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Abstract 
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Background: Hyperkalemia is a common comorbidity in patients with heart failure with reduced 

ejection fraction (HFrEF). Whether it affects the use of RAAS-inhibitors and thereby negatively 

impacts outcome is unknown. Therefore, we investigated the association between potassium 

and uptitration of ACE-inhibitor/ARB and its association with outcome.  

Methods and results: Out of 2,516 patients from the BIOSTAT-CHF study, potassium levels were 

available in 1,666 patients with HFrEF. These patients were sub-optimally treated with ACEi/ARB 

or beta-blockers and were anticipated and encouraged to be uptitrated. Potassium levels were 

available at inclusion and 9 months. Outcome was a composite of all-cause mortality and HF-

hospitalization at 2 years.  

Patients were 67±12 years old and 77% was male. At baseline, median serum potassium 

was 4.2(3.9–4.6) mEq/L. After 9 months, 401 (24.1%) patients were successfully uptitrated for 

ACEi/ARB. During this period, mean serum potassium increased by 0.16±0.66 mEq/L (p<0.001). 

Baseline potassium was an independent predictor for lower obtained dosages of ACEi/ARB (OR 

0.70; 95%CI 0.51–0.98). An increase in potassium was not associated with adverse outcomes (HR 

1.15; 95%CI 0.86–1.53). No interaction was found between baseline potassium, potassium 

increase during uptitration or potassium at 9 months and an increase of dose of ACEi/ARB for 

outcome (pinteraction for all >0.5). 

Conclusion: Higher potassium levels are an independent predictor of enduring lower dosages of 

ACEi/ARB. Higher potassium levels do not attenuate the beneficial effects of uptitration 

ACEi/ARB. 
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List of abbreviations: 

ACEi – Angiotensin-Converting Enzyme-Inhibitors 

ARBs – Angiotensin Receptor Blockers 

BNP – Brain Natriuretic Peptide 

COPD – Chronic Obstructive Pulmonary Disease 

CRP – C-Reactive Protein 

eGFR – estimated Glomerular Filtration Rate 

HF – Heart Failure 

HFrEF – Heart Failure with reduced Ejection Fraction 

LVEF – Left Ventricular Ejection Fraction 

MRA – Mineralocorticoid Receptor Antagonist 

NT-proBNP – N-terminal prohormone of Brain Natriuretic Peptide 

RAASi – Renin Angiotensin Aldosterone System-Inhibitors  



Introduction 

Heart failure (HF) is associated with high mortality and morbidity { ADDIN RW.CITE{{102 

Maggioni,A.P. 2013}}}. Current treatment possibilities for HF patients with a reduced ejection 

fraction (HFrEF) include ACE-inhibition (ACEi), angiotensin-receptor blockers (ARB), 

mineralocorticoid receptor antagonists (MRA) and beta-blockers. These treatments have shown 

to improve outcomes for patients with HFrEF { ADDIN RW.CITE{{101 Garg,R. 1995; 100 

Hjalmarson,A. 2000; 93 Zannad,F. 2011; 137 Owan,T.E. 2006}}}. Unfortunately, administration of 

recommended doses of guideline directed medication is not often achieved {ADDIN RW.CITE{{4 

Maggioni,A.P. 2013; 24 Mosterd,A. 2007}}}.  

 In the general population, hyperkalemia is common and may negatively impact 

administration of adequate dosages of ACEi and ARB {ADDIN RW.CITE{{82 Epstein,M. 2015}}}. 

Unfortunately, knowledge on this association in patients with HF is absent. Additionally, 

hyperkalemia is associated with worse outcomes and potassium levels are therefore closely 

monitored during increase of the doses of inhibitors of the RAAS system in clinical trials {ADDIN 

RW.CITE{{109 Vardeny,O. 2014; 110 Luo,J. 2016; 105 Poggio,R. 2010; 143 Cooper,L.B. 2015}}}. 

