A framework for ensuring a balanced accounting of the impact of antimicrobial stewardship interventions
Toma, Madalina; Davey, Peter G.; Marwick, Charis A.; Guthrie, Bruce

Published in:
Journal of Antimicrobial Chemotherapy

DOI:
10.1093/jac/dkx312

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
A framework for ensuring a balanced accounting of the impact of antimicrobial stewardship interventions

Madalina TOMA¹, Peter DAVEY², Charis A MARWICK³, Bruce GUTHRIE⁴*

Author affiliations
1. Scottish Improvement Science Collaborating Centre (SISCC), School of Nursing and Health Sciences, University of Dundee, 11 Airlie Place, Dundee, DD1 4HJ, United Kingdom
2. Population Health Sciences Division, School of Medicine, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, United Kingdom
3. Population Health Sciences Division, School of Medicine, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, United Kingdom
4. Population Health Sciences Division, School of Medicine, University of Dundee, Kirsty Semple Way, Dundee, DD2 4BF, United Kingdom, Scottish Improvement Science Collaborating Centre (SISCC), School of Nursing and Health Sciences, University of Dundee, 11 Airlie Place, Dundee, DD1 4HJ, United Kingdom

*Correspondence to Bruce Guthrie, b.guthrie@dundee.ac.uk, +44 (0)1382 383740

Running title
Balanced accounting of antimicrobial stewardship interventions

Word count-3356
Synopsis

Drawing on a Cochrane systematic review this paper examines the relatively limited range of outcomes measured in published evaluations of antimicrobial stewardship interventions (ASI) in hospitals. We describe a structured framework for considering the range of consequences that ASI can have, in terms of their desirability and the extent to which they were expected when planning an ASI: expected, desirable consequences (intervention goals); expected, undesirable consequences (intervention trade-offs); unexpected, undesirable consequences (unpleasant surprises); and unexpected, desirable consequences (pleasant surprises). Of 49 randomised controlled trials (RCTs) identified by the Cochrane review, 28 (57%) pre-specified increased length of stay and/or mortality as potential trade-offs of ASI, with measurement intended to provide reassurance about safety. In actuality, some studies found unexpected decreases in length of stay (a pleasant surprise). In contrast, only 11 (10%) of 110 interrupted time series (ITS) studies included any information about unintended consequences, with 10 examining unexpected, undesirable outcomes (unpleasant surprises) using case-control, qualitative or cohort designs. Overall, a large proportion of the ASI reported in the literature only assess impact on their targeted process goals – antimicrobial prescribing – with limited examination of other potential outcomes including microbial and clinical outcomes. Achieving a balanced accounting of the impact of an ASI requires careful consideration of expected undesirable effects (potential trade-offs) from the outset, and more consideration of unexpected effects after implementation (both pleasant and unpleasant surprises, although the latter will often be more important). The proposed framework supports the systematic consideration of all types of consequences of improvement before and after implementation.
Introduction

Increasing antimicrobial resistance poses a major threat to human health. Health services internationally have responded by planning or implementing a range of antimicrobial stewardship interventions (ASI) to promote judicious use of antimicrobials to preserve their future effectiveness. ASI are usually complex with multiple components, with expected benefits balanced against unintended adverse consequences such as delayed or ineffective treatment of life threatening infections. Antimicrobial stewardship shares many characteristics with other healthcare quality improvement programmes, including that improvers typically focus on delivering a pre-defined set of benefits in terms of processes of care. However, any evaluation of the impact of an improvement programme should report all unintended consequences (which may be negative or positive), as well as the targeted processes of care that are intended to improve. In this paper, we examine the range of outcomes measured in published evaluations of ASI in hospitals, and describe a framework for thinking about the consequences of interventions to help achieve a balanced accounting of impact.

What outcomes do ASI measure?

