Photoallergic contact dermatitis in Europe

Kerr, Alastair

Award date: 2012

Awarding institution: University of Dundee

Link to publication
Photoallergic Contact Dermatitis in Europe

Alastair Carswell Kerr

Thesis presented for the degree of Doctor of Medicine

The University of Dundee

March 2012
Contents

Chapter 1. Introduction ... 1
 1.1 Photoallergic contact dermatitis and historical aspects............. 1
 1.1.1 Definition .. 1
 1.1.2 Differential diagnosis .. 2
 1.1.3 Incidence .. 3
 1.1.4 Historical photoallergens ... 4
 1.1.4.1 Antimicrobial agents .. 4
 1.1.4.2 Fragrances .. 5
 1.1.4.3 Veterinary products .. 6
 1.1.4.4 Medications .. 6
 1.1.4.5 Inclusion of historical agents in PPT series 7
 1.1.5 The Persistent Light Reactor ... 7
 1.1.6 Mechanisms of PACD .. 8
 1.1.7 Systemic photoallergy .. 10
 1.2 Photopatch testing ... 12
 1.2.1 Methodology ... 12
 1.2.2 PPT in photosensitive subjects ... 15
 1.2.3 Divergent PPT methodologies ... 15
 1.2.4 Wavelengths for irradiation ... 17
 1.2.5 Dose for irradiation ... 19
 1.2.6 Timing of photopatch application and readings 19
 1.2.7 Recording results .. 20
 1.2.8 Interpretation of results .. 20
 1.2.9 Standardisation .. 22
 1.3 Current Photoallergens .. 23
 1.3.1 Organic UV absorbers .. 23
 1.3.1.1 History of development .. 23
 1.3.1.2 Regulation of sunscreens in Europe 24
Chapter 2. An occupational outbreak of photoallergy to carprofen

2.1 Introduction... 71
2.1.1 Background.. 71
2.1.2 Carprofen... 71
2.1.3 The Patients... 72
2.1.4 Objective.. 73
2.2 Methods... 74
2.2.1 PPT to carprofen.. 74
2.2.2 Rationale for strength of carprofen used... 75
2.2.3 Control subjects... 75
2.3 Results... 77
2.3.1 Initial PPT.. 77
2.3.2 Additional PPT.. 82
2.3.3 Follow-up of patients 1 & 2.. 82
2.3.4 Healthy volunteer controls.. 84
2.3.5 Visit to the factory.. 84
2.4 Discussion.. 86
2.5 References.. 89

Chapter 3. Chlorproethazine: A second photoallergen on the marketplace

3.1 Introduction... 91
3.1.1 Background... 91
3.1.2 Neuriplèg® cream.. 91
3.1.3 Objective.. 94
3.2 Materials and Methods.. 95
Chapter 4. A pilot irritancy study of organic ultraviolet absorbers

4.1 Introduction

4.1.1 Background

4.1.2 Factors influencing IRs

4.1.3 Determining optimum agent concentrations

4.1.2 Objective

4.2 Methods

4.2.1 Participants

4.2.2 PPT and test agents

4.2.3 Study design and statistical methods

4.3 Results

4.3.1 Analysed population

4.3.2 Number of reactions by ICDRG scale

4.3.3 Number of reactions by erythema scale

4.3.4 Agreement between ICDRG and erythema scales

4.3.5 Number of doubtful and weak positive ICDRG graded reactions by site and time

4.3.6 Number of doubtful and weak positive ICDRG graded reactions by UV absorber

4.4 Discussion

4.4.1 Comparison with previous studies

4.4.2 Limitations of the study

4.4.3 IRs and PPT

4.4.4 Determining IRs

4.4.5 The effect of UVA irradiation

4.4.6 Implications for the EMCPPTS

4.5 References

Chapter 5. A survey of the availability of sunscreen absorbers in the UK

5.1 Introduction

5.2 Methods

5.3 Results
Chapter 6. The European multi-centre photopatch test study (EMCPPTS). 160

6.1 Introduction.. 160
 6.1.1 The initiation meeting.. 160
 6.1.2 The centres.. 161
 6.1.3 Objectives.. 164

6.2 Methods.. 165
 6.2.1 Inclusion and exclusion criteria.. 165
 6.2.2 Investigation of subjects with marked UV Sensitivity................................. 166
 6.2.3 Calibration of UVA meters.. 166
 6.2.4 Photopatch test agents.. 166
 6.2.5 PPT methodology... 168
 6.2.5.1 Application of patches.. 168
 6.2.5.2 Timing of readings... 169
 6.2.5.3 Irradiation... 169
 6.2.5.4 Photopatch readings.. 170
 6.2.5.5 Collation of results.. 170
 6.2.5.6 Interpretation of results.. 173

