On the role of subunit M in cytochrome cbb3 oxidase

Catarina A. Carvalheda, Andrei V. Pisliakov

PII: S0006-291X(17)31373-6
DOI: 10.1016/j.bbrc.2017.07.031
Reference: YBBRC 38137

To appear in: Biochemical and Biophysical Research Communications

Received Date: 4 July 2017
Revised Date: 0006-291X June 0006-291X
Accepted Date: 6 July 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
On the role of subunit M in cytochrome cbb_3 oxidase

Catarina A. Carvalhedaab*, Andrei V. Pisliakovab*

aComputational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom

bPhysics, School of Sciences and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN, United Kingdom

*Corresponding authors:

E-mail addresses: c.a.c.dossantos@dundee.ac.uk, a.pisliakov@dundee.ac.uk

Abstract

Cytochrome cbb_3 (or C-type) oxidases are a highly divergent group and the least studied members of the heme-copper oxidases (HCOs) superfamily. HCOs couple the reduction of oxygen at the end of the respiratory chain to the active proton translocation across the membrane, contributing to establishment of an electrochemical gradient essential for ATP synthesis. Cbb_3 oxidases exhibit unique structural and functional features and have an essential role in the metabolism of many clinically relevant human pathogens. Such characteristics make them a promising therapeutic target. Three subunits, N, O and P, comprise the core cbb_3 complex, with N, the catalytic subunit, being highly conserved among
all members of the HCO superfamily, including the A-type \((aa_3, \text{ mitochondrial-like})\) oxidases. An additional fourth subunit containing of a single transmembrane (TM) helix was present in the first crystal structure of \(cbb_3\). This TM segment was recently proposed to be part of a novel protein CcoM, which was shown to have a putative role in the complex stability and assembly. In this work, we performed large-scale all-atom molecular dynamics simulations of the CcoNOPM complex to further characterize the interactions between subunit M and the core subunits and to determine whether the presence of the 4th subunit influences the water/proton channels previously described for the core complex. The previously proposed putative CcoNOPH complex is also assessed, and the potential functional redundancy of CcoM and CcoQ is discussed.

Keywords: molecular dynamics, proton transfer, water dynamics, cytochrome c oxidase, proton pump, membrane protein

1. Introduction

Heme-copper oxidases (HCOs) are membrane bound enzymatic complexes that terminate the respiratory chains of aerobic organisms. They catalyse the oxygen reduction to water and couple the energy released during this reaction to the active proton translocation from the negative to the positive side of the membrane, thereby contributing to the establishment of a proton motive force, which drives ATP synthesis [1,2]. Here we focus on distinctive \(cbb_3\) (or C-type) oxidases, which are mostly present in bacteria and represent the second most abundant group in the HCO superfamily. These enzymes exhibit several unique features and are essential for survival of many pathogenic bacteria (e.g. *Campylobacter jejuni*, *Neisseria*
gonorrhoeae, Helicobacter pylori), which makes them a promising pharmacological target [3–6]. The cbb_3 complex comprises three core subunits (Figure 1): the catalytic subunit N (CcoN or I), which has the same architecture as the central subunit in A- and B-type HCOs, and subunits O (CcoO or II) and P (CcoP or III), which share no similarity with subunits found in A- or B-type families [3]. Assembly of the cbb_3 complex has been mainly studied in Rhodobacter capsulatus [7–10], and shown to involve the formation of two intermediate subcomplexes: CcoNO and CcoQP, each stabilized by a copy of the assembly factor. In the subsequent steps, subunit P is attached to the CcoNO subcomplex yielding a fully active cbb_3 complex.

The structure of cbb_3 from P. stutzeri (isoform 1, Cbb3-1) was determined at a resolution of 3.2 Å [3]. In addition to three core subunits (N, O, and P), the electron density map revealed presence of a fourth subunit consisting of a single TM helix located near helices VIII, IX, and XI of subunit N. This TM segment could not be assigned to subunit Q, the known accessory subunit in cbb_3 oxidases [3]. Hence, its nature and role remained unclear.

