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Research Article

Interleukin-1 and TRAF6-dependent activation of
TAK1 in the absence of TAB2 and TAB3
Jiazhen Zhang, Thomas Macartney, Mark Peggie and Philip Cohen
MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.

Correspondence: Philip Cohen (p.cohen@dundee.ac.uk)

Interleukin-1 (IL-1) signaling induces the formation of Lys63-linked ubiquitin (K63-Ub)
chains, which are thought to activate the ‘master’ protein kinase TGFβ-activated kinase 1
(TAK1) by interacting with its TAK1-binding 2 (TAB2) and TAB3 subunits. Here, we report
that IL-1β can also activate the TAB1–TAK1 heterodimer present in TAB2/TAB3 double
knockout (DKO) IL-1 receptor-expressing cells. The IL-1β-dependent activation of the
TAB1–TAK1 heterodimer in TAB2/3 DKO cells is required for the expression and E3 ligase
activity of tumor necrosis factor receptor-associated factor 6 (TRAF6) and is reduced by
the small interfering RNA (siRNA) knockdown of ubiquitin conjugating 13 (Ubc13), an E2-
conjugating enzyme that directs the formation of K63-Ub chains. IL-1β signaling was
restored to TAB1/2/3 triple KO cells by the re-expression of either TAB1 or TAB2, but not
by an ubiquitin binding-defective mutant of TAB2. We conclude that IL-1β can induce the
activation of TAK1 in two ways, only one of which requires the binding of K63-Ub chains
to TAB2/3. The early IL-1β-stimulated, TAK1-dependent activation of p38α mitogen-acti-
vated protein (MAP) kinase and the canonical IκB kinase (IKK) complex, as well as the
NF-κB-dependent transcription of immediate early genes, was similar in TAB2/3 DKO
cells and TAB2/3-expressing cells. However, in contrast with TAB2/3-expressing cells,
IL-1β signaling was transient in TAB2/3 DKO cells, and the activation of c-Jun N-terminal
kinase 1 ( JNK1), JNK2 and p38γ was greatly reduced at all times. These observations
indicate a role for TAB2/3 in directing the TAK1-dependent activation of MAP kinase
kinases that switch on JNK1/2 and p38γ MAP kinases. These observations and the tran-
sient activation of the TAB1–TAK1 heterodimer may explain why IL-1β-dependent IL-8
mRNA formation was abolished in TAB2/3 DKO cells.

Introduction
Interleukin-1 (IL-1) has a central role in regulating immune and inflammatory responses to infection
and tissue damage [1]. IL-1 signaling is initiated by the recruitment of MyD88 (Myeloid
Differentiation primary response gene 88) to the IL-1 receptor (IL-1R) complex, which is followed by
the interaction of IL-1R-associated kinase 4 (IRAK4) with MyD88 and IRAK1 and/or IRAK2 with
IRAK4, to form an oligomeric complex termed the Myddosome [2,3].

IRAK1 activates several E3 ubiquitin ligases. First, it interacts with tumor necrosis factor receptor-
associated factor 6 (TRAF6) [4] and induces its dimerization and activation [5]. Second, it phosphory-
lates Pellino1 and Pellino2, converting them from inactive into active E3 ligases [6–8]. TRAF6 and
Pellino1/2 can then form productive complexes with the E2-conjugating enzyme complex termed
ubiquitin conjugating 13 (Ubc13)-Uev1a to generate Lys63-linked ubiquitin (K63-Ub) chains [9]. In
contrast, the pseudokinase IRAK2, which lacks kinase catalytic activity, can activate TRAF6 [10], but
would not be expected to be capable of activating Pellino1 and Pellino2 [9].
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It is widely accepted that IL-1-generated K63-Ub chains activate TGFβ-activated kinase 1 (TAK1, also called
MAP3K7) [11,12]. Cells express two TAK1 complexes, which comprise the TAK1 catalytic subunit (TAK1),
TAK1-binding protein 1 (TAB1) and either TAB2 or TAB3 [13]. The K63-Ub chains interact specifically with
the C-terminal Npl4 Zinc Finger (NZF) domain present in TAB2 and TAB3 [14,15] triggering the activation of
TAK1 complexes in vitro [11,12].

