DOCTOR OF MEDICINE

Meniscectomy & osteoarthritis

Pengas, Ioannis

Award date:
2012

Awarding institution:
University of Dundee

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
MENISCECTOMY & OSTEOARTHRITIS

Ioannis P. Pengas
MBChB, MRCS, MPhil
CONTENTS

Table of Contents ii
List of Figures vii
List of Tables ix
Abbreviations x
Acknowledgements xi
Declaration xiii
Summary xiv

TABLE OF CONTENTS

CHAPTER 1 – Introduction, Aims & Objectives

1.1 Introduction 2
 1.1.1 Study’s relevance to clinical practice 3
1.2 Aims & Objectives 5

CHAPTER 2 – Background Anatomy & Literature review

2.1 Osteoarthritis (What is OA?) 7
2.2 The Knee ... 10
 2.2.1 Gross Anatomy & Function 10
 2.2.2 Knee Biomechanics 10
 2.2.3 The Patellofemoral Joint 12
 2.2.3.a Patellofemoral Joint Forces 13
 2.2.4 Kinematics of the Tibiofemoral Joint & Alignment 14
2.3 Articular Cartilage 19
 2.3.1 Composition 20
 2.3.1.a Chondrocytes 20
 2.3.1.b Extracellular Matrix 21
 2.3.2 Structure 24
 2.3.3 Mechanical Properties and Homeostasis 25
 2.3.4 Subchondral Bone 27
 2.3.5 Microdamage Protective Mechanisms 28
 2.3.6 Articular Cartilage Damage 28
 2.3.7 Chondrocyte Mechanobiology 29
Appendix 3: PROMs: KOOS & IKDC 2000 questionnaires .. 155
Appendix 4: Publications ... 164

LIST OF FIGURES
Figure 2.1 Knee joint 6° of Freedom diagram .. 11
Figure 2.2 Femoral rollback .. 11
Figure 2.3 Patellofemoral Joint Forces ... 13
Figure 2.4 Normal coronal alignment ... 14
Figure 2.5 Effect of sequential meniscal tissue loss on contact area 18
Figure 2.6 Constituents of articular cartilage ... 20
Figure 2.7 Schematic diagram showing the proteoglycans subunit 23
Figure 2.8 Schematic diagram of the adult articular cartilage 24
Figure 2.9 Articular cartilage subjected to different loads 26
Figure 2.10 Birds eye view of the tibial plateau .. 33
Figure 2.11 Parameniscal capillary plexus ... 34
Figure 2.12 Collagen fibre arrangement in a Meniscus 37
Figure 2.13 Biomarkers in Body Fluids .. 58

Figure 3.1 Flow Chart of Total Cohort ... 64
Figure 3.2 Flow Chart of Current Study Cohort ... 65
Figure 3.3 Diagram Demonstrating the Weight Bearing Skyline Device 70
Figure 3.4 Measuring the Tibiofemoral Angle .. 74

Figure 4.1 Histogram of Unilateral group BMI .. 84
Figure 4.2 Graphs demonstrating the ROM between Index & Non-Index knees 89
Figure 4.3 Correlations between Ahlback and IKDC 99
Figure 4.4 Flow chart of positive knee aspirations ... 100
Figure 4.5 Correlation between GAG and Ahlback ... 102
Figure 4.6 Correlation between GAG and IKDC ... 103

Figure 5.1 Rate of TKA with age .. 105
LIST OF TABLES

Table 2.1 Total Meniscectomy Studies .. 43

Table 3.1 Ahlback and Kellgren & Lawrence Grading systems 71
Table 3.2 Definitions for the strength of association between variables 80

Table 4.1 Demographic data for the Whole Cohort 82
Table 4.2 Whole Group PROMs ... 83
Table 4.3 Unilateral Group Values as per Site of Meniscectomy 85
Table 4.4 Sagittal laxity ... 87
Table 4.5 ROM table .. 88
Table 4.6 Mode of Grading systems between Index & Non-Index Knees 90
Table 4.7 Correlations of PF JSN with other parameters 92
Table 4.8 Knee Malalignment .. 94
Table 4.9 Paired index vs. non-index as per site of meniscectomy 95
Table 4.10 Cohort’s PROMs ... 97
Table 4.11 Symptomatic Knees as per KOOS .. 98

Table 5.1 Scandinavian rate of TKA with age ... 106
ABBREVIATIONS

A
ACL: Anterior Cruciate Ligament
AL: Ahlback
AP: Antero-posterior
AEBSF: 4-(2-aminoethyl)benzenesulfonyl fluoride