The recently updated Cochrane systematic review of the impact of ASI in hospital included 221 studies in total, with 49 randomised controlled trials (RCTs) and 110 interrupted time series (ITS) studies contributing to at least one meta-regression or meta-analysis. Reflecting the design of the Cochrane review, all the included RCTs and ITS studies measured antimicrobial outcomes, with 46 RCTs (93.8%) and 101 ITSs (91.8%) aiming to improve antimicrobial treatment and the remaining three RCTs (6.1%) and nine ITS studies (8.2%) aiming to improve surgical prophylaxis (Table 1).

In contrast, only a minority of studies examined any other type of outcomes. Only five RCTs (10.2%) and 26 ITSs (23.6%) examined microbial outcomes, most commonly colonisation or infection with resistant bacteria, or Clostridium difficile infection (CDI), with an explicit or implicit assumption that these would reduce. 28 (57.1%) RCTs and four (3.6%) ITSs examined all-cause mortality while length of hospital stay was measured in 15 RCTs (30.6%) and two ITSs (1.8%). However, it was often unclear whether length of stay and mortality were expected to change, and if so, in which direction (whether there was a hope that the ASI would reduce mortality and length of stay, or a fear that they would increase).
Other outcomes relating to the impact and safety of interventions were reported in 23 RCTs (46.9%) and eight ITSs (7.2%), usually relating to anticipated (or feared) negative outcomes of stewardship. These included concerns about delays in starting antimicrobial treatment or delays in seeing other patients with urgent needs in the emergency department, and concerns about changes in antimicrobial use causing acute kidney injury, longer duration of fever, increased duration of mechanical ventilation, increased allergic reactions, or increased surgical site infections.

Overall, the review authors concluded that they had found high-certainty evidence that ASIs are effective in increasing compliance with antimicrobial policy and reducing duration of antimicrobial treatment, and that lower use of antimicrobials likely reduces length of stay and probably does not increase mortality. Additional trials comparing antimicrobial stewardship with no intervention are unlikely to change these conclusions. Reflecting the limited range of outcomes examined by the included studies, more research was recommended to examine the wide range of unintended consequences of restrictive interventions.

What kinds of consequences should implementers of ASIs consider?

There is no clear consensus on what outcomes should be measured to evaluate the impact of ASI. Professional organisations have proposed that alongside the process measures of antimicrobial use which dominate the existing literature, interventions should measure patient outcomes (mortality, length of hospital stay and readmission rates), and unintended consequences. In practice, antimicrobial stewardship trialists and improvers have to make choices about what to measure given available resources. This paper describes an approach based on quality improvement work in other contexts to help plan measurement strategies in a structured way to ensure a balanced accounting of antimicrobial stewardship impact.

As with other improvement interventions, there are two prominent features of the types of measures used to evaluate effectiveness in the studies examined. These are whether outcomes are desirable or undesirable, and whether outcomes are expected or not. Of note is that for some outcomes, desirability depends on the expected direction of change (an obvious example being that reduced mortality is desirable, whereas increased mortality is undesirable), but many published papers do not clearly state their expectations before implementation. Potential metrics can therefore be divided into four main categories, any of which can be measured in terms of process and outcome, both in the clinical setting targeted by improvement and other clinical settings in which consequences might occur (for example
due to readmission to other services). The four type of consequences are adapted from the Diffusion of Innovations literature¹⁰-¹⁴ and described in Figure 1:

- **ASI goals**: the expected and desirable consequences of the improvement intervention.
- **ASI trade-offs**: the expected but undesirable consequences of the improvement intervention. Before intervention, these are assumed to be smaller in magnitude than the goals (and so implicitly are an acceptable compromise), but may include outcomes such as mortality where any significant increase is likely to outweigh improvement in goals and which are often measured to reassure about safety.
- **ASI pleasant surprises**: unexpected and desirable consequences emerging after implementation.
- **ASI unpleasant surprises**: unexpected and undesirable consequences emerging after implementation.