One role of TAK1 is to activate mitogen-activated protein (MAP) kinase (MAPK) kinase 4 (MKK4) and
MKK7 (also called MAP2K4 and MAP2K7) [16,17], which activate c-Jun N-terminal kinase 1 ( JNK1) and
JNK2, while another is to initiate the activation of IKKβ [18–20]. The dual phosphorylation of IKKβ at Ser177
and Ser181 permits IKKβ to phosphorylate and activate the transcription factors nuclear factor kappa B
(NF-κB) [21] and interferon regulatory factor 5 (IRF5) [22,23] and the protein kinase tumor progression locus
2 (Tpl2, also called MAP3K8). The IKKβ-dependent activation of Tpl2 requires the phosphorylation of its
p105/NF-κB1 subunit [24,25] and Tpl2 itself [26]. Tpl2 activates MEK1 (mitogen-activated kinase kinase or
ERK kinase), MEK2 (also called MAP2K1 and MAP2K2, respectively), MKK3 and MKK6 (also called
MAP2K3 and MAP2K6, respectively) [27,28]. MEK1 and MEK2 activate extracellular signal-regulated kinase 1
(ERK1) and ERK2, whereas MKK3 and MKK6 appear to operate redundantly with MKK4 to activate p38α
MAP kinase. The relative importance of MKK3, MKK4 and MKK6 in activating p38α MAP kinase varies with
cell type and cell stimulus [28].

If the interaction of K63-Ub chains with TAB2 and TAB3 is required to activate the heterotrimeric TAB1–
TAK1–TAB2 and TAB1–TAK1–TAB3 complexes, then the activation of TAK1 should not occur in cells devoid
of TAB2 and TAB3 expression. Here, we have made extensive use of CRISPR (clustered regularly interspaced
short palindromic repeat)/Cas9 (CRISPR-associated protein 9) gene-editing technology to examine this hypoth-
esis in IL-1R* cells, a human embryonic kidney (HEK) 293 cell line that stably expresses low levels of IL-1R.
IL-1β signaling in these cells is dependent on the expression of IRAK1 and requires both the expression and
protein kinase activity of TAK1 [9]. We report that IL-1 activates the TAB1–TAK1 heterodimer rapidly and
robustly in IL-1R* cells lacking expression of TAB2 and TAB3, but activation is more transient than in TAB2/
3-expressing cells. These and other findings demonstrate that IL-1 activates TAK1 in two ways, only one of
which requires the interaction of K63-Ub chains with TAB2/3.

Materials and methods
DNA constructs and proteins
Recombinant DNA procedures, restriction digests and ligations were performed using standard protocols. All
PCRs were carried out using KOD Hot Start DNA polymerase (Merck Millipore). DNA sequencing was per-
formed by the DNA Sequencing Service, School of Life Sciences, University of Dundee (www.dnaseq.co.uk).
All clones were human unless stated otherwise.

DNA clones encoding TAB1 (DU51103), TAB2 (DU46500), TAB2[T674A/F675A] (DU46511), TRAF6
(DU51583), TRAF6[C70A] (DU51585) and TRAF6[L74H] (DU51584) were inserted into
pRetroX-Tight-Puromycin vectors [20]. DNA clones encoding IL-1R1 (DU46481), FLAG-TRAF6 (DU32495),
FLAG-TRAF6[L74H] (DU46743) and FLAG-TRAF6[120-522] lacking the Really Interesting New Gene
(RING) domain (DU51445) were inserted into a pBABE vector [20].

Human IL-1β (DU8685) [29] was expressed in Escherichia coli and purified by the Protein Production Team
of the Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU). The DNA
clones and proteins generated for the present study have been assigned [DU] numbers and can be ordered
from the reagents section of the MRC-PPU website (https://mrcppureagents.dundee.ac.uk/).

Antibodies
Polyclonal antibodies against TAK1 (S828A, first bleed) and TAB1 (S823A, first bleed) were raised in sheep by
the antibody production team of the MRC-PPU. An antibody that recognizes IKKα phosphorylated at Ser176
and Ser180, and IKKβ phosphorylated at Ser177 and Ser181 (#2697), an antibody recognizing p38α phosphory-
lated at Thr180 and Tyr182 and p38γ MAP kinase phosphorylated at Thr183 and Tyr185 (#9211), and anti-
bodies recognizing TAK1 phosphorylated at Thr187 (#4536), p105/NF-κB1 phosphorylated at Ser933 (#4806),
ERK1 and ERK2 phosphorylated at Thr202/Tyr204 (#9101), and antibodies recognizing all forms of TAK1
(#4505), TAB2 (#3745), TAB3 (#14241), p38α MAP kinase (#9212), X-linked inhibitor of apoptosis protein
(XIAP; #2012), cellular inhibitor of apoptosis protein (cIAP1; #7056) and glyceraldehyde 3-phosphatase
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dehydrogenase (GAPDH; #2118) were purchased from Cell Signaling Technology. An antibody recognizing
TAB1 (#ab151408) was obtained from Abcam, an antibody recognizing Ubc13 (#37-1100) and a
phospho-specific antibody recognizing JNK1 and JNK2 phosphorylated at Thr183 and Tyr185 (#44682) were
from Invitrogen, an antibody recognizing IKKβ (#05-535) was from Merck Millipore and an antibody recogniz-
ing TRAF6 (#sc-7221) was from Santa Cruz Biotechnology. A phospho-specific antibody that recognizes
IRAK4 phosphorylated at Thr345 and Ser346 [30] was a generous gift from Dr Vikram Rao, Pfizer, Boston,
U.S.A. Secondary antibodies coupled to horseradish peroxidase were obtained from Thermo Scientific.