Both hyperkalemia as well as the effect of hyperkalemia on tolerating higher doses of RAAS 

inhibitors can severely impede outcomes and interfere with their survival benefit { ADDIN 

RW.CITE{{82 Epstein,M. 2015; 69 Egiziano,G. 2012}}}. 

 Currently, no data is available on the independent association of potassium levels (or 

potassium change during treatment) and the achieved dose of ACEi/ARB. Additionally, limited 

data is available on the interaction between ACEi/ARB and the association between hyperkalemia 

and clinical outcome in patients with HFrEF {ADDIN RW.CITE{{155 Tromp,J. 2017}}}. Therefore, 



we studied the association between serum potassium levels and successful uptitration of 

ACEi/ARB to HF guideline-directed dosages in the BIOSTAT-CHF cohort, which was specially 

designed to study effects of uptitration {ADDIN RW.CITE{{154 Voors,A.A. 2016}}}. Furthermore, 

we studied the interaction between guideline-directed treatment and hyperkalemia on 

outcomes. 

Methods 

Study cohort 

For the present study, data from the BIOlogy Study to TAilored Treatment in Chronic Heart Failure 

(BIOSTAT-CHF), an international, multicenter, prospective, observational study was investigated. 

Patients received ≤50% of target dosages of ACEi/ARBs and/or beta-blockers at time of inclusion 

and treating physicians anticipated and encouraged an increase of fraction target dose of 

ACEi/ARBs and/or beta-blockers to guideline directed levels. Patients were included as in- or 

outpatients. Potassium was measured at time of inclusion. The first 3 months after inclusion were 

considered as an active uptitration period, followed by a stabilization period of 6 months. 

Detailed description of the rationale, design, and implementation of the BIOSTAT-CHF study has 

been reported elsewhere {ADDIN RW.CITE{{154 Voors,A.A. 2016}}}. 

 For the current study, only HF patients with HFrEF (LVEF<40%) with available potassium 

levels at baseline were included. Out of 2,516 patients from the original study cohort, 697 

patients with a preserved or unknown ejection fraction were excluded. Of the remaining 1,819 

patients, serum potassium levels were measured in 1,666 patients. Potassium measurements at 



9 months were available in 918 patients (Supplementary figure 1).  

 

Definitions and study endpoints 

Potassium levels were classified according to clinical reference ranges, i.e. hypokalemia; <3.5 

mEq/L, normokalemia; 3.5 - 5.0 mEq/L, and hyperkalemia; >5.0 mEq/L { ADDIN RW.CITE{{8 

Macdonald,J.E. 2004}}}. We defined successful uptitration as an increase of beta-blockers and 

ACEi/ARB if patients obtained over 50% of the target dose at 9 months of follow-up and the 

administered dose at 9 months was greater than the dose administered at baseline according to 

the ESC-guidelines { ADDIN RW.CITE{{99 Ponikowski,P. 2016}} } . Patients who died between 

baseline and 9 months (N=203) were excluded from this analysis (supplementary figure 1). 

Patients receiving equal guideline recommended target doses (i.e. >= 100%) at baseline and 9 

months were classified as successfully uptitrated patients. Patients receiving ≤ 50% of the 

guideline-recommended dose were labeled not successfully uptitrated (Supplementary figure 2). 

In sensitivity analysis, we did not include baseline doses and only tested for administered doses 

of ACEi/ARBs and beta-blocker at three months {ADDIN RW.CITE{{139 Ouwerkerk,W. 2017}}}. 

The primary endpoint for outcome analyses of this study was a combined endpoint of all-cause 

mortality and HF related hospitalizations at 2 years. HF related hospitalizations were determined 

by the enrolling investigator.  

 

Statistical analysis 

For baseline characteristics, study results for continuous variables are presented as the mean (± 



standard deviation), medians (+ interquartile ranges) or numbers with percentages where 

appropriate. Baseline characteristics were stratified by serum potassium levels in hypokalemia 

(<3.5 mEq/L), normokalemia (3.5-5.0 mEq/L), and hyperkalemia (>5.0 mEq/L), respectively. An 

increase or decrease in potassium between baseline and 9 months was determined as more than 

a 0.1 mEq/L difference between baseline and 9 months. Intergroup differences between more 

than two groups were tested using the one-way analysis of variance (ANOVA); Kruskal-Wallis test 

or chi2-test where appropriate. Q-Q plots and histograms were used to visually test all variables 

for normality. Normality was tested using the Kolmogorov-Smirnov test, when necessary. For 

further analyses, skewed variables were log-transformed to achieve normal distribution. 

