Calcium silicate materials in endodontics
Dutta, Arindam; Saunders, William P.

Published in:
Dental Update

Publication date:
2014

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Calcium Silicate Materials in Endodontics

Abstract: Calcium silicate materials have been recently introduced to dentistry and have found wide applications in endodontics because of their favourable biological properties. This review discusses materials that have become available commercially as well as those that are currently experimental. The compositional aspects of Mineral Trioxide Aggregate (MTA) are discussed with modifications and the development of newer materials. Based upon this information, a definition and classification for calcium silicate materials has been proposed. Calcium silicate materials have properties that make them suitable for use in endodontics. Research with hybrid materials may lead to the development of a cement with more desirable characteristics.

Clinical Relevance: Dentists should be aware of the chemistry of the calcium silicate group of materials that includes Mineral Trioxide Aggregate and several newer materials.

The past two decades have witnessed developments in endodontic treatment with strategies that have served to preserve pulpal vitality coupled with the introduction of advanced materials for both surgical and non-surgical root canal treatment. The major emphasis has been on the use of biocompatible and bioactive materials that can lead to the regeneration of both peri-radicular and pulpal tissue, rather than promoting repair. The properties for a material to be used for various endodontic applications (such as a root-end filling, perforation repair, root canal sealer and for pulp capping or pulpotomy) share certain common desirable characteristics. These characteristics are listed in Table 1.

The introduction of Mineral Trioxide Aggregate in 1993 brought about a paradigm shift in the use of dental materials. Subsequent laboratory, animal and clinical studies have established its pre-eminent position for several applications along the dentine-pulp and the pulp space-periradicular tissue continua. Initial animal studies had indicated MTA was associated with minimal inflammation in the periodontal tissues at the site of furcal perforation repair and in the peri-radicular tissues when used as a root-end filling material. In both instances, there was also evidence of cementum covering the restoration site. Since these initial studies, there are records of good clinical success when it has been used as a root-end filling material (Figures 1 and 2) for root perforation repair, direct pulp capping, apexification and pulpotomy. It has also been used for placement as an apical plug during orthograde endodontic treatment (Figures 3 and 4). The principal constituent of MTA is calcium silicate. Several important properties that develop when the material sets are influenced by the formation of the hydrated calcium silicate phases and its interaction with biological tissue fluid. Innovations in recent years have attempted to overcome the shortcomings of MTA, including relatively long setting time and difficult handling properties, by modifying the composition of this material. Such research has led to the development of a new family of bioactive and biocompatible dental materials for endodontic use that are based on calcium silicate chemistry. This review describes the calcium silicate materials that have been investigated for their application to endodontics with respect to their chemistry and physical properties.

Compositional aspects: Mineral Trioxide Aggregate

The first member of the calcium silicate family of materials to be introduced...
for endodontic use was Mineral Trioxide Aggregate. This is composed of Portland cement, with 4:1 addition of bismuth oxide as a radio-opacifier. Portland cement is manufactured by using raw materials that include:

- Lime (CaO);
- Silica (SiO₂);
- Alumina (Al₂O₃); and
- Iron oxide (Fe₂O₃).

These materials are proportioned, blended, fed into a rotary kiln and heated to temperatures of up to 1400–1600°C. The mixture obtained is the cement clinker which is cooled and pulverized. X-Ray diffraction analyses have revealed that the main constituents of the two different types of MTA (ProRoot MTA grey and ProRoot MTA white, Dentsply Tulsa Dental Specialties, Johnson City, TN, USA) were tricalcium silicate (C₃S-alite), dicalcium silicate (C₂S-belite), tricalcium aluminate (C₃A-celite), and tetracalcium aluminoferrite (C₄AF-felite) with bismuth oxide. The first formulation of MTA, ProRoot MTA was in the form of a grey-coloured powder which had iron as a component in the aluminoferrite phase of the powder. This phase was considered to be important as it allowed a significant setting expansion for the material. However, because the grey colour affected aesthetics, the composition of MTA was altered to reduce the iron content and become more tooth-coloured. This was introduced as white ProRoot MTA in March 2002 (Figure 5). Its composition has been studied by quantitative X-ray diffraction and this has revealed that the white ProRoot MTA is composed of tricalcium silicate (52–53%), dicalcium silicate (22–23%), calcium aluminate (0–4%), bismuth oxide (20–22%) and calcium sulphate dehydrated (approximately 1.5%). Gypsum (CaSO₄·2H₂O) serves to act as a retarder for the setting reaction and is usually added to the cement clinker at the end of the manufacturing process. Even though these two different types of MTA, namely grey and white ProRoot MTA, are primarily composed of tricalcium silicate and dicalcium silicate, the particle size was found to be smaller in the white MTA and X-Ray analysis revealed similar major elements (calcium, silicon and bismuth) but minor elements aluminium, magnesium and particularly iron, were considerably less in the white MTA.