Examples of goals, trade-offs and surprises in the antimicrobial stewardship literature

ASI goals (Expected desirable consequences)
Overall, the primary goal of ASI is to reduce total or specific antimicrobial use. All the interventions included in the review measured antimicrobial prescribing but only a minority clearly specified other types of goals such as microbial outcomes. Other pre-specified goals included reduced length of stay and/or reduced in-hospital mortality in 31 (63%) RCTs but only 6 (5%) ITS studies evaluating stewardship interventions intended to change antimicrobial prescribing (Table 1).

ASI trade-offs (Expected undesirable consequences)
Several studies pre-specified increased mortality and increased length of stay as expected undesirable consequences, with measurement intended to allow examination of trade-offs (length of stay) or provide reassurance about safety (mortality). For instance, two RCTs¹⁵ ¹⁶ explicitly framed length of stay and mortality as ‘safety outcomes’ because they were concerned that both might increase although neither actually did. Similarly, even in a context where the improvers expected their intervention to reduce length of stay, they were concerned that this might lead to higher rates of rapid readmission and measured the latter as a pre-defined trade-off.¹⁷ In studies in emergency departments, some authors were concerned that prioritising rapid antimicrobial administration for patients with fever and neutropenia might compromise care for other patients. The initial measurement plans therefore included trade-offs between achieving the goals of more rapid initiation of antimicrobials and potential
treatment delays for patients with other urgent problems and/or an expected increase in patients leaving without being seen. In the latter study, other potential trade-offs identified before implementation included the intervention effect on nurses’ workload when a febrile neutropenic patient was placed in their nursing area and the potential for staff to develop user fatigue, but the improvers chose not to explicitly measure these.

Pleasant Surprises (Unexpected desirable consequences)

Some consequences are not expected before implementation, and therefore only become visible or apparent subsequently. For instance, three RCTs pre-specified length of stay as a trade-off (that is, they expected or feared an increase due to the stewardship intervention), but actually found unexpected decreases (a pleasant surprise). A few studies explicitly examined other outcomes which were unexpected and desirable, such as an observed reduction in delay to first antimicrobial treatment from an intervention which aimed to reduce the number of unnecessary diagnostic tests in infants with risk factors for early-onset neonatal sepsis. More commonly, papers speculated that there were unmeasured pleasant surprises, for example discussion of an intervention to discontinue unnecessary intravenous antimicrobial therapy suggested that there were ‘unmeasured theoretical benefits’ in terms of reduced incidence of phlebitis or other potential complications.

Unpleasant surprises (Unexpected undesirable consequences)

Only 10 studies in the Cochrane review examined unexpected or surprising negative outcomes. When outcomes are unexpected, then data have not typically been collected before and after intervention implementation, and studies most commonly examined unpleasant surprises using case-control, qualitative and cohort designs. For example, a case-control study investigating an abrupt and persistent 30% increase in the absolute number of reported nosocomial infections found it was actually a pseudo-outbreak caused by physicians altering their threshold for diagnosis and reporting in response to implementation of a restrictive antimicrobial policy. In response to a similarly restrictive intervention, qualitative interviews with clinical staff revealed unexpected difficulties with the prior approval process for restricted antimicrobials, including failure to clearly document approval and ambiguity in the duration of approval. The consequences were erosion of trust in the accuracy of feedback data about appropriate use of restricted antimicrobials.
Four cohort studies investigated post-implementation concerns about restrictive interventions that had arisen some years after the implementation of ASI (Table 2). The aims of these studies varied considerably in that one was intended to provide reassurance about the risks of automatic stop orders whereas the other three were intended to confirm concerns about prior approval programmes. As reported, the results did not reveal any surprises per se because the authors interpreted them as supporting their predictions that stop orders would be safe and that requiring prior approval carried risks (Table 2). These conclusions would have been much stronger if the studies had explicitly addressed the potential trade-offs involved. For example, how much delay in vancomycin treatment in how many patients would it take to consider modifying a stop order policy?

