Impact of T2R38 receptor polymorphisms on Pseudomonas aeruginosa infection in cystic fibrosis

Turnbull, Andrew R.; Murphy, Ronan; Behrends, Volker; Lund-Palau, Helena; Simbo, Ameze; Mariveles, Myril

Published in:
American Journal of Respiratory and Critical Care Medicine

DOI:
10.1164/rccm.201711-2365LE

Publication date:
2018

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Impact of T2R38 receptor polymorphisms on Pseudomonas aeruginosa infection in cystic fibrosis

<table>
<thead>
<tr>
<th>Journal:</th>
<th>American Journal of Respiratory and Critical Care Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Blue-201711-2365LE.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>LE - Letter-to-the-Editor</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Turnbull, Andrew; Imperial College London
Murphy, Ronan; Imperial College London, National Heart and Lung Institute
Behrends, Volker; University of Roehampton, Department of Life Sciences; University of Roehampton
Lund-Palau, Helena; Imperial College London, National Heart & Lung Institute
Simbo, Ameze; Imperial College London, National Heart and Lung Institute
Mariveles, Myril; Imperial College London, National Heart and Lung Institute
Alton, Eric; Imperial College, Bush, Andrew; Imperial College and Royal Brompton Hospital, London
Shoemark, Amelia; Royal Brompton Hospital, EM Unit; Imperial College London, Gene Therapy
Davies, Jane; Imperial College London, National Heart and Lung Institute |
| Subject Category: | 9.17 Cystic Fibrosis: Translational & Clinical Studies < LUNG DISEASES, 10.06 Host Defenses to Microbial Pathogens < MICROBIOLOGY AND PULMONARY INFECTIONS, 7.18 Mucosal Immunity of the Respiratory Tract < IMMUNOLOGY AND INFLAMMATION |
| Keywords: | Cilia, Taste receptor, type 2, Quorum sensing, Mucociliary clearance |
Impact of T2R38 receptor polymorphisms on *Pseudomonas aeruginosa* infection in cystic fibrosis

Andrew R. Turnbull\(^1,2\), Ronan Murphy\(^1\), Volker Behrends\(^3\), Helena Lund-Palau\(^1\), Ameze Simbo\(^1\), Myril Mariveles\(^1\), Eric W.F.W. Alton\(^1\), Andrew Bush\(^1,2\), Amelia Shoemark\(^1,2,4\), Jane C. Davies\(^1,2\)

\(^1\)National Heart & Lung Institute, Imperial College London, United Kingdom.
\(^2\)Paediatric Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK.
\(^3\)Health Science Research Centre, Department of Life Sciences, University of Roehampton, London, UK.
\(^4\)Department of Clinical and Molecular Medicine, University of Dundee, Dundee, UK.

Corresponding author:

Andrew R. Turnbull,

National Heart & Lung Institute,

Imperial College,

London SW3 6LR,

a.turnbull14@imperial.ac.uk

Author contributions:

Conception and design: ART, AS\(^1,2,4\) and JCD. Data collection: ART, AS\(^1,2,4\), VB, RM, HLP, AS\(^1\) and MM. Analysis and interpretation: ART, AS\(^1,2,4\), VB and JCD. Manuscript drafting: ART, AS\(^1,2,4\) and JCD. Editing and approval: all authors.
Running title: T2R38 receptor polymorphisms in cystic fibrosis

Description number: Cystic Fibrosis: Translational & Clinical Studies

Manuscript word count: 1036
To the editor:

The T2R38 bitter taste receptor on respiratory epithelia detects *P. aeruginosa* N-acyl-L-homoserine lactones (AHLs). *In vitro*, T2R38 activation by AHLs initiates calcium-mediated increases in nitric oxide production and ciliary beat frequency, dependent on polymorphisms in the *TAS2R38* gene (1). In patients with chronic rhinosinusitis (CRS), *TAS2R38* genotype is proposed to modify mucosal responses to *P. aeruginosa* (1).