Table 1. Desirable properties of a material for endodontic application.

<table>
<thead>
<tr>
<th>Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish a seal, preferably mediated by a bond between the tooth and the restoration</td>
</tr>
<tr>
<td>Anti-microbial properties</td>
</tr>
<tr>
<td>Biocompatible</td>
</tr>
<tr>
<td>Bioactive with the capability to stimulate and modulate native tissue formation</td>
</tr>
<tr>
<td>Non-absorbable</td>
</tr>
<tr>
<td>Dimensionally stable</td>
</tr>
<tr>
<td>Adequate strength</td>
</tr>
<tr>
<td>Radio-opaque</td>
</tr>
<tr>
<td>Lacks moisture sensitivity</td>
</tr>
<tr>
<td>Easy manipulation characteristics</td>
</tr>
</tbody>
</table>

As there is similarity in composition between white MTA and white Portland cements (except for bismuth oxide), it was suggested that Portland cement be used as a possible alternative to MTA in dental practice because of the high cost of the latter. This contention was further supported when the properties of a Portland cement with bismuth oxide were compared with white ProRoot MTA and found to be very similar in composition, radio-opacity and tissue reaction. However, the amount of gypsum in ProRoot MTA was found to be half that found in the Portland cements, thus prolonging the setting time of the latter. Furthermore,
Figure 4. (a) UR1 with long post-retained crown, apical resorption and chronic suppurative periapical periodontitis. (b) Dismantled post-retained crown and working length radiograph in orthograde treatment approach. (c) Immediate post-operative radiograph following placement of tooth-coloured ProRoot MTA apical plug. (d) 15 month post-operative radiograph showing continued healing.

Figure 5. (a) ProRoot MTA. (b) Individual, single use ProRoot MTA sachet with distilled water.

the ProRoot MTA consisted of fewer toxic heavy metals (copper, manganese and strontium), fewer chromophores (Fe$^{3+}$) and fewer aluminium species but contained 20% bismuth. Additionally, the Portland cements were composed of particles with a wide size range, while the ProRoot MTA was found to have smaller particles of uniform size that could affect the setting reaction for the cement. Thus, there is a significant difference between MTA and Portland cements and it is not recommended to substitute MTA with Portland cement for clinical use.

found that the hydrated, calcium-depleted surface of grains consists of low molecular mass silicic acids and that these interact with dissolved hydroxylated calcium species (principally Ca(OH)$_2$, also known as Portlandite) to produce a semi-permeable membrane of calcium silicate hydrate (C-S-H) at the hydrated grain surface. This has been termed the Pozzolanic reaction and can be characterized as:

$$\text{Ca(OH)}_2 + \text{H}_2\text{SiO}_3 \rightarrow \text{Ca}^{2+} + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_7\text{SiO}_4 \cdot 2\text{H}_2\text{O}$$

This C-S-H gel phase formed over the grain surface has been termed the inner product. Osmotic pressure within the C-S-H gel phase may cause it to rupture and promote the growth of excrecences from the grain as the contents are extruded into the surrounding calcium hydroxide solution, which leads to the formation of the outer product. The overall hydration reaction of alite that leads to the formation of the C-S-H phase is represented as follows:

$$2\text{Ca}_3\text{SiO}_5 + 7\text{H}_2\text{O} \rightarrow 3\text{CaO} \cdot 2\text{SiO}_2 \cdot 4\text{H}_2\text{O} + 3\text{Ca(OH)}_2 + 173.6\text{kJ}$$

Set hydrated cement is composed of numerous residual unhydrated cement grains, which have a dense rim of hydration product, made up of pure calcium silicate hydrate. Some ettringite and monosulphate may be present. Unreacted bismuth oxide particles and calcium hydroxide have also been detected. These have a tendency to leach out from the cement. The leaching of calcium ions from the cement is critical for the development of biological properties of the calcium silicate material. The C-S-H phase has also been shown to take up bismuth, which replaces the silica in the gel.