6.3 Results... 174
 6.3.1 PACD reactions... 176
 6.3.1.1 PACD reactions at different timepoints.. 183
 6.3.2 ACD reactions.. 188
 6.3.3 Photoaugmentation of ACD... 192
 6.3.4 Photoinhibition of ACD.. 192
 6.3.5 Irritant reactions (IR)... 192
 6.3.6 Subjects with multiple reaction patterns... 192
 6.3.7 Photopatch application time.. 195
 6.3.8 Gender.. 195
 6.3.9 Age.. 196
 6.3.10 Diagnosis... 198
 6.3.11 Photosensitive subjects.. 199
 6.3.12 Indication for testing.. 200
 6.3.13 Regional patterns of reactions.. 202
 6.3.14 Cross reactions... 207
 6.3.15 Testing to own agents... 212
 6.3.15.1 PACD reactions.. 212
 6.3.15.2 ACD reactions... 213

6.4 Discussion... 214
6.4.1 PACD to test agents... 214
 6.4.1.1 Ketoprofen .. 214
 6.4.1.2 Etofenamate .. 216
 6.4.1.3 Octocrylene .. 218
 6.4.1.4 Benzophenone-3 ... 218
 6.4.1.5 Butyl methoxydibenzoylmethane 219
 6.4.1.6 The cinnamates and 4-methylbenzylidene camphor 219
 6.4.1.7 The salicylates and phenylbenzimidazole sulfonic acid 220
 6.4.1.8 Piroxicam, ibuprofen and diclofenac 220
 6.4.1.9 The “newer” organic UV absorbers 221

6.4.2 ACD reactions .. 222
6.4.3 Photoaugmentation, photoinhibition and irritancy 224
6.4.4 Regional patterns of PACD .. 224
6.4.5 Photopatch application time ... 225
6.4.6 Timing of readings .. 226
6.4.7 Gender .. 226
6.4.8 Age ... 227
6.4.9 Diagnosis .. 227
6.4.10 PPT in photosensitive subjects ... 228
6.4.11 Indications for testing ... 228
6.4.12 Testing additional “own agents” ... 229
6.4.13 Study limitations ... 230

6.5 Conclusions .. 232
6.6 References ... 233

Chapter 7. Conducting the EMCPPTS... 235
7.1 Why perform the EMCPPTS? ... 235
7.2 The EMCPPTS initiation meeting ... 236
7.3 Refining the protocol and proforma .. 238
7.4 Data handling ... 239
7.5 Calibration of UVA meters ... 240
7.6 Delivery of agents .. 241
7.7 Application for ethical approval ... 242
7.8 Application for Research and Development approval 245
7.9 A major protocol violation ... 248
7.10 Funding the EMCPPTS ... 249
7.11 Other issues around conducting the EMCPPTS 250
7.12 References .. 255

Chapter 8. A new European Baseline photopatch test series 256
8.1 A second Amsterdam meeting in February 2012 256
8.2 The agents in a new European Baseline series 257
8.3 The agents in an “additional” European photopatch test series 260
8.4 Agents excluded from either photopatch test series 264
8.5 The future of the European PPT series’ ... 266

Chapter 9. Conclusions and Future Directions .. 267

Appendices ... 275

Appendix 1. The 26 agents currently listed in Annex VII of the European Commission cosmetic ingredients database, with their maximum permitted concentrations and notification of inclusion in the EMCPPTS or otherwise