 Relationship of potassium levels with successful uptitration between baseline and 9 

months was studied using logistic regression. In a stepwise manner, this was corrected for 

clinically relevant confounders of potassium, which age, sex, eGFR, systolic blood pressure, 

diabetes mellitus, and ACEi/ARB usage at 9 months (in case of beta-blocker uptitration) or beta-

blocker usage at 9 months (in case of ACEi/ARB uptitration). Additionally, we corrected for 

uptitration models that best predicted successful uptitration rates in this cohort for beta-blockers 

and ACEi/ARB {ADDIN RW.CITE{{139 Ouwerkerk,W. 2017}}}. For beta-blockers, these include age, 

country of inclusion, diastolic blood pressure, heart rate, and signs of pulmonary congestion. For 

ACEi/ARB these include sex, BMI, eGFR, alkaline phosphatase, and country of inclusion, as 

published previously {ADDIN RW.CITE{{139 Ouwerkerk,W. 2017}}} . The association between 

potassium and outcome is depicted using Kaplan-Meier curves for potassium levels at baseline, 

potassium levels at 9 months and a change of potassium levels between baseline and 9 months. 

A difference in survival was tested using the log-rank test. To investigate the association with 



survival of potassium in multivariable analyses, Cox regression analyses were performed 

correcting for clinically relevant variables, these include age, sex, eGFR, hypertension, diabetes 

mellitus, and ACEi/ARB or beta-blocker use at 9 months. Interaction analyses were performed to 

investigate the interaction between successful uptitration and its association with outcome of 

potassium levels (as a continuous variable).  

 A two-sided p-value <0.05 was considered statistically significant and 95% CI were 

presented for all odds ratios. For statistical analyses, Stata MP13 (StataCorp. 2013. Stata 

Statistical Software: Release 13. College Station, TX: StataCorp LP.) was used.  

Results 

Baseline characteristics 

Out of a total of 1,666 patients, 114 patients (6.9%) had potassium levels below 3.5 mEq/L, 1,418 

patients (85.1%) had normal potassium levels (i.e. 3.5 to 5.0 mEq/L), and 134 patients (8.0%) had 

hyperkalemia (above 5.0 mEq/L) at baseline (table 1). Only 34 (2%) patients had potassium levels 

above 5.5 mEq/L. In the overall population, mean age (± SD) was 67 ± 12 years of which 77% were 

male. Patients with hyperkalemia were more often men, had lower heart rates and less signs of 

pulmonary congestion and peripheral edema. Estimated GFR was significantly lower in patients 

with hyperkalemia and patients with high serum potassium were more often on MRA treatment. 

 A difference in prevalence of hyper- and hypokalemia across Europe is depicted in figure 

1A and 1B. Hyperkalemia was particularly prevalent in Slovenia (19%), Poland (13%), Serbia (12%) 

and Greece (11%) (figure 1A). After correction for potential confounders (i.e. renal function, 

history of diabetes mellitus, history of hypertension, fraction target dose of ACEi/ARB, beta-



blocker, and MRA and uptake of diuretics (yes/no) at baseline), rates of hyperkalemia were 

highest in Slovenia, followed by Poland, Serbia, and Greece (P for all<0.05). Highest rates of 

hypokalemia were found in the Netherlands (P<0.05) (supplementary table 1A and 1B). 

Differences in listed characteristics between European countries are displayed in supplementary 

table 2.  