Setting reaction

Portland cements and the calcium silicate family of materials can also be termed hydraulic cements. Such cements are composed of several phases. When the cement is mixed with water, a chemical reaction occurs between these phases and water and is known as hydration. Grey MTA comprises compositional phases, namely alite (tricalcium silicate, C$_3$S), belite (dicalcium silicate, C$_2$S), celite (tricalcium aluminate, C$_3$A) and felite (tetraalcium aluminoferrite, C$_4$AF), that hydrate and harden at different rates. Celite hardens the quickest and results in a flash set. Therefore, gypsum is added to the cement to retard this reaction. Felite also hardens rapidly but contributes little to strength. Alite hydrates rapidly and is responsible for initial setting and strength. Belite has a slow hydration reaction and helps develop strength properties beyond the first week. The hydration of white ProRoot MTA has been reported to consist of two separate reactions. The initial reaction occurs between tricalcium aluminate and water which, in the presence of gypsum (found in small quantities in MTA), results in the production of ettringite (hydrous calcium aluminium sulphate, chemically $\text{Ca}_4\text{Al}_2(\text{SO}_4)_3(\text{OH})_12 \cdot 26\text{H}_2\text{O}$). This later forms monosulphate upon the depletion of gypsum. When calcium silicate cements make contact with water, calcium ions are rapidly leached from the solid to form calcium hydroxide solution. It has been

Manipulation

ProRoot MTA is not a perfect dental material. A granular consistency results in relatively poor handling characteristics making it difficult to deliver to the clinical site and challenging to condense. To enhance manipulation, special carrier and syringeable type systems, such as the Retro Amalgam Carrier (Moyco Union Broach, York, PA, USA), Messing Root Canal Gun (R Chige Inc, Boca Raton, FL, USA) (Figure 6), Centrix syringe (Centrix, Inc, Shledon, CT, USA), Dovgan (Quality Aspirators, Duncanville, TX, USA), MTA Carrier (G Hartzell & Son, Concord, CA, USA), disposible MTA Carrier (Vista Dental Products, Racine,
WI, USA) and Micro-Apical Placement system (Dentsply Maillefer, Ballaigues, Switzerland) were introduced to aid MTA placement clinically (Figure 7). In another approach, a Pellet-forming Block (G Hartzell & Son, Concord, CA, USA) was introduced; in this system mixed MTA was placed into the designated areas (grooves of various sizes) on the so-called Lee block, which helped shape the unset material into a pellet which could then be retrieved with a flat plastic instrument (Figure 8). MTA is placed into several grooves after mixing so that increments can be quickly retrieved and placed without causing any dehydration of the cement.

Figure 6. (a) Grey ProRoot MTA mixed with distilled water. (b) Excess moisture soaked-up with gauze leaving a moist mixture. (c) Messing Root Canal Gun, R Chige Inc, Boca Raton, FL, USA. (d) Cylindrical shape of MTA increment delivered by the carrier.

Figure 7. (a) Dovgan carrier, Quality Aspirators, Duncanville, TX, USA. (b) MTA Carrier, G Hartzell & Son, Concord, CA, USA. (c) Disposable MTA Carrier, Vista Dental Products, Racine, WI, USA.

Figure 8. (a) Lee pellet-forming block. (b) Mixed White ProRoot MTA. (c) MTA placed in multiple grooves on Lee Block. (d) Cylindrical pellet retrieved with Hollenback instrument for root-end filling. (e) Pluggers for root-end cavities.

Modifications to composition

Though the expensive devices mentioned above allow simpler placement, the inherent flaw in the chemistry or physical properties of MTA that affect its workability remained unchanged. This was compounded by the susceptibility of MTA to wash out in the presence of excess moisture. Additionally, even though MTA allows a good working time, the material has a prolonged setting time, making its utilization in restorative dental procedures cumbersome, sometimes necessitating two visits for the completion of treatment. To overcome these basic difficulties and further improve its properties, the composition of MTA has been modified. This section discusses the modifications to MTA chemistry, the development of newer calcium silicate materials and, finally, the creation of a new generation of hybrid materials that have calcium silicate chemistry as a part of their overall structure.