Polymorphisms in the *TAS2R38* gene result in two high-frequency haplotypes, associated with taste perception of the bitter compound phenylthiocarbamide (2). The ‘taster’ haplotype codes proline-alanine-valine (PAV); the ‘non-taster’ haplotype codes alanine-valine-isoleucine (AVI), at positions 49, 262, and 296 in the receptor protein. Responses to AHLs *in vitro* are greatest in PAV/PAV epithelial cells, and this genotype is reported to be protective against *P. aeruginosa* in the sinonasal airway (1).

P. aeruginosa is the most frequently isolated respiratory pathogen in cystic fibrosis (CF), and chronic infection is associated with accelerated rates of disease progression. Determining the impact of *TAS2R38* polymorphisms on *P. aeruginosa* infection in CF could have implications for patient risk stratification and, as naturally-occurring and synthetic agonists to T2R38 are already in clinical use (3), could identify promising therapeutic targets.
We characterized T2R38 localization in the CF airway and investigated the hypothesis that \textit{TAS2R38} polymorphisms would modify prevalence and impact of \textit{P. aeruginosa} infection in CF. \textbf{Some of the results of these studies have previously been reported as abstracts} (4, 5).

\textbf{Methods}

Nasal and/or bronchial brushings were obtained from 4 CF children undergoing bronchoscopy and 4 healthy adult controls. T2R38 localization was evaluated by immunocytochemistry with antibodies to T2R38 and ciliary proteins, as described previously (6). Slides were imaged with a Zeiss LSM-510 confocal microscope and colocalization was quantified using the JACoP plug-in for ImageJ (7).

DNA was extracted from blood from 271 subjects with CF aged >6yrs and subjected to PCR for the common \textit{TAS2R38} polymorphisms (rs713598, rs1726866, and rs10246939). \textit{P. aeruginosa} infection status was categorised in patients with \(\geq 3 \) respiratory cultures during 2014, according to Leeds criteria (8), as chronic (>50% positive), intermittent (\(\leq 50\% \) positive), free (previous \textit{P. aeruginosa} but none for >12 months), or never. Clinical data was obtained from each patient’s 2014 annual assessment.

Cryo-preserved \textit{P. aeruginosa} isolates from \textit{TAS2R38}-genotyped patients (matched for age and FEV\textsubscript{1}) were revived in Luria-Bertani broth in triplicate and filter-sterilized. Quantitative analysis of \(N \)-butanoyl-L-homoserine lactone (C4-HSL) and \(N \)-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) was performed by liquid chromatography with tandem mass spectrometry. Limits of detection and limits
of quantification were defined as signal:noise ratios of 3:1 and 10:1 respectively, as previously described (9).

Power calculations predicted 250 patients would provide 80% power to detect a difference in chronic *P. aeruginosa* infection of ≥20% in PAV/PAV compared to other genotypes at α of 5%. Analysis of *P. aeruginosa* infection by *TAS2R38* genotype was by Chi-squared analysis and logistic regression. Graphpad Prism 7 and SPSS 23 were used and the null hypothesis was rejected at p<0.05.

Ethical review committees (02-019 and 10/H0504/9) approved the protocol, and written consent was obtained from subjects or their parent/guardian.

Results

T2R38 immunostaining was present in all nasal (n=3) and bronchial (n=3) samples from CF patients and all nasal samples (n=4) from healthy controls. T2R38 stained proximally to acetylated α-tubulin (ciliary microtubules) and γ-tubulin (ciliary basal bodies), and colocalized with rootletin (ciliary rootlets) in CF and control cells (figure). Thresholded Manders’ correlation coefficients (mean ± SD of 4 cells) for T2R38 and rootletin were 0.91 ± 0.07, 0.90 ± 0.08 and 0.90 ± 0.04 for control nasal, CF nasal, and CF bronchial cells respectively, indicating that ≥90% of green (rootletin) pixels were positive for red (T2R38).