Appendix 2. The final version of the EMCPPTS protocol

Appendix 3. The final version of the EMCPPTS proforma

Appendix 4. Copies of relevant peer-reviewed publications
List of Figures

<p>| Figure 1.1. | The process of conducting PPT | 13/14 |
| Figure 1.2. | The molecular structure of homosalate and ethylhexyl salicylate | 28 |
| Figure 1.3. | The molecular structure of ethylhexyl methoxycinnamate and isoamyl-(p)-methoxycinnamate | 29 |
| Figure 1.4. | The molecular structure of octocrylene | 30 |
| Figure 1.5. | The molecular structure of phenylbenzimidazole sulfonic acid | 30 |
| Figure 1.6. | The molecular structure of PABA and ethylhexyldimethyl PABA | 32 |
| Figure 1.7. | The molecular structure of benzophenone-3 and benzophenone-4 | 33 |
| Figure 1.8. | The molecular structure of 4-methylbenzylidene camphor | 34 |
| Figure 1.9. | The molecular structure of butyl methoxydibenzoylmethane | 35 |
| Figure 1.10. | The molecular structure of ethylhexyl triazone and diethylhexyl butamido triazone | 37 |
| Figure 1.11. | The molecular structure of polysilicone-15 | 38 |
| Figure 1.12. | The molecular structure of terephthalylidene dicamphor sulfonic acid | 39 |
| Figure 1.13. | The molecular structure of diethylamino hydroxybenzoyl hexyl benzoate | 39 |
| Figure 1.14. | The molecular structure of disodium phenyl dibenzimidazole tetrasulfonate | 40 |
| Figure 1.15. | The molecular structure of drometrizole trisiloxane | 41 |
| Figure 1.16. | The molecular structure of methylene (bis)-benzotriazolyl tetramethylbutylphenol | 42 |
| Figure 1.17. | The molecular structure of (bis)-ethylhexyloxyphenol methoxyphenyl triazine | 43 |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.18</td>
<td>The molecular structure of ketoprofen, benzophenone-3, fenofibrate and tiaprofenic acid</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The molecular structure of carprofen</td>
<td>72</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Photo-exposed site dermatitis in patient 2</td>
<td>73</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Carprofen PPT readings at 72 hours post-irradiation in patient 1</td>
<td>80</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Carprofen PPT readings at 24 hours post-irradiation in patient 2</td>
<td>81</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Chemical leucoderma in patient 1</td>
<td>83</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Carprofen PPT readings at 18 days post-irradiation in volunteer</td>
<td>85</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>A tube of Neuriplège cream</td>
<td>92</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The molecular structure of chlorpromazine and chlorproethazine</td>
<td>93</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>The absorption spectrum of CPE in the dark and post-irradiation with 5 Jcm(^2)</td>
<td>100</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Neuriplège(^0) pilot PPT readings at 24 hours post-irradiation in subject 2</td>
<td>102</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Extended PPT readings at 48 hours post-irradiation in subject 2</td>
<td>105</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Extended PPT readings at 48 hours post-irradiation in subject 1</td>
<td>106</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Extended PPT readings at 48 hours post-irradiation in subject 7</td>
<td>108</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The layout of photopatch application in the irritancy study</td>
<td>122</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Pilot irritancy study positive reactions at 96 hours in a subject</td>
<td>127</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The number of doubtful and weak positive ICDRG graded reactions by site and time</td>
<td>130</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>The number of subjects with ICDRG reactions graded as doubtful (“?+”) or weakly positive (“+”) to the 19 organic UV absorbers and 3 controls at any timepoint</td>
<td>131</td>
</tr>
</tbody>
</table>
Figure 5.1. The number of products sold by each sunscreen manufacturer 146
Figure 5.2. The stated SPFs of sunscreens surveyed 147
Figure 5.3. The number of UV absorbers/reflectors per sunscreen product 147
Figure 5.4. The percentage of products containing each UV absorber/reflecter 149
Figure 5.5. The percentage of products each UV absorber/reflecter was present in, comparing 2010 and 2005 survey data 151
Figure 6.1. Geographical distribution of the 30 EMCPPTS centres 163
Figure 6.2. A collage of postmarks and stamps from EMCPPTS centres 172
Figure 6.3. The number of subjects recruited by each EMCPPTS centre 175
Figure 6.4. The number of PACD reactions to the 24 test agents and petrolatum control 177
Figure 6.5. EMCPPTS PPT readings at 24 hours post-irradiation in Dundee subject 178
Figure 6.6. The PACD reactions recorded to 20 test agents at 24 hours post-irradiation 184
Figure 6.7. The PACD reactions recorded to 12 test agents at 72 hours post-irradiation or later 186
Figure 6.8. The number of ACD reactions to 15 test agents 189
Figure 6.9. Photoaugmentation of ACD reactions to 7 test agents 193
Figure 6.10. Photoinhibition of ACD reactions to 11 test agents 194
Figure 6.11. The age distribution of subjects in the EMCPPTS 196
Figure 6.12. The percentage of subjects with at least one PACD reaction and those with at least one ACD reaction, by each age group 197
Figure 6.13. The centre locations of PACD reactions to ketoprofen 203
Figure 6.14. The centre locations of PACD reactions to etofenamate 203
Figure 6.15. The centre locations of PACD reactions to octocrylene 204
Figure 6.16. The centre locations of PACD reactions to benzophenone-3 204
Figure 6.17. The centre locations of PACD reactions to butyl methoxydibenzoylmethane