Modifications to decrease setting time and improve handling properties

The setting time of MTA, at 2 hours and 45 minutes, is longer than...
acceptable for most restorative clinical procedures.29 In order to decrease setting time, several strategies have been used for accelerating the hydration reaction of the cement. One of the earliest reports used 10\% and 15\% CaCl\textsubscript{2} added to an accelerated Portland cement (Rugby cement, Rugby, UK) that helped decrease setting time and was found to be non-toxic.29 MTA Angelus (Angelus Soluções Odontológicas, Londrina, Brazil) was introduced in 2001 and is composed of 80\% Portland cement and 20\% bismuth oxide.30 Calcium sulphate, a retardant for hydration, was eliminated from its composition to help decrease the setting time. Initially, MTA Angelus was grey in colour and was later changed to a white coloured material which was named MTA Branco.31 The use of various additives and mixing liquids has been another strategy to help improve the setting time of MTA. Several compounds have been tested, some of which also help improve the handling characteristics of the cement. Calcium formate reduced the setting time by 90\%, KY Jelly and 5\% CaCl\textsubscript{2}, decreased this by 50–64\%, 3\% CaCl\textsubscript{2} did not alter setting times, saline and 2\% lidocaine with 1:100,000 epinephrine delayed the setting time by 80\% and 140\%, respectively, and, MTA did not set with 2\% chlorhexidine gluconate.27,30 Even though CaCl\textsubscript{2} acts as an effective accelerator, because of its crystalline nature, it tended to precipitate as sand-like particles and offered less enhancement of cement cohesiveness.38 However, it reduced compressive strength of the material significantly.35 Modifications for radio-opacifiers The original radio-opacifier used in MTA was bismuth oxide. However, authors have reported that increasing the concentrations of bismuth oxide affected material properties adversely by increasing porosity (from 15–31\%). This may lead to greater solubility and degradation of the material.39 Even though there are studies that have shown a lack of tissue response to Portland cements containing bismuth oxide,20,40 it has also been shown to induce cytotoxicity in dental pulp cells.41 The ISO specification for dental root canal sealing materials states that radio-opacity should be greater than a 3 mm thickness of aluminium (Al).42 Even though the radio-opacity of Portland cement with bismuth oxide was found to be the best (5.88 mm Al), both zirconium oxide (3.87 mm Al) and iodoform (3.5 mm Al) also surpassed the ISO standard. Barium sulphate in Portland cement displayed values below those recommended by the standard (2.35 mm Al). Another white Portland cement has been modified by the addition of ZrO\textsubscript{2} or calcium tungstate but has a lower solubility and degradation of the material properties adversely by increasing porosity.38 The use of an admix of 1–3\% methyl cellulose (improved cohesiveness) and 2\% calcium chloride (accelerant) with grey ProRoot MTA resulted in a mix that handled in a similar way to a reinforced zinc oxide eugenol cement and set three times faster (57±3 min) than an unmodified MTA.37 23.1\% calcium lactate gluconate (CLG), as a dual functional additive reduced setting times to 12 min, with better handling properties than ProRoot MTA mixed with water or CaCl\textsubscript{2}. CLG. It also helped rapid initial set by supplying Ca2+ and reducing the free water in the cement, with subsequent precipitation of amorphous CLG that behaved as a plasticizer. Even though CaCl\textsubscript{2} acts as an effective accelerator, because of its crystalline nature, it tended to precipitate as sand-like particles and offered less enhancement of cement cohesiveness.38 However, it reduced compressive strength of the material significantly.35 Modification for application as root canal sealers Several sealers based on the calcium silicate chemistry have become available recently and include: Endo CPMTM sealer (Egeo SRL, Buenos Aires, Argentina); MTA Sealer; MTA Fillapex (Angelus Indústria de Produtos Odontológicos Londrina, Brazil); iRoot SP (also known as Endosequence BC sealer) (Innovative BioCeramix Inc, Vancouver, Canada); Tech Biosealer Endo (Isasan SRL, Rovello Porro, CO, Italy and discussed in a subsequent section); and Experimental fluoride-doped calcium silicate sealers. One of the first calcium silicate sealers to be reported in the literature was the Endo CPMTM sealer (Egeo SRL).44 This sealer consists of 50\% MTA (SiO\textsubscript{2}, K\textsubscript{2}O, Al\textsubscript{2}O\textsubscript{3}, SO\textsubscript{3}, CaO and Bi\textsubscript{2}O\textsubscript{3}); 7\% SiO\textsubscript{2}, 10\% CaCO\textsubscript{3}, 10\% Bi\textsubscript{2}O\textsubscript{3}, 10\% BaSO\textsubscript{4}, 1\% propylene glycol alginate, 1\% propylene glycol, 1\% sodium citrate and 10\% CaCl\textsubscript{2} (as per manufacturer).45 iRoot SP (Innovative BioCeramix Inc) was first reported as a root canal sealer in 2009. The material has also been retailed as SmartPaste Bio (SmartSeal DRFP Ltd, Stamford, UK). According to the manufacturer’s description, the sealer is a convenient, premixed, ready-to-use injectible white hydraulic cement paste developed for permanent root canal filling and sealing applications. The sealer is also supplied with root canal obturation points termed ProPoints. ProPoint (also made available as C point, LLC, Shrewsbury, MA, USA), has a radio-opaque polyamide core coated with a hydrophilic polymer coating. The sealer is an insoluble, radio-opaque, aluminium-free material based on a calcium silicate composition, which requires the presence of water to set and harden.46 This material has also been licensed as EndoSequence BC Sealer (Brassler, Savannah, GA, USA) and Hyseal-bio (LLC, Shrewsbury, MA, USA). Brassler has also made available a Root Repair Material in the form of a mouldable putty and a preloaded syringe with delivery tips. The manufacturer has stated that it is composed of calcium silicates, zirconium oxide, tantalam oxide, calcium phosphate monobasic and filler agents. It has a working time of 30+ min and final set is achieved within approximately 4 hours.
The Root Repair Material is bioactive.47 The material is nanofilled, allowing good adaptation to the root canal and flow into open dentinal tubules.