Three cohort studies addressed concerns that public reporting of hospital performance on a national quality indicator of timely treatment of patients with community-acquired pneumonia (CAP) might be leading to unnecessary antibiotic treatment of patients who did not have pneumonia. These concerns were supported by additional studies that were not included in the Cochrane review, and the performance measure was subsequently revised and then withdrawn altogether.

One study used an ITS design to address post-implementation concerns that a change in surgical prophylaxis policy from cefuroxime to flucloxacillin plus gentamicin may have increased risk of postoperative acute kidney injury (AKI) in orthopaedic patients. The results confirmed a clinical impression of increased AKI, and resulted in a further change to the prophylaxis policy (described in detail in Table 3 and below).

Challenges associated with achieving a balanced accounting of ASI impact

The framework described in Figure 1 has the benefit of bringing a systematic approach to considering the consequences of ASI, which is important because decisions often have to be made in the face of considerable uncertainty and then adapted to new information. This is illustrated by the experience of the development, implementation and modification of an ASI intended to reduce the use of surgical antimicrobial prophylaxis associated with higher risk of CDI in one Scottish Health Board (Table 3). AKI risk was explicitly considered pre-intervention, in response to clinician concern about AKI risks in changing surgical prophylaxis to gentamicin plus flucloxacillin, and the planned intervention was amended in the patient group at highest risk of AKI (patients with fractured neck of femur). However, it was also decided that routine measurement of AKI was not required since the cost outweighed what
was considered a remote risk in other patients. Post-implementation, further clinical concerns that there
had been increases in AKI in the lower-risk group of patients receiving gentamicin and flucloxacillin
prompted rigorous investigation to quantify whether the perceived risk was real. However, the
Antimicrobial Management Group (AMG) were expecting the analysis to refute the clinical concerns,
and had not considered what to do if the analysis confirmed that there was a problem. When the
analysis showed that gentamicin plus flucloxacillin was causing at least 10 additional cases of AKI per
month in NHS Tayside, there was then a need for rapid decisions to be made with the Health Board
Director of Pharmacy, Medical Director and Chief Executive about how to respond. Decision-making was
complicated by the difficulties of weighing up any potential gain in lower rates of CDI against the
potential harm of higher rates of AKI, but since the number of people developing AKI was approximately
10 times those who might have avoided CDI as a result of the intervention, the surgical prophylaxis
policy was changed to minimise AKI risk.

Implications for antimicrobial stewardship programmes

Implications for doing and evaluating improvement

Although the focus of this paper is on choice of outcomes, AMTs will also have to ensure that their
evaluation design delivers results that are internally valid in terms of being as resistant to confounding
and bias as possible. Although RCTs remain the ‘gold standard’ for ensuring internal validity, the
Cochrane Effective Practice and Organisation of Care Group also considers trials that allocate non-
randomly, controlled before-and-after studies, and ITS studies as allowing reasonable inference of
causality.38 In the field of AMS though, the choice for those with research funding is more likely to be
between cluster-randomised controlled trials (cRCTs) and ITS designs,39 (ideally controlled ITS where
there is a comparison to a setting without an intervention) with ITS designs the most feasible evaluation
design for clinicians and managers seeking to evaluate a local stewardship intervention.40

Assessing the full value of ASI requires a balanced accounting of the costs, risks and benefits, but
assessment will often be resource constrained meaning that AMTs have to make choices about what to
measure in the face of uncertainty due to the difficulty predicting how a complex, dynamic system will
respond to change.10 41 Before beginning or expanding a stewardship program, the AMT therefore need
to plan their measurement strategy, brainstorming goals and trade-offs, articulate assumptions around
the expected direction of change, and speculate on potential surprises and how they might be revealed.
The aim should be to identify ASI goals and likely trade-offs, and then to determine which should be measured. Indeed, many undesirable outcomes are predictable and should be accounted for from the outset. It should no longer be any surprise to an AMT that stop orders or requirements for prior approval have the potential to interrupt or delay treatment (Table 2), or that performance measurement of time to first antibiotic for patients with CAP may lead to unnecessary antibiotic treatment in patients who do not have pneumonia. Consequently, AMTs considering an ASI using these methods should always consider if measurement of predictable trade-offs is needed, although AMTs still need to carefully identify other likely consequences of their particular ASI in their specific context.