Figure 6.18. The centre locations of ACD reactions to methylene bis-benzotriazolyl tetramethylbutylphenol

Figure 6.19. Rates of PACD to ketoprofen, etofenamate, octocrylene and benzophenone-3 by country

Figure 6.20. Concomitant PACD reactions to ketoprofen and octocrylene.

Figure 6.21. EMCPPTS reaction to etofenamate at 24 hours post-irradiation in Dundee subject

Figure 7.1. The timeline of significant events and delays during the EMCPPTS
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1.</td>
<td>Different PPT methodologies reported between the years 1982 and 2007</td>
<td>16</td>
</tr>
<tr>
<td>Table 1.2.</td>
<td>Synonyms of the 19 organic UV absorbers used in the EMCPPTS</td>
<td>26</td>
</tr>
<tr>
<td>Table 1.3.</td>
<td>Reports of PACD and ACD to organic UV absorbers</td>
<td>45</td>
</tr>
<tr>
<td>Table 1.4.</td>
<td>Reports of PACD and ACD to topical NSAIDs</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.1.</td>
<td>The results of PPT to carprofen in patients 1 & 2</td>
<td>78</td>
</tr>
<tr>
<td>Table 3.1.</td>
<td>Results of the in-vitro neutral red uptake phototoxicity assay</td>
<td>101</td>
</tr>
<tr>
<td>Table 3.2.</td>
<td>Extended study results of PPT to Neuriplège® cream “as is” and 10% CPE in petrolatum</td>
<td>104</td>
</tr>
<tr>
<td>Table 3.3.</td>
<td>Extended study results for PPT to 0.1% CPE in pet, 0.1% CPE in water and 0.5% CPE in water from the irradiated sets only</td>
<td>110</td>
</tr>
<tr>
<td>Table 4.1.</td>
<td>The 19 organic UV absorbers used in the pilot irritancy study</td>
<td>120</td>
</tr>
<tr>
<td>Table 4.2.</td>
<td>The ICDRG scale for grading photopatch test reactions</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.3.</td>
<td>The erythema scale for grading photopatch test reactions</td>
<td>124</td>
</tr>
<tr>
<td>Table 4.4.</td>
<td>Baseline demographic data of recruited and analysed pilot irritancy study subjects</td>
<td>126</td>
</tr>
<tr>
<td>Table 5.1.</td>
<td>The number and percentage of survey products each UV absorber/reflector was present in, with protective wavelengths</td>
<td>148</td>
</tr>
<tr>
<td>Table 5.2.</td>
<td>The percentage of products each UV absorber/reflector was present in, with protective wavelengths, comparing 2010 and 2005 survey data</td>
<td>150</td>
</tr>
<tr>
<td>Table 5.3.</td>
<td>The number and percentage of lip products each UV absorber/reflector was present in, with protective wavelengths</td>
<td>152</td>
</tr>
<tr>
<td>Table 6.1.</td>
<td>Recruiting countries, centres and PIs of the EMCPPTS</td>
<td>162</td>
</tr>
</tbody>
</table>
Table 6.2. The EMCPPTS test agents, with concentrations used 167
Table 6.3. Recruiting centres with number and percentage of PACD reactions 180
Table 6.4. Agents with ICDRG grade of PACD reactions in the irradiated set 181
Table 6.5. Agents with COADEX assignations of PACD reactions 182
Table 6.6. Agents with ICDRG grade of PACD reactions in the irradiated set at 24 hours post-irradiation 185
Table 6.7. Agents with ICDRG grade of PACD reactions in the irradiated set at 72 hours post-irradiation or later 187
Table 6.8. Agents with ICDRG grade of ACD reactions 190
Table 6.9. Agents with COADEX assignations of ACD reactions 191
Table 6.10. The number and percentage of subjects with at least one PACD reaction and those with at least one ACD reaction, in each age group 197
Table 6.11. The number and percentage of subjects with at least one PACD reaction and those with at least one ACD reaction in each diagnostic category 198
Table 6.12. The diagnoses of subjects in whom a dose <5 Jcm\(^{-2}\) was used for irradiation 199
Table 6.13. The number and percentage of subjects with at least one PACD reaction and those with at least one ACD reaction in each indication for recruitment category 200
Table 6.14. Associations between PACD reactions to ketoprofen, octocrylene and benzophenone-3 207
Table 6.15. COADEX assignations in the 34 subjects who had concomitant PACD reactions to octocrylene and ketoprofen 209
Table 6.16. COADEX assignations in the 22 subjects who had concomitant PACD reactions to benzophenone-3 and ketoprofen 209
Table 6.17. COADEX assignations in the 18 subjects who had concomitant PACD reactions to benzophenone-3 and octocrylene 209
Table 6.18. COADEX assignations in the 15 subjects who had concomitant PACD reactions to benzophenone-3, octocrylene and ketoprofen