  During 9 months’ follow-up potassium levels increased (0.16 ± 0.66 mEq/L, p<0.001) and 

523 (57%) of patients experienced an increase of potassium levels between baseline and 9 

months, while 319 (35%) of patients had a decrease in potassium. At 9 months, 21 patients (2.3%) 

had potassium levels below 3.5 mEq/L, 786 patients (85.4%) had normal potassium levels (i.e. 3.5 

to 5.0 mEq/L), and 113 patients (12.3%) were patients with hyperkalemia (above 5.0 mEq/L). Of 

patients with hypokalemia at baseline, 53.5% also had available data at 9 months. In case of 

normokalemia and hyperkalemia at baseline, this was 55.6% en 50.7% at 9 months respectively 

(supplementary table 3).  

 

Association of potassium and uptitration of guideline directed medication 

After 9 months, uptitration of ACEi/ARB was successful in a total of 401 patients (24.1%). For 

beta-blockers, successful uptitration was seen in 278 (16.7%) patients (supplementary figure 2). 

Results of logistic regression analyses are shown in figure 2 and supplementary figure 3. Higher 

serum potassium at baseline was associated with lower odds of successful uptitration at 9 

months in univariable analyses (OR 0.77; 95%CI 0.62–0.95; p=0.016; per increment of 1.0 mEq/L 

potassium). Also after correcting for clinically relevant confounders (i.e. age, sex, eGFR, systolic 

blood pressure, diabetes mellitus, and beta-blocker usage at 9 months), higher potassium levels 



at baseline showed a significant association with less successful uptitration (OR 0.80; 95%CI 0.64–

0.99; p=0.043). When correcting for the previously published uptitration model, higher 

potassium levels at baseline were still associated with lower odds of successful uptitration (OR 

0.70; 95%CI 0.51–0.98; p=0.035). After excluding patients already on ACEi/ARB target dose, 

potassium remained predictive for successful uptitration when correcting for both the uptitration 

model (OR 0.52; 95%CI 0.35–0.78; p=0.002) and model 3 (OR 0.66; 95%CI 0.50-0.87; p= 0.003). 

Further adjustment by MRA uptake at target dose (yes/no) did not change the association 

between baseline potassium levels and ACEi/ARB uptitration when correcting for the uptitration 

model (OR 0.54 95%CI 0.35–0.81; p=0.003) as well as for model 3 (OR 0.68; 95%CI 0.51-0.89; p= 

0.006). No interaction was observed between potassium and renal function for successful 

uptitration (Pinteraction 0.988) suggesting that the association between hyperkalemia and 

uptitration is similar across the renal function spectrum. In sensitivity analysis, baseline serum 

potassium was univariable associated with uptitration success of ACEi/ARB (OR 0.81; 95%CI 0.67–

0.98; p=0.031). However, this was attenuated after multivariable adjustment (p=0.086). As 

expected, no association was found between baseline potassium levels and uptitration of beta-

blockers. Higher serum potassium levels at 9 months were not associated with successful 

uptitration of ACEi/ARB or beta-blockers (supplementary figure 3). A potassium increase over 9 

months was associated with successful uptitration of ACEi/ARB (OR 1.37; 95%CI 1.09-1.72; p= 

0.008), but not for beta-blockers.  

  

Potassium and outcome 

Results of survival analyses are presented in figure 3a/b, supplementary figure 4, and Table 2. 



Overall, 627 (37.6%) patients reached the combined endpoint at 2 years. Hypo- and hyperkalemia 

at baseline or potassium analyzed on a continuous scale were not associated with worse 

outcomes (Table 2). Similarly, a change between potassium levels at baseline and 9 months or 

potassium levels at 9 months were not significantly related to outcome. When used as a 

continuous variable, potassium change during 9 months was not associated with outcome (HR 

0.98; 95%CI 0.81-1.19; p=0.844). Potassium levels at baseline, a change of potassium during 

uptitration or potassium levels after uptitration, did not attenuate the beneficial effects of 

successful uptitration of ACEi/ARBs or beta-blockers (Pinteraction for all >0.5).  