Plan do Study Act (PDSA) cycles are a practical method for identifying consequences. However, the application of the PDSA methodology to healthcare has often resulted in an over-simplified “Do, Do, Do” approach focused on desired goals at the expense of study and reflection before and after implementation, which means that improvement teams often fail to account for unexpected consequences and may not maximise benefit. Two systematic reviews of application of PDSA methods to healthcare state that they can reveal unanticipated consequences of change but neither actually includes a detailed consideration of the full range of consequences in their data synthesis framework. Only one of these reviews included any information about reporting of consequences, finding that only 6 (6.4%) of 94 included studies reported “disconfirming observations” about the intervention.

Furthermore, the Cochrane Review identified that only a small minority of studies explicitly addressed unintended consequences, and it is notable that four (including the only RCT) were from the same institution (the University of Pennsylvania School of Medicine). These studies were informed by previous research from the same hospital, which investigated the unintended effects of computerised physician orders with focus groups, interviews, shadowing and observation of house staff, nurses, information technology leaders, pharmacy leaders and attending physicians. It is likely that this research increased awareness about unintended consequences of the ASI at this hospital. However, considering unexpected consequences should be the rule rather than the exception. An ‘improvement pause’ to take stock at a planned time after implementation will allow teams to consider whether there is enough evidence that surprises have happened to make it worth systematically measuring their impact.
In this regard, ASPs need to learn from experience of performance measurement and systems analysis in other sectors. Most of the consequences identified by the review arise from one of the commonest problems with performance measurement: tunnel vision, where what is measured leads to neglect of unmeasured aspects of performance. However, the Cochrane review also found examples of misrepresentation of microbiological results, misinterpretation of information about appropriateness of prescription of restricted antibiotics, and workarounds to avoid prior approval policies. Four strategies have been recommended to minimise the risk of tunnel vision, misrepresentation and misinterpretation: involving staff at all levels; retaining flexibility in the use of performance indicators; quantifying every important outcome; and keeping the system under constant review. There are examples of studies in the Cochrane review which employed these strategies (Table 4), and they are aligned to the framework in terms of working with stakeholders to identify and measure a balanced set of processes and outcomes, and ensuring post-implementation review to identify and measure significant unpleasant surprises.

Although measurement is central to improvement, qualitative methods have much to offer in the identification of unexpected consequences to maximise benefit. Qualitative methods can be used to help design interventions, exemplified by the Reducing Antibiotic Prescribing in Dentistry (RAPiD) study which used data about community dentists’ perceptions of consequences of using surgical treatment rather than antimicrobials to design a behavioural change intervention. Qualitative methods can also support post-implementation study and reflection. It is to be expected that clinicians will sometimes evade restrictive antimicrobial stewardship policies in ways which are undermine the intervention, but the existence, rationale and form of workarounds can also be evidence that clinicians perceive the restriction to be difficult to safely fit into clinical workflows and that the intervention therefore needs adaptation.

Implications for reporting improvement interventions

The Standards for Quality Improvement Reporting Excellence (SQUIRE 2.0) recommend that reporting of results should include “unintended consequences, such as unexpected benefits, problems, failures or costs associated with the intervention” (standard 13e). However, the detailed explanation and elaboration document does not specifically mention this or provide an example, and the measurement element (standard 10) focuses on process and outcome measures without specifying that these can evaluate both positive and negative consequences. Similarly, although the Outbreak Reports and
Intervention studies Of Nosocomial Infection (ORION) guidelines require the reporting of any harms measured,53 neither the STrengthening the Reporting of OBservational studies in Epidemiology (STROBE)54 or the proposed antimicrobial stewardship extension (STROBE-AMS) reporting standards55 specifically mention unintended consequences in discussion of outcomes. Irrespective of which reporting standard is most appropriate to any individual study, we recommend that reports of ASI (and other improvement interventions) should describe how the initial improvement plan was developed, including whether and how expected undesirable consequences (trade-offs) were accounted for, whether there were post-implementation surprises, and whether they were measured. Analysis should report all measured positive and negative consequences and a balanced interpretation across all measures.