Of 271 CF patients, 225 had the common AVI/AVI (74), AVI/PAV (110) or PAV/PAV (41) genotypes and ≥3 respiratory cultures during 2014. Between *TAS2R38* genotype groups there was no significant difference in median age, sex, or
proportion of p.Phe508del CFTR mutations. There was no association between
TAS2R38 genotype and P. aeruginosa infection status (P=0.46) (table). In the logistic
regression model with ‘intermittent and chronic’, and ‘never and free’ groups as
dependent variables, and age, sex, CFTR genotype and TAS2R38 genotype as
independent variables, only age was associated with intermittent or chronic P.
aeruginosa infection (odds ratio 1.05, 95% CI 1.03-1.07). There was no association
between TAS2R38 genotype and P. aeruginosa infection status when the PAV/PAV
genotype was compared against AVI/AVI or AVI/PAV genotypes.

Among patients with intermittent or chronic P. aeruginosa infection (n=141) there
was no difference by TAS2R38 genotype in median percent-predicted FEV₁
(AVI/AVI 54.0%, AVI/PAV 62.0%, PAV/PAV 53.5%, p=0.3) or in the proportion of
patients who isolated mucoid P. aeruginosa (AVI/AVI 69%, AVI/PAV 60%,
PAV/PAV 68%, p=0.5). In 18 P. aeruginosa isolates from TAS2R38-genotyped
patients there was no difference by genotype in the proportion of isolates in which
C4-HSL or 3-oxo-C12-HSL were below the limit of quantification (p=0.8).

Discussion

We have identified T2R38 in CF nasal and bronchial epithelium, where it localizes to
the ciliary rootlet in the same distribution as in non-CF epithelia. Previous studies
report T2R38 localization ranging from the ciliary tip (10) to below the ciliary base
(1, 11). Our experiments demonstrate that in fresh, non-cultured cells, T2R38
colocalizes with rootletin, a structural component of the ciliary rootlet, originating
from the ciliary basal body and extending toward the nucleus (12).
In this study of 225 children and adults with CF we have found no association between *TAS2R38* genotype and *P. aeruginosa* infection status, *within the range of difference that our study was powered to detect*. Our results show only age to be associated with intermittent or chronic infection, consistent with CF registry data (13). Among patients with intermittent or chronic infection, the lack of any difference in spirometry or prevalence of mucoid *P. aeruginosa* adds further evidence to the lack of a protective effect of the PAV/PAV genotype. Finally, in a small sample of clinical isolates we observed no relationship between *TAS2R38* genotype and AHL profiles, suggesting that polymorphisms in this receptor are not exerting a selective pressure on *P. aeruginosa* in the CF lung.

Our results indicate that *TAS2R38*-related differences in sinonasal immunity do not translate to clinically relevant changes in the CF airway, where mucociliary clearance is significantly impaired. We suggest there to be no prognostic value of *TAS2R38* genotyping in patients with CF, nor do our findings indicate the T2R38 receptor to be a promising drug target in CF mucosal immunity.

Acknowledgements

This project was supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London. The *P. aeruginosa* clinical isolate repository was established as part of the Strategic Research Centre for Pseudomonal infection in CF, funded by the Cystic Fibrosis Trust (UK). The Facility for Imaging by Light Microscopy (FILM) at Imperial College London is part-supported by funding from the Wellcome Trust (grant 104931/Z/14/Z) and BBSRC (grant BB/L015129/1).
References

FIGURE LEGEND

Figure. Confocal microscopy images of nasal epithelial cells from a subject with CF. Cells were stained with antibodies to T2R38 (red), and acetylated α-tubulin (A) or rootletin (B) (both stained green). Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue). Colocalized antibodies appear yellow in the merged images. Epithelial cell morphology is shown by differential interference contrast (DIC) images. T2R38 stains proximally to acetylated α-tubulin (ciliary microtubules) and colocalizes with rootletin (ciliary rootlets).

Antibodies used in these immunocytochemistry assays were: T2R38 (AB130503, Abcam, UK), acetylated α-tubulin (T6793, Sigma, UK), and rootletin (SC-374056, Santa Cruz Biotechnology, USA).