Generation of IL-1R* cells lacking expression of TRAF6 and/or TAB subunits
using the CRISPR/Cas9 gene-editing technology
IL-1R* cells expressing low levels of the IL-1R were generated as described recently [9]. The guide (g) RNAs
used to target the genes encoding TRAF6, TAB1, TAB2, TAB3 and XIAP1 are listed in Supplementary
Figure S1. The gRNA plasmids targeting each gene were pooled and 10 mg was used to transfect IL-1R* cells
for 8 h using the GeneJuice transfection reagent (Merck Millipore). Doxycycline was then added to the cells to
a final concentration of 1.0 mg/ml, and a further 18 h later, the cells were again transfected with the same
amounts of gRNA plasmids. After 48 h, cells were single-cell plated into 96-well plates and left until colonies
began to form (2–3 weeks). The loss of expression was analyzed by immunoblotting after their immunoprecipi-
tation (TAB1 and TAB3). Multiple TAB1 knockout (KO) and TAB3 KO clones were generated, a few of which
were selected for further study. Double KO (DKO) IL-1R* cells lacking expression of both TAB2 and TAB3
were generated by targeting TAB3 KO IL-1R* cells with a pair of gRNAs specific for TAB2. Triple knockout
(TKO) IL-1R* cells lacking any expression of TAB1, TAB2 and TAB3 were generated by targeting the TAB2/
TAB3 double KO cells with a pair of gRNAs for TAB1. DKO cells lacking expression of TRAF6 and TAB1 and
TKO cells lacking expression of TRAF6, TAB2 and TAB3 were generated by targeting TAB1 KO cells or TAB2/
TAB3 DKO cells with a pair of gRNAs for TRAF6. TKO cells lacking expression of TAB2, TAB3 and XIAP
were generated by targeting TAB2/3 DKO cells with a pair of gRNAs for XIAP. The DKO or TKO cells were
produced by CRISPR/Cas9 technology using an improved procedure. One pair of gRNAs was generated to
target TAB1, TAB2, TRAF6 or XIAP. The antisense gRNA was introduced to the vector encoding the Cas9
[D10A] mutant, which only cleaves one strand of the DNA molecule complementary to the gRNA. In contrast,
the sense gRNA was inserted into a plasmid containing a puromycin-resistance gene. Each gRNA plasmid
(1.0 μg) was mixed with 1.0 ml of serum-free DMEM and 0.02 ml of polyethylenimine (1.0 mg/ml), and after
incubation for 20 min at 20°C, the solution was added to the cells dropwise for transfection. After 48 h, the
medium was replaced with fresh medium containing 2.0 μg/ml puromycin. The cells were then single-cell
plated into 96-well plates and left until colonies began to form (2–3 weeks). The mutational efficiency was ana-
lyzed by immunoblotting of the cell extracts for the relevant proteins.

Re-expression of components of the TAK1 complex and TRAF6
TAB1/2/3 TKO cells expressing HA-tagged versions of TAB1, TAB2, the TAB2[T674A/F675A] mutant, TRAF6
and the E3 ligase-inactive TRAF6 mutants, TRAF6[C70A] and TRAF6[L74H], and TRAF6[120-522] lacking
the N-terminal 119 amino acid residues containing the RING domain were generated by retroviral transduction
[20]. Viruses encoding the gene of interest and the Tet-On protein were harvested 48 h after transfection,
diluted four-fold with fresh medium and incubated with the cells for 24 h in the presence of 2.0 μg/ml protam-
ine sulfate (Sigma). Fresh medium containing 1 mg/ml G418 (Tet-On) and 2.0 μg/ml puromycin (gene of inter-
est) was added to select the transduced cells. To induce gene expression, cells were cultured for 16 h in the
presence of 0.1–1.0 mg/ml doxycycline.

Quantitative RT-PCR
IL-1R* cells were seeded into 24-well plates at a final concentration of 1.5 × 105 per ml, and the RNA was
extracted using an RNA MicroElute kit from VWR (R6831-01). RNA was reverse-transcribed using the iScript
cDNA synthesis kit from Bio-Rad (170-8891). Quantitative PCR was performed using SsoFast EvaGreen
Supermix from Bio-Rad (172-5204) in the CFX384 (Bio-Rad). Primer sequences:

IL-8 forward: 50-ATAAAGACATACTCCAAACCTTTCCAC-30;
IL-8 reverse: 50-AAGCTTTACAATAATTTCTGTGTTGGC-30;
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IκBα forward: 50-GATCCGCCAGGTGAAGGG-30;
IκBα reverse: 50-GCAATTTCTGGCTGGTTGG-30;
A20 forward: 50-GCAGAAAAGCCGGCTGCGTG-30;
A20 reverse: 50-CGCTGGCTCGATCTCAGTTGCT-30.

