Response to “Influence of Diabetes on Antiplatelet Drug Efficacy”

Aleksi Tornio1, Colin N.A. Palmer2 and Alex S.F. Doney3

To The Editor: Gong et al. in their Letter to the Editor make valuable comments in relation to our study, which, as they correctly point out, included a substantial number of individuals with diabetes. First, they draw attention to the well-documented increased platelet reactivity in patients with diabetes, and a recent study showing increased platelet P2Y12 expression may be contributory. They also highlight a recent fairly small study indicating that in stroke patients the CYP2C19 loss-of-function allele had a reduced impact on clopidogrel response in individuals with higher glycated albumin levels independent of diabetes status. Such observations imply reduced efficacy of clopidogrel in this patient population. Indeed, a further study of diabetes status. Such observations imply impaired P2Y12 inhibition by clopidogrel in patients with type 2 diabetes and coronary artery disease. J. Am. Coll. Cardiol. 64, 1005–1014 (2014).

Our overall study comprised 72% individuals with diabetes and 77% of the outcome events occurred in this group. While we found that diabetes, obesity, smoking, and recent elevated glycated hemoglobin were, as expected, significantly associated with increased risk, we did not find any evidence of an interaction with the CYP2C19 genotype. While we probably do not have adequate power in our current study to formally avoid a type II error, a meta-analysis of clinical trials also found no substantial effect of either diabetes or obesity on clopidogrel efficacy.4 Our bioresource is currently expanding with the Scottish-wide GoSHARE study (www.goshare.org.uk).

As a consequence, we anticipate the ability of factors modifying antiplatelet response. However, it is possible to exploit CYP2C19 genotype as a genetic instrument to probe the extent to which these features modify antiplatelet response. Our conclusion that smoking on clopidogrel responsiveness is abrogated when accounting for hemoglobin levels.3

Our study comprised a bioresource linked to electronic medical records. In essence, we conducted a Mendelian-randomized prospective observational study of the clinical impact of CYP2C19 loss-of-function genotype in a population of individuals who had all redeemed prescriptions for clopidogrel following hospitalization for an arterial thrombo-occlusive event. As a consequence, we are not able to directly compare the overall efficacy of clopidogrel therapy with a comparator arm to investigate the impact of diabetes and related features. However, it is possible to exploit CYP2C19 genotype as a genetic instrument to probe the extent to which these features modify antiplatelet response.


Conflict of Interest
The authors declared no conflict of interest.

Funding
The GoDARTS Bioresource has been funded by a wide range of sources of many years. The present study was unfunded.

© 2018 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics

This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.