 

Discussion 

This study shows that low and high serum potassium levels are common among patients with 

HFrEF. Potassium levels above 5.0 mEq/L were observed in 8% of HFrEF patients across Europe 

and being particularly prevalent in Eastern Europe and Greece. Furthermore, higher baseline 

potassium levels were an independent predictor of unsuccessful uptitration of ACEi/ARBs in 

HFrEF patients. Potassium levels or changes in potassium levels during uptitration were not 

associated with worse outcomes. Furthermore, a potassium increase during uptitration did not 

attenuate the beneficial effects of uptitration of ACEi/ARBs. The findings of this study might have 

implications for clinical practice, suggesting that lowering potassium levels in patients with 

hyperkalemia might lead to improved guideline directed treatment with ACEi and ARB. These 

data are important considering the availability of new potassium lowering drugs { ADDIN 

RW.CITE{{42 Pitt,B. 2015; 2 Anker,S.D. 2015}}}. 



 Our study shows an overall rate of baseline potassium abnormalities of 6.9% and 8.0% for 

hypo- and hyperkalemia respectively. Our results show a difference in prevalence of potassium 

abnormalities between European countries, even after rigorous multivariable correction, which 

might reflect differences in health systems or local practice {ADDIN RW.CITE{{139 Ouwerkerk,W. 

2017}}}. Our findings are in line with earlier reports from the Patients Hospitalized with acute 

heart failure and Volume Overload to Assess Treatment Effect on Congestion and Renal FuncTion 

(PROTECT) trial (6% and 9% respectively) and 6.7% and 3.3% in the Coordinating Study Evaluating 

Outcomes of Advising and Counseling Failure (COACH) trial { ADDIN RW.CITE{{155 Tromp,J. 

2017}}}. Overall, potassium levels increased during uptitration of ACEi/ARB, with 2.3% of patients 

having hypokalemia and 12.3% of patients having hyperkalemia at 9 months. During 9 months of 

follow-up, a significant increase of potassium was seen in the majority of patients (57.4%) and 

can be explained by the actively increased doses of ACEi and ARB. Unfortunately, the study design 

did not allow for analysis on early changes (e.g. <1 month) after dose adjustments.  

In this study, higher potassium levels at baseline were associated with less uptitration of 

ACEi/ARB. This suggests that HF patients with hyperkalemia at the start of therapy are at greater 

risk for lower doses or discontinuation of ACEi/ARB, which impede outcomes {ADDIN RW.CITE{{4 

Maggioni,A.P. 2013; 139 Ouwerkerk,W. 2017}}}. This is in line with earlier reports from a general 

patient population where high potassium levels were found to be responsible for a significant 

proportion of discontinuation or lowering of dosage of ACEi and ARB. Here, discontinuation or 

lowering of dosages of ACEi/ARB were associated with more adverse outcomes { ADDIN 

RW.CITE{{82 Epstein,M. 2015}}} . Also in previous results from the BIOSTAT-CHF study, sub-

optimal dosages of ACEi/ARB were associated with worse outcomes in HF patients {ADDIN 



RW.CITE{{139 Ouwerkerk,W. 2017}}}. This suggests that lower dosages and/or discontinuation of 

ACEi/ARB due to high potassium levels severely impede outcomes. 

Hypokalemia at baseline or at 9 months was not associated with worse outcomes. This is 

in line with earlier reports from the COACH, PROTECT and EVEREST trials, where potassium also 

did not show an independent association with outcome {ADDIN RW.CITE{{155 Tromp,J. 2017; 

113 Khan,S.S. 2015}}}. Nevertheless, reports on the association of potassium with outcome are 

mixed. Previous results of post-hoc analyses performed in the Eplerenone in Mild Patients 

Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF) trial showed that hypokalemia 

(<4.0 mEq/L) is associated with adverse outcomes and amplified the beneficial effect of 

eplerenone { ADDIN RW.CITE{{20 Ahmed,A. 2007; 146 Rossignol,P. 2016}} } . Additionally, a 

propensity matched study from Ahmed et al. showed that hypokalemia is associated with more 

adverse outcomes {ADDIN RW.CITE{{20 Ahmed,A. 2007}}}. In another sub-analysis of the Digitalis 