New Endodontic Cement (NEC) consists of different calcium compounds (calcium oxide, calcium phosphate, calcium carbonate, calcium silicate, calcium sulphate, calcium hydroxide and calcium chloride).46 This was later termed the Calcium Enriched Mixture (USPTO number: 7,942,961). The setting time was significantly shorter than ProRoot MTA (50 min as against 70 min). It has been shown to have good handling, provide an effective seal48 and bioactivity.49 Electron probe microanalysis revealed that there were compositional differences in NEC and ProRoot MTA.

In 2009, the first study on Bioaggregate50 was published regarding its antibacterial effects.51 It has been described as a bioceramic material intended for perforation repair and root-end filling. It is a laboratory-synthesized, water-based cement which is claimed to be produced under controlled conditions, resulting in a pure and fine white hydraulic cement-like powder composed of contamination-free biocompatible ceramic nanoparticles.52 Its composition has been described as being aluminium free.53 The components of Bioaggregate are tricalcium silicate (41%), dicalcium silicate (24%), tantalum pentoxide (25%), calcium phosphate monobasic (6%) and amorphous silicon dioxide (4%).54 The liquid supplied with the material consists of 100% deionized water. The hydrated cement has grains surrounded by a matrix of calcium silicate hydrate and calcium hydroxide with the presence of calcium carbonate.55 The uptake of calcium and silicon by dentine from Biodentine56 is more than white ProRoot MTA.57 An interfacial interaction has been studied between Biodentine58 and dentine.59 The material has a high washout, low fluid uptake and sorption, low setting time (45 min) and superior mechanical properties (compressive strength 67.18 MPa and Vickers hardness 48.4).60

Other calcium silicate materials

New Endodontic Cement (NEC) consists of different calcium compounds (calcium oxide, calcium phosphate, calcium carbonate, calcium silicate, calcium sulphate, calcium hydroxide and calcium chloride).46 This was later termed the Calcium Enriched Mixture (USPTO number: 7,942,961). The setting time was significantly shorter than ProRoot MTA (50 min as against 70 min). It has been shown to have good handling, provide an effective seal48 and bioactivity.49 Electron probe microanalysis revealed that there were compositional differences in NEC and ProRoot MTA.

In 2009, the first study on Bioaggregate50 was published regarding its antibacterial effects.51 It has been described as a bioceramic material intended for perforation repair and root-end filling. It is a laboratory-synthesized, water-based cement which is claimed to be produced under controlled conditions, resulting in a pure and fine white hydraulic cement-like powder composed of contamination-free biocompatible ceramic nanoparticles.52 Its composition has been described as being aluminium free.53 The components of Bioaggregate are tricalcium silicate (41%), dicalcium silicate (24%), tantalum pentoxide (25%), calcium phosphate monobasic (6%) and amorphous silicon dioxide (4%).54 The liquid supplied with the material consists of 100% deionized water. The hydrated cement has grains surrounded by a matrix of calcium silicate hydrate and calcium hydroxide with the presence of calcium carbonate.55 The uptake of calcium and silicon by dentine from Biodentine56 is more than white ProRoot MTA.57 An interfacial interaction has been studied between Biodentine58 and dentine.59 The material has a high washout, low fluid uptake and sorption, low setting time (45 min) and superior mechanical properties (compressive strength 67.18 MPa and Vickers hardness 48.4).60