Conclusion

A large proportion of the ASI reported in the literature only assess impact on their targeted process goals – antimicrobial prescribing – with limited examination of other potential goals including microbial and clinical outcomes. Reflecting this and the high certainty that stewardship improves prescribing in hospitals, the Cochrane review concluded that “future research should instead focus on measuring clinical outcomes and assessing other measures of patient safety and different stewardship interventions and explore the barriers and facilitators to implementation” (p31).5 There is however less certainty about the effects of ASI in the community, although it will be equally important to study a balanced set of outcomes in that context.

Achieving a balanced accounting of the impact of an ASI in both hospital and community settings requires careful consideration of expected undesirable effects (potential trade-offs) from the outset, and more consideration of unexpected effects after implementation (both pleasant and unpleasant surprises, although the latter will often be more important). Consensus studies to establish a core outcome set for studies of antimicrobial stewardship interventions would be useful,56,57 but the proposed framework supports the systematic consideration of all consequences of improvement before and after implementation.
Declarations

Consent for publication

Not applicable

Availability of data and material
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Transparency declaration
The authors declare that they have no competing interests.

Funding
This work was supported by The Scottish Improvement Science Collaborating Centre (SISCC), funded by the Scottish Funding Council, Chief Scientist’s Office, NHS Education for Scotland and The Health Foundation with in-kind contributions from participating partner universities and health boards. The review which formed the basis for this paper was supported by the Chief Scientist Office (Grant CZH4861), and the British Society for Antimicrobial Chemotherapy. The views and opinions expressed are those of the authors. The funding bodies had no role in the design of the study, analysis, and interpretation of data and in writing the manuscript.

Acknowledgement
We are grateful to the Health Foundation and the British Society for Antimicrobial Chemotherapy for co-funding a workshop on “The Challenge of Antimicrobial Stewardship in Hospitals: Seeking solutions from improvement science” at the Health Foundation in London on 12th February 2016.

Authors' contributions
PD and CAM carried out the Cochrane review on which this paper draws. MT and BG were responsible for planning and leading the data extraction and analysis for this paper, and all authors contributed to analysis and interpretation. MT led the writing of the manuscript and redrafted in response to team input. BG, PD and CAM participated in critically appraising and revising the intellectual content of the manuscript. All authors read and approved the final manuscript.
References

38. Cochrane Effective Practice and Organisation of Care (EPOC) 2017. What study designs should be included in an EPOC review? EPOC resources for review authors, http://epoc.cochrane.org/resources/epoc-resources-review-authors

http://www.nes.scot.nhs.uk/media/1389875/pdsa_realist_synthesis.pdf

<table>
<thead>
<tr>
<th>Type of outcome measured</th>
<th>Randomised control trials (RCT) No (%) (n=49)</th>
<th>Interrupted time series designs (ITS) No (%) (n=110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobial treatment</td>
<td>46 (93.8)</td>
<td>101 (91.8)</td>
</tr>
<tr>
<td>Surgical antimicrobial prophylaxis</td>
<td>3 (6.1)</td>
<td>9 (8.2)</td>
</tr>
<tr>
<td>Microbial outcomes</td>
<td>5 (10.2)</td>
<td>26 (23.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mortality</td>
<td>28(^a) (57.1)</td>
<td>4(^c) (3.6)</td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td>15(^a) (30.6)</td>
<td>2(^c) (1.8)</td>
</tr>
<tr>
<td>Other outcomes(^d)</td>
<td>23 (46.9)</td>
<td>8 (7.2)</td>
</tr>
</tbody>
</table>