Investigation Group trial, Bowling et al. shows that this was also true for HF patients with CKD 

and that potassium also predicts a combined endpoint of all-cause mortality and HF 

rehospitalizations {ADDIN RW.CITE{{62 Bowling,C.B. 2010}}}. However, it has been suggested 

that the association of hypokalemia with adverse outcomes reflect lower usage of MRA or higher 

diuretic usage and dosage, on which data was often not available in previous reports {ADDIN 

RW.CITE{{20 Ahmed,A. 2007; 114 Rossignol,P. 2014; 62 Bowling,C.B. 2010; 153 Eschalier,R. 

2013}}}.  

Regardless of its association with outcome, potassium levels did not attenuate the 

beneficial effects of ACEi/ARB and beta-blockers. Previously, results from the Randomized 

Aldactone Evaluation Study (RALES) showed that hyperkalemia was associated with higher 



mortality rates, but did not interfere with the beneficial effects of spironolactone { ADDIN 

RW.CITE{{109 Vardeny,O. 2014}}}. The EMPHASIS-HF trial showed that the favorable effects of 

eplerenone on outcome did not differ for hyperkalemic compared to normokalemic patients 

{ADDIN RW.CITE{{114 Rossignol,P. 2014}}}. Additionally, a sub-analysis from the Candesartan in 

Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) trial showed that 

potassium levels also did not interfere with the beneficial effects of Candesartan { ADDIN 

RW.CITE{{115 Desai,A.S. 2007}}}. The findings of the current study confirm results of the post-

hoc analysis of the CHARM trial, but also show that potassium levels do not interfere with the 

beneficial effects of ACEi/ARB uptitration. Previously, Lund et al. discussed the association 

between ACEi/ARB usage and renal function, indicating that even in HF patients with severe renal 

insufficiency, administering ACEi/ARB improves outcome {ADDIN RW.CITE{{151 Edner,M. 2015; 

152 Dickstein,K. 2015}}} . Nevertheless, it should be noted that potassium levels as well as 

increases of potassium levels during uptitration took place within the relative “normal” range of 

potassium levels of 3.0 mEq/L and 5.5 mEq/L. Additionally, our study shows for the first time that 

potassium increases during uptitration of ACEi and ARBs do not interfere with the beneficial 

effects of these lifesaving therapies.  

 

Study limitations 

This is a post-hoc analysis, which comes with the usual limitations of selection bias. Potassium 

levels were only measured twice, at baseline and at 9 months of follow-up. A non-repetitive 

measurement could falsely positive diagnose a HF patient with hyperkalemia. Repeated 

measurements could correct for this deviation, but were not available. Unfortunately, potassium 



levels were not monitored after the first 3 months of active uptitration. This would provide 

additional data on potassium fluctuations over time. Additionally, patients with no potassium 

measurement at 9 months could have died, suggesting caution in interpreting data on potassium 

and outcome at 9 months. Furthermore, we did not have any information about potassium 

supplementation as well as on diuretic dosages, which might interfere with potassium levels.   



Conclusion 

Potassium abnormalities are prevalent among HF patients. Higher potassium levels are 

associated with lower rates of successful uptitration of ACEi/ARBs. Potassium abnormalities are 

not related to adverse outcomes and do not attenuate the beneficial effects of successful 

uptitration of ACEi/ARBs.   
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 Figure legends 
Figure 1. Incidence levels of hyperkalemia (A) and hypokalemia (B) per country 

Figure 2. Odds Ratios (95% CI) for successful uptitration of ACEi/ARB depicted for baseline potassium (as continuous 

variable). Model 1: Corrected for age, sex, and eGFR. Model 2: Corrected model 1, systolic blood pressure, and 

diabetes mellitus. Model 3: Corrected for model 2 and beta-blocker usage at 9 months. Uptitration Model: Corrected 

for BIOSTAT-CHF uptitration model Sex, BMI, eGFR, alkaline phosphatase, and country of inclusion 

Figure 3. Combined endpoint of all-cause mortality and HF-hospitalization rates stratified by serum potassium levels 
in mEq/L at baseline (A) and 9 months (B). 
 