Table 6.19. Associations between PACD reactions to the five NSAID agents

Table 6.20. COADEX assignations in the 29 subjects who had concomitant PACD reactions to ketoprofen and etofenamate

Table 6.21. PACD reactions to additional agents, with ICDRG grading and COADEX relevance

Table 6.22. ACD reactions to additional agents, with ICDRG grading and COADEX relevance

Table 8.1. The composition of a new European Baseline photopatch test series

Table 8.2. The composition of an “additional” European photopatch test series

Table 8.3. Agents excluded from the photopatch test series’
List of Abbreviations

ACD allergic contact dermatitis
CAD chronic actinic dermatitis
CPE chlorproethazine
CPZ chlorpromazine
EMCPPTS European multi-centre photopatch test study
HIC Health Informatics Centre
ICDRG International Contact Dermatitis Research Group
INCI International Nomenclature of Cosmetic Ingredients
IR irritant reaction
MED minimal erythemal dose
NSAIDs nonsteroidal anti-inflammatory drugs
PABA para-aminobenzoic acid
PACD photoallergic contact dermatitis
PI Principal Investigator
PLE polymorphic light eruption
PPT photopatch testing
SPF sun protection factor
TCSA tetrachlorosalicylanilide
UK United Kingdom
USA United States of America
UV ultraviolet
WSP white soft paraffin
Acknowledgements

Professor James Ferguson for creating the opportunity for me to undertake this work in such a productive and renowned department. Also for his inspirational guidance and dynamism over the years as my supervisor.

Dr Sally Ibbotson for her continual support, appraisal and encouragement over the years as my co-supervisor.

Dr Robert Dawe for his invaluable advice on statistical matters and critical appraisal of manuscripts.

Mrs Lynn Fullerton, Mrs Andrea Cochrane and their team of photobiology technicians for conducting the photopatch testing and providing photographic material.

All the Principal Investigators and their supporting staff across the 30 centres which recruited patients for the EMCPPTS.

Dr Julie Woods for her laboratory work in the study of chlorproethazine and advice regarding all non-clinical issues.

All the staff members in the Photobiology Unit who volunteered as healthy controls in the photopatch testing investigations of carprofen and chlorproethazine.

Dr Marie-Claude Marguery for donating the Neuriplège® cream and bringing to our attention its sunlight-associated adverse cutaneous effects.

Alison Bell and Chris Hall in the Health Informatics Centre at the University of Dundee, for the EMCPPTS proforma data entry and extraction.