Table. *P. aeruginosa* infection category by *TAS2R38* genotype

<table>
<thead>
<tr>
<th></th>
<th>AVI/AVI (n=74)</th>
<th>AVI/PAV (n=110)</th>
<th>PAV/PAV n=41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never, n(%)</td>
<td>4 (5)</td>
<td>4 (4)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Free, n(%)</td>
<td>21 (28)</td>
<td>36 (32)</td>
<td>16 (39)</td>
</tr>
<tr>
<td>Intermittent, n(%)</td>
<td>11 (15)</td>
<td>26 (24)</td>
<td>8 (20)</td>
</tr>
<tr>
<td>Chronic, n(%)</td>
<td>38 (51)</td>
<td>44 (40)</td>
<td>14 (34)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: AVI = alanine-valine-isoleucine; PAV = proline-alanine-valine.
Impact of T2R38 receptor polymorphisms on *Pseudomonas aeruginosa* infection in cystic fibrosis

Andrew R. Turnbull¹,², Ronan Murphy¹, Volker Behrends³, Helena Lund-Palau¹, Ameze Simbo¹, Myril Mariveles¹, Eric W.F.W. Alton¹, Andrew Bush¹,², Amelia Shoemark¹,²,⁴, Jane C. Davies¹,²

¹National Heart & Lung Institute, Imperial College London, United Kingdom.
²Paediatric Respiratory Medicine, Royal Brompton & Harefield NHS Foundation Trust, London, UK.
³Health Science Research Centre, Department of Life Sciences, University of Roehampton, London, UK.
⁴Department of Clinical and Molecular Medicine, University of Dundee, Dundee, UK.

Corresponding author:
Andrew R. Turnbull,
National Heart & Lung Institute,
Imperial College,
London SW3 6LR,
a.turnbull14@imperial.ac.uk

Author contributions:
Conception and design: ART, AS¹,²,⁴ and JCD. Data collection: ART, AS¹,²,⁴, VB, RM, HLP, AS¹ and MM. Analysis and interpretation: ART, AS¹,²,⁴, VB and JCD. Manuscript drafting: ART, AS¹,²,⁴ and JCD. Editing and approval: all authors.
To the editor:

The T2R38 bitter taste receptor on respiratory epithelia detects *P. aeruginosa* N-acyl-L-homoserine lactones (AHLs). *In vitro*, T2R38 activation by AHLs initiates calcium-mediated increases in nitric oxide production and ciliary beat frequency, dependent on polymorphisms in the *TAS2R38* gene (1). In patients with chronic rhinosinusitis (CRS), *TAS2R38* genotype is proposed to modify mucosal responses to *P. aeruginosa* (1).

Polymorphisms in the *TAS2R38* gene result in two high-frequency haplotypes, associated with taste perception of the bitter compound phenylthiocarbamide (2). The ‘taster’ haplotype codes proline-alanine-valine (PAV); the ‘non-taster’ haplotype codes alanine-valine-isoleucine (AVI), at positions 49, 262, and 296 in the receptor protein. Responses to AHLs *in vitro* are greatest in PAV/PAV epithelial cells, and this genotype is reported to be protective against *P. aeruginosa* in the sinonasal airway (1).

P. aeruginosa is the most frequently isolated respiratory pathogen in cystic fibrosis (CF), and chronic infection is associated with accelerated rates of disease progression. Determining the impact of *TAS2R38* polymorphisms on *P. aeruginosa* infection in CF could have implications for patient risk stratification and, as naturally-occurring and synthetic agonists to T2R38 are already in clinical use (3), could identify promising therapeutic targets.
We characterized T2R38 localization in the CF airway and investigated the hypothesis that *TAS2R38* polymorphisms would modify prevalence and impact of *P. aeruginosa* infection in CF. Some of the results of these studies have previously been reported as abstracts (4, 5).

Methods

Nasal and/or bronchial brushings were obtained from 4 CF children undergoing bronchoscopy and 4 healthy adult controls. T2R38 localization was evaluated by immunocytochemistry with antibodies to T2R38 and ciliary proteins, as described previously (6). Slides were imaged with a Zeiss LSM-510 confocal microscope and colocalization was quantified using the JACoP plug-in for ImageJ (7).

DNA was extracted from blood from 271 subjects with CF aged >6yrs and subjected to PCR for the common *TAS2R38* polymorphisms (rs713598, rs1726866, and rs10246939). *P. aeruginosa* infection status was categorised in patients with ≥3 respiratory cultures during 2014, according to Leeds criteria (8), as chronic (>50% positive), intermittent (≤50% positive), free (previous *P. aeruginosa* but none for >12 months), or never. Clinical data was obtained from each patient’s 2014 annual assessment.