 

  



Table 1. Baseline characteristics 
Values are given as proportions, means (±SD) or medians (IQR)  

ACEi = Angiotensin-Converting Enzyme Inhibitors, ARB = Angiotensin Receptor Blockers, BMI = Body Mass Index, BNP = Brain 

Natriuretic Peptide, COPD = Chronic Obstructive Pulmonary Disease, CRP = C-reactive protein, eGFR = estimated Glomerular 

Filtration Rate, LVEF = Left Ventricular Ejection Fraction, MRA = Mineralocorticoid Receptor Antagonists, NT-proBNP = N-Terminal 

prohormone of Brain Natriuretic Peptide, NYHA = New York Heart Association, SBP = Systolic Blood Pressure. 

* Extent of peripheral edema was determined in 1,367 patients. 

^ Serum NT-proBNP levels were determined in 736 patients. 

Variables 

(proportions %)  

Total cohort  

(n=1,666)  

Pot < 3.5  

(n=114)  

3.5 ≤ Pot ≤ 5.0  

(n=1,418)  

Pot > 5.0  

(n=134)  

p-value  Trend  

Demographics 

Potassium levels (mEq/L) 4.3 (3.9 – 4.6) 3.2 (3.1 – 3.4) 4.3 (4.0 – 4.5) 5.4 (5.2 – 5.5) NA NA 

Age (years)  69 (60 – 76) 69 (63 – 76) 68 (59 – 77) 70 (62 – 75) 0.808 0.974 

Men  1,275 (77) 69 (61) 1,101 (78) 105 (78) <0.001  0.002  

BMI (kg/m2)  26.9 (24.1 – 30.4)  26.7 (24.2 – 31.4)  26.9 (24.0 – 30.4)  27.0 (24.2 – 30.1)  0.688  0.726  

Heart rate (/min)  76 (68 – 90)  80 (70 – 97)  77 (67 – 90)  75 (68 – 90)  0.019  0.020  

LVEF (%)  27 ± 7  27 ± 7  27 ± 7  28 ± 7  0.434  0.134 

SBP (mmHg)  123 ± 21  126 ± 24  123 ± 21  124 ± 20  0.169  0.903  

NYHA class III-IV  557 (38)  30 (32)  484 (39)  43 (38)  0.466  0.476 

eGFR (mL/min/1.73 m2)  

- eGFR < 45 mL/min  

65.0 ± 24.1  

347 (21)  

64.2 ± 24.4  

23 (20) 

65.8 ± 24.0  

280 (20) 

56.5 ± 23.7  

44 (33) 

<0.001 

0.002  

0.015  

0.009  

Signs & symptoms 

Pulmonary congestion  854 (52) 73 (64) 712 (51) 67 (51) 0.035 0.057 

Extent of peripheral edema*  

- Not present  

- Above Knee  

  

595 (44) 

75 (5) 

  

21 (23) 

8 (9) 

  

511 (44) 

64 (6) 

  

63 (52) 

3 (2) 

  

<0.001  

0.139  

  

<0.001  

0.047  

Medical history 

Diabetes mellitus  529 (32) 34 (30) 447 (32) 48 (36) 0.534 0.297 

Myocardial infarction  641 (38) 37 (32) 555 (39) 49 (37) 0.330 0.574 

Atrial fibrillation  713 (43) 49 (43) 615 (43) 49 (37) 0.314 0.272 

Hypertension  976 (59) 71 (62) 826 (58) 79 (59) 0.700 0.632 

eGFR <60  747 (45) 52 (46) 614 (43) 81 (61) 0.001 0.012 

COPD  288 (17) 21 (18) 237 (17) 30 (22) 0.238 0.352  

Laboratory  

Hemoglobin (g/dL)  13.4 ± 1.9  13.0 ± 1.8 13.4 ± 1.9  13.3 ± 1.8  0.069 0.232 

Erythrocytes (10e12/L)  4.5 (4.1 – 4.9)  4.4 (4.1 – 4.9)  4.5 (4.1 – 4.9)  4.6 (4.1 – 5.0)  0.817 0.632 