MTA Plus (manufactured by Prevest-Denpro, Jammu City, India for Avalon Biomed, Bradenton, FL, USA) is a powder-liquid system with the option of mixing the powder (tricalcium and dicalcium silicate, bismuth oxide, calcium sulphate and silica) with either water.
or an anti-washout gel (AWG), the latter accelerating the set of the material, as per manufacturer’s claim, to one hour. The anti-washout property helps prevent disintegration of the cement when exposed to fluids, which may happen when the surgical site is rinsed with an irrigant. The AWG is a water soluble polymer composed of approximately 97.8% water mass and traces of SiO₂, K₂O, Cl and CaO. The AWG used with MTA Plus reduces the material washout and is similar to amalgam and IRM as compared with MTA Plus with water or MTA Angelus. The hydration reaction of the powder mixed with the AWG is different from water, with larger reaction rims around the unhydrated cement particles seen with the former. With AWG, calcium ion released was significantly less than with water at 14, 21 and 28 days, the setting time was reduced by 65 minutes to 100 minutes and the compressive strength was significantly higher, both when dry and immersed in HBSS. A zone of collagen degradation has been identified from the surface of dentine exposed to MTA Plus that was associated with minimal amounts (picograms) of dentinal loss.

<table>
<thead>
<tr>
<th>Generation</th>
<th>Calcium Silicate Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation I</td>
<td>Grey MTA, White MTA</td>
</tr>
<tr>
<td>Generation II</td>
<td>Modifications to MTA: - To decrease setting time: with calcium chloride, sodium hypochlorite, KY Jelly, calcium nitrite, calcium nitrate dicalcium formate, sodium phosphate dibasic - To improve handling: methyl cellulose - Dual functional (faster set and better handling): calcium lactate gluconate - Alteration in bismuth oxide concentration - Replacement of bismuth oxide with alternative radio-opacifier: zirconium oxide, iodoform, silver-tin alloy, gold, titanium MTA Angelus, MTA Branco and MTA Bio</td>
</tr>
<tr>
<td>Generation III</td>
<td>Modification of Portland Cement: several experimental cements - Modification for use as sealer: Endo CPM, ProRoot Endo (with water soluble polymer), MTAs, iRootSP (also retailed as Endosequence BC and SmartPaste Bio), MTA Obtura, Tech Biosealer Endo, experimental fluoride doped cement - Calcium silicate materials: - Synthesized as a partial-stabilized cement - Synthesized via sol-gel method - Aluminium-free cement - New Endodontic Cement/Calcium Enriched Mixture - Bioaggregate - Biodentine - Tech Biosealer (with accelerator and phyllosilicate plasticizer) - Aureoseal - Ortho MTA - MTA Plus - Experimental cements: - Calcium sulpho-aluminate cement with or without granite - Calcium fluoro-aluminate cement with or without granite - Additives of Mg, Zn, Fe - Calcium aluminate-calcium silicate composite cement - Generex A, Generex B - Ceramicrete-D - Capasio</td>
</tr>
<tr>
<td>Generation IV</td>
<td>Hybrid cements: - Calcium phosphate/Calcium silicate/Bismutite cement - NRC (Incorporating HEMA) - MTA with 4-META/MMA-TBB - Light-cured cements including TheraCal LC</td>
</tr>
</tbody>
</table>

Table 2. Classification of calcium silicate materials.
Hybrid calcium silicate cements

The adaptation of calcium silicate material chemistry by incorporating it with a completely different material has led to the development of a hybrid category of materials. A self-setting, pulp-capping cement composed of calcium phosphate/calcium silicate and bismutite (Bi₂O₂CO₃), named calcium phosphate/calcium silicate/bismutite cement (CPCSBI) was designed to maximize the advantages from each constituent. The dissoluble dentine matrix components extracted from CPCSBI exposed to dentine powder demonstrated increased expression of dentine sialophosphoprotein (DSPP) and sotecalcin in human pulp cells which indicated its suitability as a pulp-capping agent.

