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Kinetochores are specialised multi-protein complexes that play a crucial role in maintaining 

genome stability 1. They bridge attachments between chromosomes and microtubules during 

mitosis and they activate the spindle assembly checkpoint (SAC) to arrest division until all 

chromosomes are attached 2. Kinetochores are able to efficiently integrate these two processes 

because they can rapidly respond to changes in microtubule occupancy by switching localised SAC 

signalling ON or OFF 2-4. We show that this responsiveness arises because the SAC primes 

kinetochore phosphatases to induce negative feedback and silence its own signal. Active SAC 

signalling recruits PP2A-B56 to kinetochores where it antagonises Aurora B to promote PP1 

recruitment. PP1 in turn silences the SAC and delocalises PP2A-B56. Preventing or bypassing key 

regulatory steps demonstrates that this spatiotemporal control of phosphatase feedback underlies 

rapid signal switching at the kinetochore by; 1) allowing the SAC to quickly transition to the ON 

state in the absence of antagonising phosphatase activity, and 2) ensuring phosphatases are then 

primed to rapidly switch the SAC signal OFF when kinetochore kinase activities are diminished by 

force-producing microtubule attachments. 

 

The spindle assembly checkpoint (SAC) is globally activated at mitotic entry and only extinguished 

when all kinetochores have established force-producing microtubule attachments 2, 3. At each 

individual kinetochore however, the SAC responses are much more dynamic. Here, localised SAC 

signalling switches rapidly between the ON and OFF states depending on microtubule occupancy 2-6. 

Exactly how kinetochores manage to achieve this rapid signal switching remains unknown. To 

address this we initially focussed on characterising the kinetochore phosphatases responsible for 

SAC silencing in mammalian cells. We performed a targeted screen with siRNAs to 222 individual 

phosphatase subunits to identify those that regulate mitotic exit in mammalian cells. 48 hours after 

siRNA transfection, cells were synchronised in mitosis using the microtubule poison nocodazole, 

after which mitotic exit was forced by the small molecule MPS1 inhibitor reversine 7 for 1 hour. The 

fraction of cells remaining in mitosis was quantified and eight of the top 14 siRNAs that delayed 
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The PP1 binding site in KNL1 lies in close proximity to the MELT-like motifs that are phosphorylated 

by MPS1 21, 25-27, contributing to kinetochore recruitment of essential SAC effectors such as MAD1, 

MAD2, BUB1 and BUBR1 22, 24, 28. Expression of KNL12SD or KNL14A to reduce kinetochore PP1, 

elevated basal MELT motif phosphorylation and limited MELT dephosphorylation following MPS1 

inhibition in nocodazole (Fig.3a, b and Supplementary Fig.4d). This correlated with an increase in 

kinetochore BUB1 and a corresponding increase in MAD1 (Supplementary Fig.4e-j). KNL12SD or 

KNL14A similarly prevented MELT dephosphorylation and BUB1 loss at metaphase as well 

(Supplementary Fig.4k, l). Conversely, expression of KNL12SA to enhance kinetochore PP1 (Fig.2j, k), 

decreased basal MELT phosphorylation and inhibited kinetochore association of BUB1 (Fig.3a, b and 

Supplementary Fig.4g, h). Thus, in agreement with other studies 24, 26, KNL1-bound PP1 antagonises 

MPS1 signalling at kinetochores. It is important to note that other pools of PP1 clearly exist at 

kinetochores (Fig.2j, k), as observed previously by others 29, but these cannot potently regulate SAC 

silencing given the strong SAC silencing defect in KNL12SD and KNL14A cells (Fig.2l).  

 

Since MELT phosphorylation is crucial for BUBR1 kinetochore binding 22, 24 our data suggested that 

PP1 may remove BUBR1-associated PP2A-B56 from kinetochores. In support of this, expression of 

KNL12SD or KNL14A elevated kinetochore PP2A-B56, while KNL12SA decreased it (Fig.3c, d). 