Normalization was performed using 18S RNA and the ΔΔCt method. Primer sequences used were 18S
forward: 50-GTAACCCGTTGAACCCCATT-30; 18S reverse: 50-CCATCCAATCGGTAGTAG-CG-30.

Other materials and methods
The IAP inhibitor GT12911 (also called compound A) [31–33] was provided by Dr Stephen Condon
(Tetralogic Pharmaceutical Corp, Malvern, PA, U.S.A.). The TAK1 inhibitor NG25 was provided by
Dr Nathanael Gray (Dana Farber Cancer Institute, Boston, U.S.A.). Cell culture, cell stimulation, IL-8 secretion,
cell lysis, SDS–PAGE and immunoblotting [9] and siRNA knockdown of Ubc13 [29] were performed as
described.

Reproducibility and statistical analysis
All experiments in the present paper were repeated at least three times with similar results, unless stated other-
wise. Statistical analyses were performed with the GraphPad Prism Software, and quantitative data in graphs
and bar charts are presented as the arithmetic mean ± SEM. Statistical significance of differences between
experimental groups was assessed in all graphs and bar charts, using the one-way ANOVA, unless indicated
otherwise. Differences were considered significant if P < 0.05; *P < 0.05, **P < 0.01, ***P < 0.001, n.s., not statis-
tically significant.

Results
IL-1 activates the TAB1–TAK1 heterodimer in TAB2/3 DKO cells
To investigate whether the interaction of K63-Ub chains with TAB2 and TAB3 was required to activate TAK1,
we generated IL-1R* cells lacking any expression of TAB2 and TAB3, hereafter termed TAB2/3 ‘DKO’ cells
(Figure 1A, lanes 2 and 3). In these cells, TAB1 remained associated with TAK1 even after stimulation for as
long as 2 h with IL-1β (Figure 1B).

The activation of TAK1 requires its phosphorylation at the activation loop residue Thr187 [34]. Surprisingly,
IL-1β induced the phosphorylation of TAK1 at Thr187 in TAB2/3 DKO cells and, consequently, also stimulated
the phosphorylation of the canonical IKK complex and its substrate p105/NF-κB1, as well as p38α MAP
kinase. The degree of activation of the IKK complex and p38α MAP kinase in TAB2/3 DKO and wild-type
(WT) IL-1R* cells was similar for up to 20 min after IL-1β stimulation (Figure 1C). Thus, IL-1β can activate
the TAB1–TAK1 heterodimer in DKO cells by a mechanism that is independent of the binding of K63-Ub
chains to TAB2 and TAB3.

Interestingly, the IL-1β-dependent phosphorylation of JNK1, JNK2 and p38γ MAP kinase was greatly
reduced in the TAB2/3 DKO cells compared with TAB2/3-expressing IL-1R* cells (Figure 1C). JNK1 and JNK2
are activated by MKK4 and MKK7 (see Introduction), suggesting a potential role for TAB2/3 in directing
TAK1 complexes to one or both of these substrates. Which MKK family member activates p38γ MAP kinase in
these cells is unknown.

The IL-1β-dependent phosphorylation of TAK1, IKKα/β and p38α MAP kinase in the TAB2/3 DKO cells
was transient and had almost returned to basal levels after 60 min, but the IL-1β-dependent activation of ERK1
and ERK2, which is controlled by the protein kinase Tpl2 (see Introduction), was unaffected. In contrast, IL-1β
signaling was sustained for at least 2 h in TAB2/TAB3-expressing IL-1R* cells (Figure 1D). Similar results were
obtained with a second clone of TAB2/3 DKO cells that was isolated independently (Supplementary Figure S2).
Consistent with these findings, the IL-1β-stimulated transcription of two NF-κB-dependent immediate early
genes, IκBα (inhibitor of kappa B alpha; Figure 2A) and A20 (Figure 2B), was similar in TAB2/3 DKO cells
and TAB2/3-expressing IL-1R* cells for up to 45 min. In contrast, the production of IL-8 mRNA (Figure 2C)
and IL-8 secretion (Figure 2D) was reduced drastically in the TAB2/3 DKO cells. This may be explained by the
transient activation of IKKα/IKKβ and/or p38α MAP kinase, and/or by the weak activation of JNK1/2 and
p38γ MAP kinase in these cells.
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The IL-1-stimulated phosphorylation of TAK1 at Thr187 in the TAB2/3 DKO cells was not accompanied by
a decreased electrophoretic mobility of TAK1 during SDS–PAGE, in contrast with the TAB2/3-expressing
IL-1R* cells (Figure 1C,D), suggesting that there are amino acid residues in TAK1, distinct from Thr187, that
are phosphorylated in TAB2/3-expressing but not in TAB2/3 DKO cells.