Cryo-preserved *P. aeruginosa* isolates from *TAS2R38*-genotyped patients (matched for age and FEV1) were revived in Luria-Bertani broth in triplicate and filter-sterilized. Quantitative analysis of N-butanoyl-L-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) was performed by liquid chromatography with tandem mass spectrometry. Limits of detection and limits
of quantification were defined as signal:noise ratios of 3:1 and 10:1 respectively, as previously described (9).

Power calculations predicted 250 patients would provide 80% power to detect a difference in chronic *P. aeruginosa* infection of ≥20% in PAV/PAV compared to other genotypes at α of 5%. Analysis of *P. aeruginosa* infection by TAS2R38 genotype was by Chi-squared analysis and logistic regression. Graphpad Prism 7 and SPSS 23 were used and the null hypothesis was rejected at p<0.05.

Ethical review committees (02-019 and 10/H0504/9) approved the protocol, and written consent was obtained from subjects or their parent/guardian.

Results

T2R38 immunostaining was present in all nasal (n=3) and bronchial (n=3) samples from CF patients and all nasal samples (n=4) from healthy controls. T2R38 stained proximally to acetylated α-tubulin (ciliary microtubules) and γ-tubulin (ciliary basal bodies), and colocalized with rootletin (ciliary rootlets) in CF and control cells (figure). Thresholded Manders’ correlation coefficients (mean ± SD of 4 cells) for T2R38 and rootletin were 0.91 ± 0.07, 0.90 ± 0.08 and 0.90 ± 0.04 for control nasal, CF nasal, and CF bronchial cells respectively, indicating that ≥90% of green (rootletin) pixels were positive for red (T2R38).

Of 271 CF patients, 225 had the common AVI/AVI (74), AVI/PAV (110) or PAV/PAV (41) genotypes and ≥3 respiratory cultures during 2014. Between *TAS2R38* genotype groups there was no significant difference in median age, sex, or
proportion of p.Phe508del CFTR mutations. There was no association between
TAS2R38 genotype and P. aeruginosa infection status (P=0.46) (table). In the logistic
regression model with ‘intermittent and chronic’, and ‘never and free’ groups as
dependent variables, and age, sex, CFTR genotype and TAS2R38 genotype as
independent variables, only age was associated with intermittent or chronic P. aeruginosa infection (odds ratio 1.05, 95% CI 1.03-1.07). There was no association
between TAS2R38 genotype and P. aeruginosa infection status when the PAV/PAV
genotype was compared against AVI/AVI or AVI/PAV genotypes.

Among patients with intermittent or chronic P. aeruginosa infection (n=141) there
was no difference by TAS2R38 genotype in median percent-predicted FEV₁ (AVI/AVI 54.0%, AVI/PAV 62.0%, PAV/PAV 53.5%, p=0.3) or in the proportion of
patients who isolated mucoid P. aeruginosa (AVI/AVI 69%, AVI/PAV 60%,
PAV/PAV 68%, p=0.5). In 18 P. aeruginosa isolates from TAS2R38-genotyped
patients there was no difference by genotype in the proportion of isolates in which
C4-HSL or 3-oxo-C12-HSL were below the limit of quantification (p=0.8).

Discussion

We have identified T2R38 in CF nasal and bronchial epithelium, where it localizes to
the ciliary rootlet in the same distribution as in non-CF epithelia. Previous studies
report T2R38 localization ranging from the ciliary tip (10) to below the ciliary base
(1, 11). Our experiments demonstrate that in fresh, non-cultured cells, T2R38
colocalizes with rootletin, a structural component of the ciliary rootlet, originating
from the ciliary basal body and extending toward the nucleus (12).
In this study of 225 children and adults with CF we have found no association between \textit{TAS2R38} genotype and \textit{P. aeruginosa} infection status, within the range of difference that our study was powered to detect. Our results show only age to be associated with intermittent or chronic infection, consistent with CF registry data (13). Among patients with intermittent or chronic infection, the lack of any difference in spirometry or prevalence of mucoid \textit{P. aeruginosa} adds further evidence to the lack of a protective effect of the PAV/PAV genotype. Finally, in a small sample of clinical isolates we observed no relationship between \textit{TAS2R38} genotype and AHL profiles, suggesting that polymorphisms in this receptor are not exerting a selective pressure on \textit{P. aeruginosa} in the CF lung.