Platelets (10e9/L)  214 (173 – 258)  209 (171 – 261)  212 (173 – 257)  228 (187 – 281)  0.019 0.023 

NT-proBNP (ng/L)^ 4447 (2359 – 8824)  4132 (2621 – 7839)  4402 (2250 – 8522)  5947 (3211 – 11124)  0.068 0.155 

CRP (mg/L)  12.9 (5.5 – 26.4)  16.5 (8.2 – 30.4)  12.9 (5.4 – 26.4)  10.2 (4.5 – 19.1)  0.002 0.001  

Creatinine (µmol/L)  102 (84 – 127)  99 (77 – 124) 101 (83 – 126)  115 (91 – 150)  <0.001  <0.001  

Iron (µmol/L)  8 (5 – 13)  8 (5 – 13)  8 (5 – 13)  9 (6 – 13)  0.080 0.028 

Medication 

ACE-I/ARB 1,229 (74) 83 (73) 1,046 (74) 100 (75) 0.949 0.746 

Beta-blocker  1,390 (83) 91 (80) 1,190 (84) 109 (81) 0.419 0.822 

MRA 920 (55) 52 (46) 783 (55) 85 (63) 0.019 0.005 

Diuretics  1,665 (100) 114 (100) 1,417 (100) 134 (100) 0.916 0.975 

Digoxin 302 (18) 12 (11) 271 (19) 19 (14) 0.034 0.578 



Table 2. Cox proportional hazard regression model for the analysis of event rates for the combined endpoint (all-cause 

mortality + HF-hospitalizations) in HF patients stratified by potassium levels on baseline, 9 months, and potassium 

change. 

 (n of patients ; n of event) 
<3.5 mEq/ L 3.5-5.0 mEq /L >5.0 mEq /L 

(114 ; 46) (1,418 ; 530) (134 ; 51) 

Baseline HR (CI), p   HR (CI), p 

Univariable 1.10 (0.83-1.47) 0.493 ref 1.01 (0.77-1.31) 0.968 

Model 1 1.11 (0.83-1.48) 0.493 ref 0.90 (0.69-1.18) 0.448 

Model 2 1.12 (0.84-1.50) 0.430 ref 0.88 (0.67-1.15) 0.353 

Model 3 1.13 (0.84-1.51) 0.419 ref 0.89 (0.68-1.17) 0.406 

9 months (21 ; 12) (786 ; 212) (113 ; 43) 

Univariable 1.65 (0.61-4.48) 0.328 ref 1.34 (0.80-2.24) 0.270 

Model 1 1.85 (0.68-5.04) 0.231 ref 1.22 (0.72-2.05) 0.466 

Model 2 1.75 (0.63-4.81) 0.280 ref 1.19 (0.70-2.01) 0.518 

Model 3 1.97 (0.71-5.49) 0.193 ref 1.19 (0.70-2.01) 0.513 

Change 
Decrease No change Increase 

(319 ; 103) (78 ; 17) (523 ; 146) 

Univariable 1.26 (0.96-1.65) 0.101 ref 1.23 (0.93-1.64) 0.148 

Model 1 1.25 (0.95-1.65) 0.105 ref 1.17 (0.88-1.56) 0.275 

Model 2 1.27 (0.96-1.66) 0.091 ref 1.15 (0.87-1.54) 0.328 

Model 3 1.23 (0.94-1.62) 0.135 ref 1.15 (0.86-1.53) 0.341 

 
Model 1: Corrected for age, sex, and eGFR 

Model 2: Corrected for age, sex, eGFR, systolic blood pressure, and diabetes mellitus 

Model 3: Corrected for the age, sex, eGFR, systolic blood pressure, and diabetes mellitus, ACEi/ARB usage at 9 

months, or beta-blocker usage at 9 months 
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