In a recent study [11], this TM segment was assigned to an assembly factor H and reconstituted as the fourth subunit into the P. stutzeri X-ray structure. Following this assignment, the authors built a model of the CcoNPH complex and using computational methods predicted a water channel lining a large solvent-accessible but mostly hydrophobic cavity formed at the interface of subunits N and H. Such channel was observed to connect the cytoplasm in the vicinity of the residue R308 with the residue E323, which is H-bonded to the proximal ligand of heme b_3 (H345) and had been suggested to be part of the so-called proton loading site (PLS) in cbb_3 [12,13]. Furthermore, as this new water channel bypasses the K_C-channel and the active site, the authors suggested it to work as an additional proton pumping pathway in P. stutzeri cbb_3, thus having an important role in the pumping mechanism and in the cbb_3 overall function [11].
The assignment of the fourth subunit to subunit H was recently challenged by Michel and co-workers [14], who proposed the TM helix to be part of a novel protein CcoM (or subunit M). CcoM was shown to have a putative role in the \(cbb_3 \) complex assembly and stability, while its absence was shown to have no impact on the enzymatic activity of \(cbb_3 \) [14]. The successful reconstitution of subunit M into the electron density of the fourth subunit in \(P. \) stutzeri X-ray structure – and thus, the CcoNOMP complex – showed [14] ladder-like interactions between subunit M and helices VIII and IX of the catalytic subunit N (Figure 1C). Subunit M is almost exclusively present in species of the genus \textit{Pseudomonas} [14] and has structural resemblance and shares conserved residues with subunit Q (Figure 2D). Subunit Q was also shown to be involved in the complex assembly but not required for the enzymatic activity [10,15]. Based on these observations, subunits M and Q were suggested to be functionally redundant, but definite conclusions require further studies [14,15].

Recently, we have provided insights into proton translocation pathways of \(cbb_3 \) oxidase, which was modelled as the core CcoNOP complex [12]. Here we extend the simulation study by including the fourth subunit M – and thus, the CcoNOMP complex – with the objective of further characterizing the interactions between the core subunits and the TM segment of subunit M and examining whether the presence of the fourth subunit has an impact on the previously described water/proton channels. Our results suggest that subunit M maintains persistent interactions with subunit N without affecting the previously observed internal water channels or leading to the formation of new ones. This is in line with the experimental observations which showed that the presence of CcoM does not affect the catalytic or pumping activities of Cbb3-1 from \(P. \) stutzeri [14].
2. Materials and Methods

The crystal structure of the \textit{P. stutzeri} \textit{cbb}$_3$ complex containing three core subunits (N, O, P) and an additional TM helix, reconstituted as part of subunit M, (chains A, B, C and N from PDB ID: 5DJQ) \cite{3,14} was used as the initial protein configuration. The system setup followed the protocol described elsewhere for the CcoNOP complex \cite{12}. The final system contained 414 lipid molecules and a total of \(\sim 208\text{K}\) atoms. MD simulations were performed according to the protocol described in our previous work \cite{12}, using GROMACS version 5.0.2 \cite{16,17}, with CHARMM36 force field \cite{18–20} and in-house parameterisation of the reduced redox centres. Three replicas (R1, R2 and R3) were generated using different initial velocities and simulated for 350 ns each. Based on previous \(pK_a\) calculations \cite{12}, all ionisable residues were modelled in the default protonation states. All histidine residues were taken neutral, except for H243N, H337N and H124O, which were simulated in the charged (protonated) state. [Throughout the paper, the superscripts above the residue number denote the subunit – N, O, P, or M.] Due to the absence of the cytoplasmic part of subunit M, which would contain charged residues that help anchoring to the membrane (Figure 2D), the terminal residue of the TM segment, namely W29M, was not capped, i.e. was modelled with the negatively charged C-terminal group. In all simulations, the TM region of the core complex remains very stable (rmsd values around 1 Å).