Our results indicate that \textit{TAS2R38}-related differences in sinonasal immunity do not translate to clinically relevant changes in the CF airway, where mucociliary clearance is significantly impaired. We suggest there to be no prognostic value of \textit{TAS2R38} genotyping in patients with CF, nor do our findings indicate the T2R38 receptor to be a promising drug target in CF mucosal immunity.

Acknowledgements

This project was supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London. The \textit{P. aeruginosa} clinical isolate repository was established as part of the Strategic Research Centre for Pseudomonal infection in CF, funded by the Cystic Fibrosis Trust (UK). The Facility for Imaging by Light Microscopy (FILM) at Imperial College London is part-supported by funding from the Wellcome Trust (grant 104931/Z/14/Z) and BBSRC (grant BB/L015129/1).
References

FIGURE LEGEND

Figure. Confocal microscopy images of nasal epithelial cells from a subject with CF. Cells were stained with antibodies to T2R38 (red), and acetylated α-tubulin (A) or rootletin (B) (both stained green). Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI) (blue). Colocalized antibodies appear yellow in the merged images. Epithelial cell morphology is shown by differential interference contrast (DIC) images. T2R38 stains proximally to acetylated α-tubulin (ciliary microtubules) and colocalizes with rootletin (ciliary rootlets).

Antibodies used in these immunocytochemistry assays were: T2R38 (AB130503, Abcam, UK), acetylated α-tubulin (T6793, Sigma, UK), and rootletin (SCD374056, Santa Cruz Biotechnology, USA).

Table. *P. aeruginosa* infection category by *TAS2R38* genotype

<table>
<thead>
<tr>
<th></th>
<th>AVI/AVI (n=74)</th>
<th>AVI/PAV (n=110)</th>
<th>PAV/PAV n=41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never, n(%)</td>
<td>4 (5)</td>
<td>4 (4)</td>
<td>3 (7)</td>
</tr>
<tr>
<td>Free, n(%)</td>
<td>21 (28)</td>
<td>36 (32)</td>
<td>16 (39)</td>
</tr>
<tr>
<td>Intermittent, n(%)</td>
<td>11 (15)</td>
<td>26 (24)</td>
<td>8 (20)</td>
</tr>
<tr>
<td>Chronic, n(%)</td>
<td>38 (51)</td>
<td>44 (40)</td>
<td>14 (34)</td>
</tr>
</tbody>
</table>

Definition of abbreviations: AVI = alanine-valine-isoleucine; PAV = proline-alanine-valine.
Impact of T2R38 receptor polymorphisms on *Pseudomonas aeruginosa* infection in cystic fibrosis

Figure
Table 2. Odds ratios for ‘intermittent or chronic’ *P. aeruginosa* infection by logistic regression

<table>
<thead>
<tr>
<th></th>
<th>Univariate</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds ratio</td>
<td>Lower 95% CI</td>
<td>Upper 95% CI</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.051</td>
<td>1.029</td>
<td>1.073</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1.352</td>
<td>0.785</td>
<td>2.330</td>
<td></td>
</tr>
<tr>
<td>CFTR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F508/F508*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F508/other</td>
<td>1.285</td>
<td>0.723</td>
<td>2.281</td>
<td></td>
</tr>
<tr>
<td>Other/other</td>
<td>1.465</td>
<td>0.521</td>
<td>4.121</td>
<td></td>
</tr>
<tr>
<td>T2R38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAV/PAV*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAV/AVI</td>
<td>1.511</td>
<td>0.731</td>
<td>3.125</td>
<td></td>
</tr>
<tr>
<td>AVI/AVI</td>
<td>1.693</td>
<td>0.776</td>
<td>3.694</td>
<td></td>
</tr>
</tbody>
</table>

• Baseline group for comparison of odds ratios by logistic regression.