\(^a\) 31 RCTs in total, 16 mortality only, 12 mortality and length of hospital stay, 3 length of stay only

\(^b\) 11 ITS studies included a control group for comparison

\(^c\) 6 ITS studies in total, no study included both mortality and length of hospital stay

\(^d\) Most commonly measured other outcomes included delays in starting antimicrobial treatment, duration of fever, time spent on mechanical ventilation or increased allergic reactions
Table 2: Cohort studies of unintended consequences of restrictive interventions

<table>
<thead>
<tr>
<th>Study</th>
<th>Restrictive intervention</th>
<th>Source of concern</th>
<th>Measures and results</th>
<th>Author conclusions</th>
</tr>
</thead>
</table>
| Connor 200728 | Automatic stop order for vancomycin after 72h treatment.58 | Stop orders may lead to inadvertent discontinuation or interruption of appropriate therapy. | Interruption of vancomycin:
1. Frequency 8%
2. Duration 6-36 hours | “Automatic stop orders are unlikely to pose a substantial risk of denying necessary antibiotic therapy to patients. These data should provide reassurance to Antimicrobial Stewardshipi Programmes (ASPs) that are considering instituting automatic stop orders.” |
| La Rosa 200729 | A prior approval ASP that was active between 8am and 11pm.58 | In a prior qualitative study at the same hospital some house staff stated that they engaged in “stealth dosing” (waiting until after the prior-approval period ended to prescribe restricted antimicrobial drugs).49 | 1. Prescribing of restricted antibiotics was 57% of total 11-12pm vs 50% 10-11pm
2. Restricted therapy continued for >1 day 65% after 11pm vs 89% before 11pm. | “Although ASPs have been shown to be beneficial, our findings reflect a potential limitation of these programs. Further efforts to identify and correct the limitations of existing ASPs are needed to optimise their usefulness.” |
| Linkin 200730 | A prior approval ASP that was active between 8am and 11pm.58 | Data communicated from clinicians were found to contain inaccurate patient information in over 40% of calls made to practitioners in a prior study of this hospital’s ASP.48 | Inappropriate antimicrobial therapy with inaccurate data vs other calls:
1. Any data inaccurate: OR 2.2, CI 1.1-4.6
2. Microbiological data inaccurate: OR 7.5, CI 2.1-27.0 | “Studies are needed to test and extend our findings by evaluating other causes of inappropriate recommendations, downstream clinical outcomes, and the effect of technological interventions.”
“Clinicians and ASP practitioners should confirm critical communicated data before use in prescribing decisions.” |
| Winters 201031 | A prior approval ASP. Stat doses of restricted antimicrobials could be ordered without approval 10pm to 8am but not during the day. Year of introduction of ASP not clear | Prior approval may delay time to first antibiotic dose | Delays when the antimicrobial was restricted vs not restricted:
1. One hour
 a. 8am-10pm: 46% vs 36%
 b. 10pm-8am: 39% vs 36%
2. Two hours or more
 a. 8am-10pm: 24% vs 16%
 b. 10pm-8am: 15% vs 14% | “Delays in antimicrobial administration should be kept to a minimum and avoided altogether in critically ill patients. One way to accomplish this might be to not require approval for the first administration of a stat antibiotic but require approval of subsequent doses.” |

Most common reason for rating a recommendation as inappropriate was that antimicrobial therapy was not indicated.
Table 3: Potential challenges in achieving a balanced accounting of intervention impact: Changing policies for surgical prophylaxis in one Scottish Health Board

In response to high rates of Clostridium difficile infection (CDI), the Antibiotic Management Group in the 855 bedded Ninewells Hospital in NHS Tayside introduced a number of measures intended to reduce the use of antibiotics associated with a high risk of CDI in analysis of local data. Antimicrobial prophylaxis for orthopaedic implant surgery was changed from single dose cefuroxime 1.5g to four doses of flucloxacillin 1g plus single dose gentamicin 4mg/kg. During intervention planning, concerns were raised about the renal risks of the new regimen in patients with fractured neck of femur who are older and have higher prevalence of chronic kidney disease, resulting in the recommendation use of co-amoxiclav (which although still relatively high risk for CDI remained on the formulary for some indications, whereas cefuroxime did not). There was no plan to measure rates of acute kidney injury (AKI) in either group of orthopaedic patients because AKI risks from the chosen single dose prophylaxis in each group were considered remote (i.e. a trade-off was not considered likely).