B
BML: Bone Marrow Lesions
BMI: Body mass index
BW: Body weight
BSA: Bovine serum albumin
BSA: benzamidine-HCl

C
CMP: Cartilage Matrix Protein
CMPG: Cartilage Oligomeric GlycoProtein
CoCr: Cobalt chrome
COMP: Cartilage Oligomeric Protein

D
EACA: 6-aminohexonic acid
ECM: Extracellular Matrix
ELISA: Enzyme-linked immunosorbent assay
EDTA: Ethylenediaminetetraacetic Acid

G
GAG: Glycosaminoglycans

H
H₂O: Water
H₂O₂: hydrogen peroxide

I
IGF-I: Insulin like growth factor -I
IKDC: International knee documentation committee

J
JSN: Joint space narrowing
JSW: Joint space width

K
KL: Kellgren & Lawrence
KS: Keratan Sulfate

L
LM: Lateral meniscus
M
MCL: Medial collateral ligament
MES: 2-(N-morpholino) ethanesulfonic acid
MM: Medial meniscus
MMP-3: Matrix metalloproteinases

N
NEM: N-ethylmaleimide
NO: Nitric Oxide

O
OA: Osteoarthritis
PBS: Phosphate buffered saline
PBST: phosphate buffered saline with TWEEN
PFJ: Patellofemoral Joint
PG: Proteoglycan
PMSF: phenylmethylsulfonyl fluoride
PROMs: Patient reported outcome measures
PT: Patella tendon
PVDF: Polyvinylidene difluoride

Q
QT: Quadriceps Tendon

R
ROM: Range of Motion
RR: Relative Risk

S
SEM: Scanning electron microscopy
SF: Synovial fluid
Std. Dev: Standard Deviation

T
TGF-β: Transforming growth factor-β
TIMP-1: Tissue inhibitor for matrix metalloproteinases
TNF: Tumour necrosis factor
TMB: etramethylbenzidine

U
UHMW: ultra-high molecular weight

V
WB: Weight bearing

W
WHO: World Health Organisation
WOMAC: Western Ontario & McMaster Universities index of osteoarthritis

Z
Dedication

To my Parents

Chloe & Panayiotis Pengas
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who believe in me and in doing so helped to bring this project into completion. To those who helped in one way or another, directly or indirectly, throughout this thesis project and beyond. This is especially for you!

First and foremost a big thank you goes to all the patients who sacrificed their valuable free time to attend the clinics and by doing so help to expand our knowledge on the long term effects of total meniscectomy. I would like to thank Mr M. McNicholas who steered me towards this wonderful project. Without him I would not have had the courage to embark on this journey. I also must state that without the stepwise and constant support coming from Prof S. Lohmander of Lund, Sweden, I would have found it a lot more difficult to complete this project.

My very close friend Dr D. Xyrodemas, for helping me out with the laboratory skills and materials required in dealing with tissue samples. In addition, Mr Angelos Assiotis, Mr William Nash and Ms Jo Banks for their invaluable help throughout this long process. Special thanks go to Alison (may you rest in peace) & Julian Hatcher, of Salford University, for sacrificing their precious personal time to assist, despite their difficult circumstances.

A thank you also goes to everyone at the TORT, especially: Ian Christie, Dr W. Wong, my supervisor Mr Carlos Wigderowitz & Prof R Abboud. All the Nursing and Radiology staff that helped. In particular to Douglas Mitchell for allowing access to the radiology department in Perth Royal Infirmary (PRI), Allan Brown of PRI Laboratory Services for securing space and access to the Biochemistry department, Sally Chalmers & D. Kellogg from the Tissue Bank at Ninewells Hospital for helping with the storage and safe transfer of samples to Sweden for analysis. Senior Sister Cathy Henderson, PRI
outpatient department, for allowing access to the department and Vicky Taylor for helping me organise the review clinics.

This study was supported from the charitable fund of North Cheshire Hospitals NHS Trust to the tune of £50 per patient plus sample transport expenses of £529.69 to Lund University in Sweden for analysis by Prof S. Lohmander.

Lastly but perhaps most importantly, I would like to express my huge gratitude to Mr Alberto Gregori for his personal and professional support when I needed it the most. Without your help I would not have succeeded in achieving any of my long-term goals.

Thank you Mr G.

Above all I will always be indebted to my family, my parents Panayiotis and Chloe Pengas, my brother Giorgos and my wife Erica for their constant belief in me, their support and guidance through thick and thin.