A calcium silicate cement, mainly based on dicalcium silicate and tricalcium silicate, was prepared using 5% calcium chloride additive and further mixed with alpha-tricalcium phosphate to help apatite formation. Another light-cured MTA displayed the least solubility values and calcium release. Another light-cured MTA product has been reported recently. The powder is composed of di- and tricalcium silicates, tricalcium aluminate, barium sulphate, calcium sulphate and calcium chloride. The liquid phase contained 2-hydroxyethyl methacrylate, triethyleneglycol dimethacrylate (TEGDMA), camphorquinone and ethyl 4-(dimethylamino) benzoate. The cement sets in 2 minutes with a high calcium ion release (150–200 ppm) and alkalinity (pH 10–12). Formation of bone-like apatite spherulites was observed after 1 day and the cement had good marginal adaptation. The cement also allowed Saos-2 cell viability and growth and no toxicity was observed. The presence of HEMA-TEGDMA hydrophilic resins helped to stabilize the outer surface of the cement and also the hydrophilic matrix that was capable of water sorption. Rapid nucleation for apatite formation occurred via the hydration of the silicates and the chelation of calcium to oxygen-containing groups of the resin.

TheraCal LC (Bisco Inc, Schaumburg, IL, USA) is a light-cured, resin-modified, calcium silicate filled liner used for direct and indirect pulp capping as well as under different restorative materials. The material is composed of Portland cement Type III (20–60%), polyethylene glycol dimethacrylate (10–50%), bisphenol A diglycidyl methacrylate (5–20%) and barium zirconate (1–10%). The cytotoxicity of the material has been tested. TheraCal demonstrated a reduction in cell metabolism ranging from 31.5% to 45.9% which was lower than for Vitrebond (73–77%) and Ultrabend Plus (64–71%). It has higher calcium-releasing ability and lower solubility than ProRoot MTA, does not meet the ISO 6876 guideline regarding radio-opacity, and may be cured to a depth of 1.7 mm to prevent dissolution.

A study has also examined the possibility of using 4-methacryloyloxyethyl trimellitate anhydride/methacrylate-tri-n-butyl borane (4-META/MMA-TBB) with Mineral Trioxide Aggregate to overcome the shortcomings of the latter. The authors mixed MTA powder with the liquid of 4-META/MMA-TBB resin and found the cement to set faster (11 vs 318 minutes for MTA) with less leakage. The pH for MTA was higher during the entire period of the study, though the differences between the two cements were significant only for the first 48 hours. Both cements did not reveal any cytotoxicity. Calcium-aluminoislicate or fluoride-containing calcium-aluminoislicate Portland-derived mineral powders have been mixed with methacrylate HEMA/TEGDMA/polyacrylic acid-based resin to prepare experimental composites. These are ion-leachable composites that possessed the ability to remineralize human apatite-depleted dentine surfaces.

Light-cured and chemically-cured composites have been developed using MTA Plus or MTA Plus mixed with water. The resin itself did not chemically react with the cement powder, which remained unhydrated within the composite. More apatite formation was seen on the surface for the MTA Plus mixed with water, as was a higher alkalinity (12.7) and calcium ion concentration. The chemically cured composite had the lowest values.

Summary of modification to composition

Several modifications have been made to the original MTA formulation, some of which have resulted in the development of new products with a decreased setting time and improved handling characteristics. Several experimental variants of Portland cement with additives have also been investigated. Calcium silicate materials have also been mixed with other materials to enhance their properties. Based on the variety of materials available and under investigation, calcium silicate cements (for use in dentistry) may be defined as those that are composed (at least in part), of either di-/tri-/tetra- calcium silicate phases with a hydration process that is the sole or contributory mechanism for the setting reaction which results in the formation of leachate and crystalline phases that promote bioactivity. Based on their chemistry, a classification for calcium silicate materials is proposed (Table 2).

Conclusions

The introduction and development of calcium silicate-based materials has provided many opportunities for their use in endodontics. The materials have enhanced the successful outcomes of several endodontic procedures. This review has demonstrated the continuing development of materials with suitable...
chemical and handling properties that allows their application for a variety of clinical needs, including root-end fillings, sealers and pulp-capping agents.

References

34. Huang T-H, Shie M-Y, Kao C-T, Ding S-J.

67. Formosa LM, Malilla B, Camilleri J. A quantitative method for determining the antiwashout characteristics of cement-based dental materials including mineral