Figure 1. IL-1β signaling in TAB2/3 DKO cells.

(A) Generation of IL-1R* cells lacking TAB2 and TAB3 or all three TAB subunits. TAK1 was immunoprecipitated from the extracts of WT IL-1R* cells

(lane 1), two different clones (4 and 11) of cells devoid of TAB2 and TAB3 (lanes 2 and 3) and two different clones (A4 and H17) lacking expression

of all three TAB components. Immunoprecipitates were subjected to SDS–PAGE, and immunoblotting as in the Methods with antibodies

recognizing TAK1 or each TAB protein. (B) TAB2/3 DKO cells (clone 4 from A) were stimulated with 5 ng/ml IL-1β for the times indicated, and TAK1

immunoprecipitated from the extracts and processed as in A. (C and D) WT or TAB2/3 DKO IL-1R* cells (clone 4 from A) were stimulated with IL-1β

for up to 1 h (C) or 2 h (D) as in B, and cell extracts analyzed by SDS–PAGE and immunoblotting with phospho-specific antibodies recognizing

phosphorylated (p) serine (pS), threonine (pT) and tyrosine (pY) residues in the activation loops of TAK1, IKKα/β, p105/NF-κB1, JNK1/2, p38α/p38γ

and ERK1/ERK2 MAP kinases, or with antibodies recognizing all forms of TAK1, p38α and GAPDH.
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The IL-1-dependent activation of the TAB1–TAK1 heterodimer requires TRAF6
and the formation of ubiquitin chains
To investigate how the TAB1–TAK1 heterodimer might be activated, we ablated the expression of TRAF6 in
the TAB2/3 DKO cells. IL-1β-dependent signaling ‘downstream’ from TRAF6 was abolished in these TAB2/
TAB3/TRAF6 triple KO cells, but signaling ‘upstream’ of TRAF6 was not affected, as shown by the unimpaired
phosphorylation of IRAK4 (Figure 3A). These experiments establish that the expression of TRAF6 is essential
for the IL-1β-dependent activation of the TAB1–TAK1 heterodimer. Previously, we reported that E3
ligase-inactive mutants of TRAF6 partially restore IL-1 signaling to TRAF6 KO TAB2/3-expressing IL-1R* cells,
because Pellino1 and Pellino2 can generate the K63-Ub chains required to activate TAK1 heterotrimers in these
cells [9]. In contrast, the E3 ligase-inactive TRAF6[L74H] and TRAF6[C70A] mutants failed to restore IL-1 sig-
naling to the TAB2/TAB3/TRAF6 TKO cells (Figure 3B). The expression of TRAF6 and its E3 ligase activity
therefore appear to be essential for the activation of the TAB1-TAK1 heterodimer in TAB2/3 DKO IL-1R* cells.
Consistent with these findings, the siRNA knockdown of Ubc13 reduced the IL-1β-dependent activation of
TAK1 and its substrates in both TAB2/3 DKO and WT IL-1R* cells (Figure 3C). The Ubc13-Uev1
E2-conjugating enzyme forms a productive complex with TRAF6 to direct the specific formation of K63-Ub
chains [35].

To assess the importance of TAB1 in the activation of the TAB1–TAK1 heterodimer, we generated IL-1R*
cells lacking expression of all three TAB components (Figure 1A, lanes 5 and 6). IL-1β did not stimulate the
phosphorylation of TAK1 or its substrates in these cells (Figure 4A), but the activation of p38α MAP kinase
and the weak activation of JNK1/2 could be restored by the re-expression of TAB1 (Figure 4B). These experi-
ments demonstrate an essential role for TAB1 in permitting IL-1β to activate the TAB1–TAK1 heterodimer.

XIAP is not required for the activation of the TAB1–TAK1 heterodimer
It has been reported that the E3 ubiquitin ligase XIAP binds to the N-terminus of TAB1, and that WT XIAP
but not an XIAP mutant unable to bind to TAB1 induced NF-κB-dependent gene transcription when

Figure 2. IL-1β-dependent gene transcription in TAB2/3 DKO IL-1R* cells.

(A–C) Cells were stimulated with IL-1β as in Figure 1, and at the times indicated, the mRNA encoding IκBα (A), A20 (B) and IL-8

(C) was measured by qRT-PCR relative to 18S ribosomal mRNA and normalized to the level found in WT cells stimulated with

IL-1β. The results are presented as arithmetic mean ± SEM for three independent experiments, each performed in triplicate.

(D) As in C, except that IL-8 secreted into the culture medium was measured by ELISA.
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Figure 3. TRAF6 E3 ligase activity is required for the IL-1β-dependent activation of the TAB1–TAK1 heterodimer in

TAB2/3 DKO cells.