In 2012, another Scottish hospital reported concerns about increased rates of postoperative AKI in orthopaedic patients from the same change in surgical prophylaxis. In response to this concern, NHS Tayside carried out an interrupted time series analysis with the belief that it would refute the concern. The analysis unexpectedly confirmed increased rates of AKI in orthopaedic surgery but not in other types of surgery (a very unpleasant surprise), with a subsequent reduction in AKI when antimicrobial prophylaxis was changed to co-amoxiclav for all types of orthopaedic surgery.

More detailed analysis has shown that AKI rates did not change after the first change in policy in 2008 for people with fractured neck of femur (who had a switch from cefuroxime to co-amoxiclav; pre-intervention 15.0% vs post-intervention 14.8%) although CDI rates in this group more than halved (3.6% vs 1.7%). For other implant surgery where prophylaxis changed from cefuroxime to flucloxacillin/gentamicin, AKI rates pre- and post-intervention were 6.2% and 10.8%, and CDiff rates 0.8% vs 0.4%) confirming that any possible benefit in terms of reduced CDI in this group was likely to be much smaller than the increased potential harm in terms of AKI.
Table 4: Strategies for minimising the unintended consequences of performance measurement50 and examples of studies from the Cochrane review5

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Examples from the Cochrane review</th>
</tr>
</thead>
</table>
| **Involve staff at all levels** | Forming inter-professional improvement teams with front line staff involving senior and junior doctors, nurses and pharmacists.20,62
Involving management at clinical service and hospital levels.20,62
Involving junior doctors63 and other front line staff19,20 such as pharmacists in interpreting and learning from collected data. |
| **Retain flexibility in the use of performance indicators** | Using process maps to identify performance indicators and tests of change to modify them.20,62
Using run charts to identify outliers and chart review to investigate causes and targets for change.20
Using staff coaching to identify factors contributing to performance lapses and invite suggestions for improvement.19 |
| **Quantify every important outcome** | Two studies identified delay in treatment of other patients as a potential consequence of reducing time to first antibiotic dose for children with sepsis in Emergency Departments.19,20 However, only one went on to test and implement quantitative measures of identified trade-offs (time left without being seen for all patients in the emergency department and time to first dose of beta-agonist for children with asthma).20 |
| **Keep system under constant review** | Specifying two or more intervention periods to allow review of consequences and adaptation of intervention.19,20,62 |
Figure 1 - Types of consequences of antimicrobial stewardship interventions

<table>
<thead>
<tr>
<th>Definitely expected from outset</th>
<th>Definitely unexpected from outset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define goals and trade-offs;</td>
<td>Improvement pause to define surprises;</td>
</tr>
<tr>
<td>Develop initial measurement plan;</td>
<td>Develop new measurement strategy;</td>
</tr>
<tr>
<td>Consider costs</td>
<td>Consider costs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desirable</th>
<th>Undesirable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobial stewardship</td>
<td>Antimicrobial stewardship</td>
</tr>
<tr>
<td>intervention</td>
<td>intervention</td>
</tr>
<tr>
<td>Predefined Goals</td>
<td>intervention</td>
</tr>
<tr>
<td></td>
<td>Predefined Trade-offs</td>
</tr>
</tbody>
</table>

- All four consequences can be measured using either process or outcome measures
- All four consequences can arise in the same area of care targeted by the antimicrobial stewardship intervention or elsewhere in the health and social care system