Finally, all the patients and healthy volunteers who consented to participate in all the photopatch testing studies, making these possible.
Declaration

I declare that I am the author of this thesis and have, unless otherwise acknowledged, performed the major part of the work presented. In cases where studies have been undertaken in collaboration, my contribution is described on the following page. I declare that all references cited herein have been consulted by me and that the work has not been previously accepted for a higher degree.

Alastair Carswell Kerr

I certify that Alastair Carswell Kerr has carried out research under my supervision and has fulfilled the conditions of the relevant Ordinance and Regulations for the completion of an MD degree

Professor James Ferguson
Contribution to collaborative studies

I was the primary author of all the studies included in this thesis and wrote the thesis as a whole. A list of relevant publications is provided on page xx, which contains the names of co-authors of collaborative studies. All studies were co-conceived by Professor J. Ferguson and myself. Additionally, for all studies which employed photopatch testing in the Photobiology Unit in Dundee, this was performed by Mrs Lynn Fullerton and her team of skilled technicians. Otherwise, my role in the studies presented in each Chapter, and the contribution of others, is given below.

Chapter 1. Introduction.

My contribution: sole author.

Chapter 2. An occupational outbreak of photoallergy to carprofen.

My contribution: Primary author of the study. Based on parts of an investigative study performed by, and report written by, Dr R.S. Dawe.

Chapter 3. Chlorproethazine: A second photoallergen on the marketplace.

My contribution: Primary author of the study. Laboratory work performed by and co-authored by, Dr J Woods. Investigative idea initially suggested by Dr M-C Marguery.

Chapter 4. A pilot irritancy study of organic ultraviolet absorbers.

My contribution: Primary author of the study. Statistical calculations conducted by Dr R.S.Dawe. Study conducted in collaboration with L’Oreal Research and Development Ltd and Chiltern Early Phase Ltd.
Chapter 5. A survey of the availability of sunscreen absorbers in the UK.

My contribution: Study conducted and authored solely by myself.

Chapter 6. The European multi-centre photopatch test study (EMCPPTS).

My contribution: Primary author of the study. I also undertook all the operative requirements which enabled the project to proceed including protocol refinement, application to regulatory bodies and continual liaison with all collaborative investigators and the Health Informatics Centre. Data input and extraction performed by the Health Informatics Centre team, with data analysis performed by myself. Calibration of UV meters performed by Mrs L Fullerton and Prof H Moseley.

Chapter 7. Conducting the EMCPPTS.

My contribution: sole author.

Chapter 8. A new European Baseline photopatch test series

My contribution: sole author.

Chapter 9. Conclusions and Future Directions.

My contribution: sole author.
List of relevant publications

Relevant peer-reviewed publications are bound in Appendix 4 at the end of the thesis. A list of these publications is given below.

Abstract

Photoallergic contact dermatitis (PACD) is a clinical problem that has often been poorly understood and neglected by dermatologists over recent years. This can be partly attributed to its investigation by photopatch testing (PPT) falling between the expertise of photobiologists and contact dermatitis clinicians. One result of this situation was that no European Baseline PPT series had been agreed on. To redress this, the European multi centre photopatch test study (EMCPPTS) was conceived to provide up to date information on which photoallergens are of greatest clinical relevance. Its conduct and results form the core research project of this thesis.

To enable the EMCPPTS to proceed and its results to be viewed in a wider context, the other Chapters of this thesis explore important related aspects of PACD and PPT in Europe. The introduction examines the nature of PACD and PPT and reviews current photoallergens. Then, the investigation of the two photoallergens carprofen and chlorproethazine by PPT is recounted. These studies highlight deficiencies within the current European regulatory system for preventing photoallergens from reaching the marketplace, as well as providing templates for the investigation of new photoallergens in the human environment.

This is followed by a pilot PPT study which provides new information on the optimum non-irritating concentration of the 19 ultraviolet sunscreen absorbers to be used in the EMCPPTS. The issue of attempting to determine the photoallergenic potential of the EMCPPTS agents with respect to exposure patterns is addressed by conducting a sunscreen survey in the UK. The EMCPPTS itself is then detailed, as well as the difficulties that can be encountered when conducting a large clinical study of this nature. The results from the EMCPPTS and other presented studies were shown to be of importance in deciding upon a new European Baseline PPT
series. The process involved in deciding this series, as well as its content are described before overall conclusions and possible future studies in the domain of PACD and PPT are discussed.