(A) TAB2/3 DKO (clone 4 from Figure 1A) and TAB2/TAB3/TRAF6 TKO IL-1R* cells were stimulated with IL-1β for the times

indicated, and cell extracts subjected to SDS–PAGE and immunoblotting with the antibodies used in Figure 1 and an antibody

recognizing IRAK4 phosphorylated at Thr245 and Ser346. (B) As in A, except that WT TRAF6 or the indicated

E3-ligase-inactive mutants of TRAF6 were re-expressed in the TAB2/TAB3/TRAF6 TKO IL-1R* cells. (C) WT and TAB2/3 DKO

cells were incubated for 72 h with siRNA against Ubc13 and stimulated for 10 min with 5 ng/ml IL-1β. Other details are as in A.
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overexpressed in HEK293T cells [36]. To investigate the potential involvement of XIAP in the IL-1-dependent
activation of the TAB1–TAK1 heterodimer, we generated IL-1R* TKO cells lacking any expression of XIAP,
TAB2 and TAB3. The IL-1β-dependent activation of TAK1 in XIAP KO cells was slightly enhanced compared
with that observed in XIAP-expressing cells (Supplementary Figure S3A). We also eliminated the expression of
two other IAP family members (cIAP1 and cIAP2) by incubating the cells with GT12911 [31–33]. These
experiments showed that loss of all three IAP family members did not affect the IL-1-dependent activation of
the TAB1–TAK1 heterodimer in IL-1R* cells (Supplementary Figure S3B). Taken together, these experiments
indicate that XIAP, cIAP1 and cIAP2 are not involved in mediating the IL-1β-dependent activation of the
TAB1–TAK1 heterodimer in IL-1R* cells.

Figure 4. IL-1 signaling is restored to TAB1/2/3 TKO cells by the re-expression of TAB1.

(A) The experiment was carried out as in Figure 3A, except that TAB1/2/3 TKO cells (clone A4 from Figure 1A) and WT IL-1R*

cells were used. (B) As in A, except that HA-TAB1 was re-expressed in the TAB1/2/3 TKO IL-1R* cells where indicated and the

cells stimulated for 10 min with 5 ng/ml IL-1β. Extracts from WT cells (20 mg of protein) and TAB1/2/3 TKO IL-1R* cells (40 mg

of protein) were then processed as in A (top five panels). In the bottom two panels, TAK1 was immunoprecipitated from the

extracts and immunoblotted with anti-TAB1 and anti-TAK1 to confirm that the re-expressed TAB1 had recombined with TAK1.
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IL-1β does not stimulate the phosphorylation of TAK1 at Ser439
It has been reported that IL-1 stimulates the phosphorylation of Ser439 on TAK1 in IL-1R cells by a protein
kinase distinct from TAK1 [37,38] and that the TAK1[S439A] mutant is activated less efficiently by lipopolysac-
charide than WT TAK1 when re-expressed in TAK1 KO mouse embryonic fibroblasts [38]. We confirmed using
an antibody from Cell Signalling Technology (#9339) that the endogenous TAK1 was phosphorylated at Ser439
in WT IL-1R* cells and TAB2/3 DKO cells, but phosphorylation was not increased by stimulation with IL-1β or
suppressed by the TAK1 inhibitor NG25 (Supplementary Figure S4). These experiments indicate that the phos-
phorylation of Ser439 does not mediate the IL-1β-dependent activation of the TAB1–TAK1 heterodimer in these
cells. The IL-1β-dependent phosphorylation of TAK1 at Thr187 and the phosphorylation of IKKα/β, p38α and
JNK1/2 were prevented by NG25 as expected [20].

IL-1β signaling in TAB1 KO IL-1R* cells
To investigate the regulation of the TAB2–TAK1 and TAB3–TAK1 heterodimers, we next generated TAB1 KO
IL-1R* cells (Figure 5A). In these cells, the IL-1β-dependent phosphorylation of TAK1 at Thr187 and the phos-
phorylation of IKKα/IKKβ and p105/NF-κB1 were similar to WT IL-1R* cells expressing all three TAB subu-
nits (Figure 5B). Consistent with these observations, the IL-1β-dependent transcription of the immediate early
genes IκBα (Figure 5C) and A20 (Figure 5D) and the production of IL-8 mRNA (Figure 5E) were similar in
TAB1 KO and WT IL-1R* cells for up to 60 min. The IL-1β-dependent phosphorylation of TAK1, JNK1/JNK2,
p38α and p38γ MAP kinases was also similar to WT IL-1R* cells for up to 30 min, but modestly reduced after
stimulation for an hour or longer (Figure 5B). These observations may explain the small reduction in IL-8
mRNA and IL-8 secretion observed consistently after prolonged stimulation of TAB1 KO cells with IL-1β
(Figure 5E,F). Similar results were obtained with a second clone of the TAB1 KO IL-1R* cells that was isolated
independently (Supplementary Figure S5).

