 0.44]

0.67
[0.58, 0.77]

Test Stage 0.56
[0.44, 0.67]

0.27
[0.24, 0.31]

0.93
[0.83, 1.00]

0.14
[0.03, 0.26]

0.49
[0.37, 0.61]

Test Clinical 0.66
[0.51, 0.80]

0.28
[0.23, 0.33]

0.83
[0.68, 0.96]

0.22
[0.09, 0.36]

0.49
[0.37, 0.61]

Test ClinVol 0.65
[0.50, 0.79]

0.28
[0.23, 0.33]

0.83
[0.69, 0.96]

0.19
[0.07, 0.32]

0.48
[0.36, 0.60]

Test ClinRad 0.68
[0.54, 0.81]

0.28
[0.22, 0.33]

0.90
[0.77, 1.00]

0.19
[0.06, 0.33]

0.51
[0.39, 0.63]
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improvement in performance between the Clinical and 
ClinRad model is small and unlikely to change clinical 
management substantially. Finally, the logistic regression 
models employed in this analysis were insensitive to non-
linear and nonmonotonic effects.

In conclusion, we have confirmed in a prospective 
multicentre dataset that previously proposed GLCM 
features—correlation and contrast—contain incremen-
tal prognostic information. The clinicoradiomic model 
incorporating GLCM correlation and contrast with 
tumour and nodal stage, age and volume outperformed 
TNM stage alone in the discrimination of 3-year over-
all survival. Nevertheless, the level of discrimination 

remained modest and it is questioned if this will impact 
on management substantially.

Abbreviations
AUC​	� Area under receiver operating characteristic curve
GLCM	� Grey-level co-occurrence matrix
OS	� Overall survival
TNM	� Tumour-node-metastasis
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The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s00330-​024-​10666-y.

Below is the link to the electronic supplementary material. Supplementary 
file1 (PDF 544 KB)

Fig. 4  Kaplan–Meier plot of survival in high- and low-risk groups according to each model score. Risk groups were defined according to the target 
90% sensitivity threshold fitted in training data
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