Interestingly, Aurora B inhibition or KNL12SA expression inhibited phosphorylation of Ser670 within 

the KARD of BUBR1, which is required for efficient binding of PP2A-B56 to BUBR1 17, 18, while KNL12SD 

and KNL4A expression elevated KARD phosphorylation (Fig.3e-h). The various KNL1 mutants did not 

significantly affect kinetochore activity of the relevant kinases (Supplementary Fig.4m), thus we 

conclude that kinetochore-PP1 promotes removal of kinetochore-PP2A-B56 by dephosphorylating 

the MELT and KARD motifs. Importantly, KNL12SA expression was also able to inhibit the rise in MELT 

and KARD phosphorylation seen following PP2A-B56 depletion (Fig.3i, j), confirming that PP2A-B56 

regulates SAC silencing and its own recruitment principally via PP1. Although incomplete KNL1 

knockdown/replacement (Supplementary Fig.2c) is likely to contribute to the modest rise in 
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MELT/KARD phosphorylation in KNL12SA cells (Fig.3j), we cannot formally exclude a small additional 

effect of PP2A-B56 on the MELT/KARD motifs directly, as suggested recently by others 30. We 

consider this unlikely, however, since high kinetochore B56 in cells expressing KNL14A or KNL12SD 

(Fig.3c, d) could not prevent an increase in MELT/KARD phosphorylation in those cells (Fig.3a, b, g, h) 

and could not remove BUB1 from kinetochores following 30 min reversine treatment 

(Supplementary Fig.4f) . These data do pose an interesting biological conundrum however; namely 

how do PP1 and PP2A-B56 achieve any level of specificity when they display little (if any) substrate 

preference in vitro 31, 32, yet they localise to an almost identical molecular space in vivo and thus their 

respective substrates are in very close proximity? We hypothesise that dephosphorylation of their 

own recruitment motifs is restricted because 1) PP1 only binds KNL1 when the SSILK/RVSF motifs are 

already dephosphorylated, and 2) the kinetochore-localisation of PP2A-B56 requires interaction 

between p-MELT/BUB3 23 and p-KARD/PP2A 17, 18, thus potentially masking these motifs from 

dephosphorylation when PP2A-B56 is co-localised. A requirement for PP1 docking to the KNL1 N-

terminus to allow dephosphorylation of the adjacent MELT/KARD motifs may also help to explain 

how other pools of kinetochore PP1 can exist that do not regulate SAC silencing (see KNL12SD and 

KNL14A cells in Fig.2j-l), but do control other process such as kinetochore-microtubule attachment 29.  

 

Collectively, these data demonstrate spatial negative feedback between two kinetochore 

phosphatases; PP2A-B56 promotes the recruitment of PP1 to kinetochores, which subsequently 

antagonises the localisation of PP2A-B56. MPS1-dependent MELT phosphorylation thus both 

initiates the SAC signal and at the same time primes the silencing of that signal by recruiting PP2A-

B56. We hypothesised that such a system could impart responsiveness to the SAC (i.e. the ability to 

switch rapidly between the ON and OFF states): When the SAC is OFF Aurora B is predicted to 

phosphorylate the SSILK/RVSF motifs unopposed, thereby repressing PP1 kinetochore binding and 

allowing efficient MPS1-dependent MELT phosphorylation. Conversely, when the SAC is ON PP2A-

B56 is predicted to compete with Aurora B to enhance PP1 kinetochore binding, thus ensuring that 
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initiates the SAC to restrict this degradation until chromosome alignment is complete 36-39. The result 

is an active APC/C that can rapidly degrade Cyclin B as soon as the brake on negative feedback is 

released at metaphase. It will be important to determine whether such network topology is 

repeated in other signalling processes that must be similarly responsive. 
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Two-tailed, unpaired t-tests were performed to compare experimental groups in 

immunofluorescence quantifications (using Prism 6 software). The comparisons most pertinent for 

the conclusions are shown in the figures and legends, and a more complete set of comparisons is 

given in the source data file. 
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