3. Results

3.1. Interactions of subunit M with core subunits

The C-terminal part of the TM segment of subunit M was previously shown \cite{14} to tightly interact with helices XIII and IX of subunit N in a “ladder-like” fashion, involving the
following pairs of residues: M17M-F322N, F20M-W284N, F20M-M287N, F20M-F322N, F24M-M287N, and F24M-M291N (Figure 1C). Residues M17M and F20M were shown to be highly conserved in all subunit M homologues, while F24M is sometimes replaced by valine or leucine (Figure 2D). We started by analysing the structural stability of subunit M by means of its root-mean-square deviation (rmsd) and fluctuation (rmsf) values, along with the persistency of the “ladder-like” interactions at the interface with subunit N (Figure 2 and Table 1). Our results showed that the TM segment of subunit M is very stable in all simulations, with slightly higher deviations in replica R3 (Figure 2). The most flexible part in all replicas was the N-terminal region of subunit M (residues 1 to 5) (Figure 2B), due to its disordered nature and some degree of solvent exposure. The higher rmsd values in R3 are attributed to the C-terminal region (Figure 2A and 2B), and these are likely due to the absence of the cytoplasmic part of subunit M, which would anchor it to the membrane. We observed that subunit M remains tightly attached to the core complex in the simulations (Figure 2C), and that most of the “ladder-like” interactions remain stable (Table 1). There are slight variations for contacts involving F20M and F24M at the C-terminal region of the TM helix due to the unanchored C-terminus. For example, F24M-M291N is less tight in R2, while F20M-W284N distances greater in both R1 and R3, and F20M-F322N, F24M-M287N, F24M-M291N are disrupted in R3. The loss of such interactions in R3 is probably related with the higher degree of flexibility measured for the TM region of subunit M in this replica (Figure 2B). The F20M-M287N distance increases to ~7 Å in all replicas revealing a labile nature mainly due to the flexibility of the F20M phenyl ring. In addition to the contacts reported by Michel and co-workers [14], we found that the “ladder-like” interactions extended to the N-terminal part of subunit M and involved the following pairs of residues: V6M-T331N, G10M-L335N, G10M-V332N, T13M-V332N, T13M-M326N, L16M-M326N (Figure 1B and Table 1). Residues G10M and T13M where shown to be conserved in subunit M homologues (Figure
2D), while L16M is sometimes replaced by a valine [14]. These interactions show great stability in our simulations and agree well with the crystal structure.

There are no significant interactions between subunit M and subunits O or P.

3.2. Internal hydration of cbb_3 in the presence of subunit M

Identifying proton transfer pathways and understanding the coupling mechanism between proton pumping and catalytic reaction at BNC is the long-standing goal of studies that focus on cytochrome c oxidases. Accurate description of the internal water distribution is therefore an important issue to address. In this section we investigate whether the presence of subunit M: i) affects the formation of a previously observed water connectivity in the K_C-channel [12,13], and ii) leads to the formation of new channel(s) at the interface with the core complex, as it was suggested for subunit H [11]. In agreement with our previous results for the core complex [12], a stable continuous water channel in the K_C-channel, connecting the cytoplasmic side of the membrane with the active site, is also observed in the presence of subunit M (simulations R1-3, with H243 positively charged). The water distribution in the K_C-channel was further analysed by sub-dividing the channel into three regions: top, bottom and bottleneck (Figure 3A). Compared to our previous study, we observed similar levels of hydration in each of the regions: top (~6), bottleneck (~6) and bottom (~12). The bottleneck region is well hydrated and the number of waters populating this region is modulated by interactions and sidechain dynamics of residues H243, Y233, N289 and S240 (data not shown) as discussed before [12]. A substantial increase in the number of waters in the bottom region is observed in R1 at ~290 ns. This is due to the formation of an additional stable water intake pathway (see below).

The bifurcation region was previously proposed to be part of the proton exit pathway [12,13]. The formation of a continuous water channel in this region, bridging Y317 and E323, was
observed in our previous simulations of the core complex, but only when H337, a likely PLS, was modelled in the neutral state. In the present work H337 is kept in the charged state. In line with the previous results [12], no waters were observed in the bifurcation region during the present simulations for the CcoNOPM complex (Figure 3A and Figure 3B). Interestingly, the results for the water occupancy (Figure 3B) and number of waters (Figure 3C) reveal an increased local hydration of E323 (~2-3 extra water molecules) in simulation R3. This is a result of the disruption of the G10M-V332N and L16M-M326N interactions at the interface between subunits M and N (Figure 2B and Table 1).

The water/proton intake pathways from the bulk into the K\textsubscript{C}-channel observed in the presence of subunit M are also in agreement with our previous results for the core complex [12], namely the E48P → E49P and E8O → Y237N → E49P pathways (Figure 4A). In addition, the previously observed alternative route N52P → Y235N → N298N → H243N is also transiently observed in R3 (Figure 4A). In simulation R1, the sidechain of the residue Y235N flips downwards and, together with R232N, favours the formation of an extra pathway directly towards the bottleneck region, which is stabilised at around 290 ns (Figure 4B). This results in an increase in the number of waters populating the bottom region of the K\textsubscript{C}-channel observed at around 290 ns in R1 (Figure 3A), as discussed in the previous section (3.1). These results confirm substantial versatility of the water/proton uptake routes from the bulk. Notably, all these pathways involve highly conserved residues and are consistent with the mutagenesis data [21–23].

A closer look at the interface between subunits M and N reveals that the presence of subunit M does not lead to formation of additional water channels (Figure 3B), which could be involved in the translocation of chemical and/or pumped protons. No waters are observed at the interface, which is not surprising given the presence of multiple “ladder-like” hydrophobic contacts that block the water access. Furthermore, the estimated pK\textsubscript{a} values of
the residues H337 and E323 (modelled here in the charged state) do not significantly change due to the presence of subunit M: 11.5 vs 12.3 for H337 and 4.5 vs 5.7 for E323 in the presence (this work) and absence [12] of subunit M, respectively.