No man is an Island

J. Donne 1572-1631
DECLARATION

I hereby declare that the content of this submission is my own work and that it contains no material previously written or published by another person nor material which has previously been submitted or accepted for the degree of Doctor of Medicine (MD).

Mr Ioannis Panayiotou Pengas MBChB, MRCS, MPhil
(07/09/2012)

In capacity as supervisor of the candidate’s thesis, I certify that the above statements are true to the best of my knowledge.

Mr Carlos Wigderowitz
Summary

Meniscal tears are the commonest knee injury and currently are addressed almost exclusively by arthroscopy.

Ian Smillie the late Professor of orthopaedics in Tayside, popularised open total meniscectomy worldwide during the 1950s believing that this was necessary for a functioning fibrocartilage replica to completely occupy the ensuing space.

The cohort in this study underwent open total meniscectomy under his care prior to their 19th birthday. It was documented in their then records that no other knee pathology was observed during the operation and that the same post operative regime was followed by all. This presents a unique opportunity to evaluate the long term outcomes of open total knee meniscectomy during adolescence and to further investigate biological markers of osteoarthritis 40 years down the line.

Fifty-three patients who underwent radiographic evaluation at the 30 year follow-up were further studied at this 40 year review. All surviving and contactable patients were consented prior to assessment and were evaluated clinically; biochemically, radiologically and subjectively once ethical approval and funding were secured.

Standardisation of all methods used for examination, radiographic evaluation, sampling of serum and synovial fluid and patient reported outcome measures (PROMs) was achieved by the use of recognised, validated and credible systems as well as good communication between all involved parties. Such examples include the construction of a wooden apparatus standardising the weight bearing skyline views and the need for a smooth and efficient transition between sampling, preparing, storing and transferring the synovial and serum samples.
Once all the data were collected, the first striking finding was the proportion of total knee arthroplasties (TKAs) observed as a hard endpoint in this cohort, which suggested a 132 fold increase when compared to their age and geographically matched population data, as per Scottish Arthroplasty Project.

It was important to assess if in this cohort the site of meniscectomy demonstrated a significant difference in terms of tibiofemoral joint (TFJ) osteoarthritis, range of motion (ROM) and PROMs as per our chosen scoring systems. As this proved not to be the case, the operated knee was assessed against the non-operated knee where possible and not as per site of meniscectomy.

Also the assessed sagittal laxity between the knees did not demonstrate any significant difference and as such was excluded as a confounding factor in terms of initiators of osteoarthritis.

A linear correlation was observed between the chosen scoring systems of TFJ osteoarthritis. The calculated relative risk (RR) of developing osteoarthritis (OA) in the operated vs. non-operated knee was calculated for both the KL & Ahlback grading systems with presumed osteoarthritis as ≥2 for KL & ≥1 for Ahlback. This was found to be 4.5 & 4.25 respectively.

Decreased ROM between the Index and Non-index knees was observed, with the ROM correlating with PROMs and inversely with TFJ OA.

In addition the usually under investigated patellofemoral joint was assessed. Patellofemoral joint osteoarthritis was noted in the index knees as opposed to the non-index knees with an observed RR of 1.8 as per presence of osteophytes. There was no significant difference in the degree of patellofemoral joint (PFJ) osteoarthritis between lateral and medial meniscectomies. There was however significant correlations between
the joint space narrowing (JSN) and PROMs, TFJ OA and ROM. Worsening results were observed where the PFJ was <5mm.

Malalignment was greater in those knees that underwent medial meniscectomy as opposed to either lateral or medial & lateral meniscectomies. Malalignment demonstrated correlation with ROM and TFJ OA.

Serum and synovial fluid was processed and analysed with regards to biomarkers of OA in the form of MMP-3 and GAG. Neither serum nor synovial MMP-3 demonstrated any significant correlation with other measured parameters. GAG on the other hand demonstrated a significant difference between the index and non-index knee as well as a positive correlation to IKDC and an inverse correlation with TFJ OA. Although this is suggesting that synovial GAG as a biomarker for OA may indicate progression of disease and symptoms, the wider spread of values questions this.

Two different PROMs were utilised to assess this cohort. Interestingly the KOOS demonstrated that in all its 5 parameters the cohort was symptomatic. Correlations were observed between the KOOS ADL & Sport as well as IKDC with TFJ OA.

This is currently the longest follow-up of open total meniscectomy in adolescence worldwide. A >4 fold increased risk of osteoarthritis in the operated knee as compared to the non-operated knee was demonstrated and possibly a 132 fold increase in TKA as compared to their aged matched geographical peers.