To investigate how the TAB2–TAK1 and TAB3–TAK1 complexes were activated, we ablated TRAF6 expres-
sion in the TAB1 KO cells to generate TAB1/TRAF6 DKO IL-1R* cells. As expected, no IL-1β-dependent sig-
naling was detectable in these cells (Figure 6A), confirming an essential role for TRAF6 in activating the
TAB2–TAK1 and TAB3–TAK1 heterodimers. The re-expression of the E3 ligase-inactive mutant of TRAF6
[L74H] mutant, and even a truncation mutant lacking the RING domain of TRAF6 (TRAF6[120-522]), par-
tially restored IL-1β-dependent signaling to TAB1/TRAF6 DKO IL-1R* cells (Figure 6B). Therefore, similar to
IL-1R* cells expressing all three TAB components [9], the E3 ligase activity of TRAF6 is not essential for activa-
tion of the TAB2–TAK1 and TAB3–TAK1 heterodimers.

To assess the importance of interaction between TAB2 and K63-Ub chains for the activation of the TAB2–
TAK1 heterodimer, we re-expressed TAB2 in IL-1R* cells lacking all three TAB components. IL-1β signaling
was restored by the re-expression of WT TAB2, but not by a TAB2 mutant, in which Thr673 and Phe674 in
the NZF motif were mutated to Ala (Figure 6C). This mutant is unable to interact with K63-Ub chains [29].
Taken together, these experiments indicate that the expression of TAB2 and its interaction with K63-Ub chains
is essential for the IL-1β-dependent activation of the TAB2–TAK1 heterodimer in IL-1R* cells devoid of TAB1
and TAB3 expression.

Discussion
The expression of TRAF6 is required for IL-1 signaling and, until recently, it was thought that the essential role
of TRAF6 in this pathway was to generate the K63-Ub chains that interact with TAB2/3 and induce the activation
of the TAB1–TAK1–TAB2 and TAB1–TAK1–TAB3 heterotrimers. However, we recently found that the E3 ligase
activity of TRAF6 contributes to, but is not essential for IL-1 and Toll-like receptor (TLR) signaling, and that the
essential roles of TRAF6 are independent of its E3 ligase activity. This is because, at least in IL-1R* cells, the E3
ligases Pellino1 and Pellino2 operate redundantly with TRAF6 to generate the K63-Ub chains required to initiate
IL-1β signaling [9]. Here, we report that the interaction of K63-Ub chains with TAB2 and TAB3 is also dispens-
able for the acute (<30 min) IL-1β-dependent activation of TAK1 in IL-1R* cells, demonstrating that IL-1β acti-
vates the TAB1–TAK1 heterodimer in TAB2/3 DKO cells by another mechanism (Figure 1).

We found that activation of the TAB1–TAK1 heterodimer requires both the expression and the E3 ligase activity
of TRAF6 (Figure 3B), but neither TAB1 nor TAK1 possess a known ubiquitin-binding domain. These observations
suggest that TRAF6-generated ubiquitin chains activate the TAB1–TAK1 heterodimer indirectly. One possibility is
that TRAF6-generated K63-Ub chains might activate an as-yet unidentified protein kinase, which phosphorylates
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and activates the TAB1–TAK1 heterodimer. However, it is unlikely that such a kinase activates TAK1 by phosphor-
ylating Thr187 directly, because IL-1β does not induce Thr187 phosphorylation in IL-1R* cells expressing the
kinase-inactive TAK1[D175A] mutant [9]; instead, this observation suggests that Thr187 is phosphorylated by
TAK1 itself. The putative protein kinase might therefore phosphorylate another amino acid residue(s) in TAK1 or
TAB1, which induces a conformational change that enables TAK1 to auto-activate. Indeed, it has been reported
that TAK1 activity is enhanced by the phosphorylation at Ser439, which is catalyzed by another protein kinase(s)
[37,38]. However, we could exclude Ser439 phosphorylation as the mechanism because the phosphorylation of this
site was not increased when the TAB2/3 DKO cells were stimulated with IL-1β (Supplementary Figure S4).

Figure 5. IL-1β signaling in TAB1 KO IL-1R* cells.

(A) Generation of two clones of TAB1 KO IL-1R* cells. Other details are as in Figure 1A. (B) WT IL-1R* cells and TAB1 KO cells

(clone 44) were stimulated for up to 2 h with IL-1β . Cell extracts were denatured in SDS, subjected to SDS–PAGE and

immunoblotted with the antibodies indicated. (C–E) As in B, except that RNA was extracted from the cells at the times

indicated and the formation of IκBα (C), A20 (D) and IL-8 (E) mRNA was measured by qRT-PCR relative to 18S ribosomal

mRNA and normalized to the level found in WT cells stimulated with IL-1β. The results are presented as arithmetic mean ± SEM

for three independent experiments, each performed in triplicate. (F) As in E, except that IL-8 secreted into the culture medium

was measured by ELISA.
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Figure 6. IL-1 signaling in different TAB- and TRAF6-deficient cells.