4. Discussion

In this work, we have carried out all-atom molecular dynamics simulations of the CcoNOPM complex from *P. stutzeri* with a twofold aim: i) to analyse the mode of association between the core subunits and recently identified fourth subunit, M, and ii) to understand whether the presence of CcoM affects formation of the proton translocation pathways previously identified for the CcoNOP complex [12]. All the “ladder-like” interactions between helices VIII and IX of the catalytic subunit CcoN and the C-terminal part of the TM helix of CcoM [14] were confirmed in our simulations, except for F20\(^M\)-M287\(^N\), which exhibits a labile nature due to the conformational flexibility of the sidechain of F20\(^M\). Furthermore, we have observed that this “ladder-like” pattern extends to the N-terminal part of the CcoM TM helix. Despite the extent of this contact interface, the presence of CcoM does not interfere with the stability of the CcoNOP complex throughout simulations (rmsd values of the TM region: \(~1.02\) Å with and \(~1.20\) Å without CcoM). Nevertheless, it most likely explains the reduced thermal stability observed experimentally in the absence of CcoM [14]. Our results are in line with the experimental evidence that CcoM does not interfere with the catalytic activity of *cbb\(_3* [14].

We observed that the presence of CcoM does not affect internal water channels observed in previous works [12,13,21] or lead to the formation of additional ones. The same uptake pathways from the cytoplasm were observed as in our previous work [12], involving residue E49\(^P\), an entry point to the Kc-channel [21,23]. These results agree with the experiments in
which CcoM was shown not to affect the enzymatic or proton pumping activities [14]. Interestingly, we have observed two alternative water intake pathways: the transient $N_{52}^{P} \rightarrow N_{235}^{N} \rightarrow N_{298}^{N} \rightarrow H_{243}^{N}$ water connection, also observed in the CcoNOP complex [12], and a route via N_{235}^{N} and R_{232}^{N} directly to the bottleneck region. These alternative routes could be responsible for some residual activity in E49P/A variants [21, 23].

To test the hypothesis put forward by Skulachev and co-workers [11] we also performed simulations for the putative CcoNOPH complex (Figure S1A). In contrast to that proposal [11], we conclude that CcoNOPH does not harbour an extra proton pumping channel as we have not observed the formation of a water connectivity between the cytoplasm and E_{323} at the interface between CcoH and the core complex (Figure S2A). Together with the recent unambiguous assignment of the fourth subunit to CcoM, our observations suggest that consequences of the presence of CcoH for the $P. stutzeri$ cbb_{3} pumping/functioning mechanism can be ruled out.

In summary, the presence of the fourth subunit (M or H) does not affect the proton transfer pathways or stability of the core complex in $P. stutzeri$. Due to the structural resemblance and conservation of the residues involved in the “ladder-like” interactions, subunits CcoM and CcoQ were initially hypothesised to be located at a similar position and have a redundant function in $P. stutzeri$ [14]. However, CcoM and CcoQ only share a low degree of sequence identity (<20%) [15], and the contrasting results obtained for the strains lacking either CcoM or CcoQ [14,15] hint at different functional roles and locations of these two subunits in the cbb_{3} complex. Therefore, our observations for the Cbb3-1 CcoNOPM complex might be extended to Cbb3-2, under the assumption that CcoM has same location in both isoforms, but should not hold for a putative CcoNOPQ complex.
Acknowledgments

This work was funded by the Scottish Universities Physics Alliance (SUPA). Access to ARCHE National Supercomputing Service was provided through the HEC-Biosim Consortium. We also appreciate support from the University of Dundee Life Sciences Computing cluster.

References

Figure Legends

Figure 1. Overall architecture and main functional elements of \(cbb_3 \) oxidase. (A) A four-subunit CcoNOPM complex embedded in a membrane. Subunits N (blue), O (red), P (grey) and M (orange) are shown as cartoons. (B) Location and details of the BNC and the \(K_C \)-channel. Heme groups and relevant residues are shown as sticks. \(\text{Cu}_B \) and the calcium ion bridging the catalytic hemes are shown as spheres, and the bulk water is shown as a transparent surface. (C) “Ladder-like” interactions between subunits N (blue) and M (orange), with distances between pairs of residues shown (in Å).

Figure 2. Stability of subunit M in MD simulations. (A) Rmsd of the \(C_\alpha \) atoms of the TM segment. (B) Rmsf of \(C_\alpha \) atoms. (C) The interface between subunits N and M. The initial positions (0 ns) of both subunits are shown as transparent blue and opaque orange cartoons, respectively. Position of subunit M is also shown at the end (350 ns) of MD simulations R1 (magenta), R2 (cyan), and R3 (green). The residues involved in the “ladder-like” interactions are shown as sticks and coloured accordingly. (D) Predicted topology of CcoM with a transmembrane region comprising residues V7 to W29. The intensity of the blue colouring represents the degree of residue conservation based on a multiple sequence alignment of subunit CcoM from \(P. \text{stutzeri} \) and CcoQ subunits from \(\gamma \)-proteobacteria. These results were adapted from [14]: the topology was predicted using the TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), and the sequence alignment was performed with Jalview [24].

Figure 3. Internal water channels in the presence of CcoM. (A) Number of water molecules within 3 Å of residues in the top (H207, T215, Y251, S283, Y317, S320, T321, H345), bottom (Y223, S236, Y237, S240, H243, N289, T293), bottleneck (Y223, H243, N289,
Y317) and bifurcation (S320, T321, H345) regions of the K_{C}-channel. (B) Water occupancy in the transmembrane region is represented as a red surface (calculated within 4 Å of the residues, occupancy ≥ 10%). CcoN and CcoM are shown as blue and orange cartoons, respectively. Residues involved in the “ladder-like” interactions are shown as sticks and transparent surfaces, and residues in the K_{C}-channel are shown as sticks. (C) Number of water molecules within 3 Å of E323.

Figure 4. K_{C}-channel entrance region from cytoplasm. (A) Water occupancy within 4 Å of polar residues in the entrance region (Y223, Y235, S236, Y237, S240, H243, N289, T293, E8°, E48p, E49p and N52p) is represented as a red mesh (occupancy ≥ 10%). The main plausible proton uptake pathways are indicated by blue arrows, and an alternative pathway in simulation R2 is shown by a dashed line. Subunit CcoP is shown in olive, and subunits CcoN, CcoP and CcoM are shown as transparent cartoons. The bulk water is shown in light blue and relevant residues are shown as sticks. (B) An additional water intake pathway connecting directly to the bottleneck region (via R232 and Y235) is formed in simulation R1. Representative snapshots are shown at 0, 200, 250 and 300 ns. Waters are shown as cyan sticks and as transparent blue surfaces.
Figures

![Fig. 1](image-url)
Fig. 2
Fig. 3
Fig. 4
Tables

Table 1. Interactions at the interface between subunits N and M.

<table>
<thead>
<tr>
<th>Sub. N</th>
<th>Sub. M</th>
<th>Crystal structure (PDB ID: 5DJQ)</th>
<th>MD simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mol.1</td>
<td>Mol.2</td>
</tr>
<tr>
<td>V6</td>
<td>T331</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>G10</td>
<td>L335</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>G10</td>
<td>V332</td>
<td>4.6</td>
<td>4.7</td>
</tr>
<tr>
<td>T13</td>
<td>V332</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>L13</td>
<td>M326</td>
<td>4.0</td>
<td>3.7</td>
</tr>
<tr>
<td>L16</td>
<td>M326</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>M17</td>
<td>F322</td>
<td>3.8</td>
<td>4.1</td>
</tr>
<tr>
<td>F20</td>
<td>F322</td>
<td>3.7</td>
<td>4.2</td>
</tr>
<tr>
<td>F20</td>
<td>W284</td>
<td>3.2</td>
<td>3.8</td>
</tr>
<tr>
<td>F20</td>
<td>M287</td>
<td>4.2</td>
<td>4.5</td>
</tr>
<tr>
<td>F24</td>
<td>M287</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>F24</td>
<td>M291</td>
<td>2.9</td>
<td>3.5</td>
</tr>
</tbody>
</table>

The minimum distance between each pair of residues is shown (in Å). Mol. 1-4 refer to four different copies of the protein in the PDB file (ID: 5DJQ). MD values represent the average distances collected from the equilibrated segment (>25ns) of simulations R1-3. The standard deviation of the values obtained from MD was always lower than 1.8 Å.
Highlights

- All-atom molecular dynamics simulations of a four-subunit cbb$_3$ oxidase complex
- Accessory subunit CcoM is tightly bound to the core subunits through hydrophobic interactions
- CcoM does not affect internal water/proton pathways
- An additional proton channel in the putative CcoNOPH complex is not confirmed
- Functional redundancy CcoM and CcoQ is unlikely