(A) Generation of TAB1/TRAF6 DKO cells from TAB1 KO cells (clone 44 from Figure 5A). (B) WT TRAF6 and the E3

ligase-inactive TRAF6[L74H] and TRAF6[120-522] mutants were re-expressed in TAB1/TRAF6 DKO cells (clone 1 from A).

These cells, TAB1 KO cells (clone 44 from Figure 5A) and TAB1/TRAF6 DKO cells not re-transfected with TRAF6, were then

stimulated with IL-1β for the times indicated. Other details are as in A. (C) HA-TAB2 or the K63-Ub-binding-defective HA-TAB2

[T674/F675A] mutant were re-expressed in TAB1/2/3 TKO IL-1R* cells (clone A4 from Figure 1A). These cells, TAB1/2/3 TKO

cells not re-transfected with HA-TAB2 and WT IL-1R* cells, were stimulated for 10 min with 5 ng/ml IL-1β. Cell extracts (20 mg

of protein-WT cells or 40 mg of protein-TAB1/2/3 TKO cells) were subjected to SDS–PAGE and immunoblotted with the

antibodies indicated.
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A further possibility is that the TAB1–TAK1 heterodimer is intrinsically active, even in cells not stimulated
with IL-1β, and that Thr187 phosphorylation is suppressed under basal conditions by the action of one or
more serine/threonine-specific protein phosphatases. In support of this contention, the incubation of primary
keratinocytes with calyculin A, a potent inhibitor of the PPP gene family of serine-/threonine-specific protein
phosphatases (PPs), induced the phosphorylation of TAK1 at Thr187 in keratinocytes from WT mice but not
in keratinocytes from TAB1 KO mice. PP2A [39] and PP6 [40] were reported to modulate TAK1 phosphoryl-
ation and the latter to be associated with the endogenous TAK1 [40]. It is therefore possible that
TRAF6-generated K63-Ub chains induce the IL-1β-dependent activation of the TAB1–TAK1 heterodimer by
inhibiting a TAK1 phosphatase(s).

Consistent with the findings reported here, Takeuchi and co-workers reported that the phosphorylation of
TAK1 and the activation of NF-κB were not impaired in TAB2/TAB3-deficient B cells following stimulation
with the TLR9 ligand CpG DNA, with anti-CD40 or with IgM [41]. They also reported that the phosphoryl-
ation of JNK was reduced and some late B cell responses were impaired. Based on these observations, they con-
cluded that TAB2 and TAB3 regulate MAP kinases in B cells by a TAK1-independent mechanism. However,
their observation that JNK activation was reduced in TAB2/TAB3-deficient cells without an effect on IKK acti-
vation is similar to our observations in IL-1-stimulated TAB2/3 DKO IL-1R* cells (Figure 1C). Therefore, an
alternative interpretation of their findings is that TAB2 and TAB3 have a specific role in directing the TAB1–
TAK1–TAB2 and/or TAB1–TAK1–TAB3 heterotrimers to the MKK family members that activate JNK1 and
JNK2. Analogous roles for the regulatory components of other protein kinases and phosphatases are well docu-
mented [42]. Similar to TAB2/3, the NF-κB essential modifier (NEMO) component of the canonical IKK
complex binds ubiquitin chains, but it also interacts with IκBα, which is critical for the IKKβ-catalyzed phos-
phorylation of IκBα [43,44]. The loss of some responses in TAB2/3-deficient B cells [41] could also be
explained if, as found in the present study, the activation of the TAB1–TAK1 complex is more transient in
TAB2/3-deficient B cells than the heterotrimeric TAK1 complexes.

In summary, our results indicate that IL-1β activates TAK1 complexes in IL-1R* cells in two ways, both
dependent on the expression of TRAF6: first, by the previously described binding of K63-Ub chains to the
NZF domains of TAB2 and TAB3; second, by a ubiquitin-dependent mechanism that is independent of the
binding of K63-Ub chains to TAB2 and TAB3 and requires the expression of TAB1. The IL-1β-dependent acti-
vation of the TAB1–TAK1 heterodimer is rapid, robust and sufficient for the NF-κB-dependent transcription
of immediate early genes (Figure 2). The IL-1β-dependent activation of the TAB2–TAK1 and TAB3–TAK1 het-
erodimers contributes to the acute activation of TAK1, but is especially important in sustaining signaling for a
prolonged period in IL-1R* cells (Figure 5). In contrast with activation of the TAB1–TAK1 heterodimer, the
TRAF6 E3 ligase activity is not essential for the activation of TAB2–TAK1 and TAB3–TAK1 complexes
(Figure 6B), because the K63-Ub chains that interact with TAB2/3 can also be generated by Pellino1 and
Pellino2 [9].
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