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Abstract In this paper, we model Rogue Waves as local-
ized instabilities emerging from homogeneous and station-
ary background wavefields, under NLS dynamics. This is
achieved in two steps: given any background Fourier spec-
trum P(k), we use the Wigner transform and Penrose’s
method to recover spatially periodic unstable modes, which
we call unstable Penrose modes. These can be seen as gen-
eralized Benjamin–Feir modes, and their parameters are
obtained by resolving the Penrose condition, a system of
nonlinear equations involving P(k).Moreover, we showhow
the superposition of unstable Penrose modes can result in the
appearance of localized unstable modes. By interpreting the
appearance of an unstablemode localized in an area not larger
than a reference wavelength λ0 as the emergence of a Rogue
Wave, a criterion for the emergence of Rogue Waves is for-
mulated. Our methodology is applied to δ spectra, where the
standard Benjamin–Feir instability is recovered, and to more
general spectra. In that context, we present a scheme for the
numerical resolution of the Penrose condition and estimate
the sharpest possible localization of unstable modes.
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1 Introduction

Rogue Waves in the ocean are often defined as waves larger
than twice the significant wave height, 2Hs, loosely speaking
waves “much larger than the waves around them”. Following
dramatic direct and indirect evidence for the existence and
impact of Rogue Waves in the last 30 years, a consensus has
emerged that although they are rare events, they are much
more common than the statistics of “usual” waves would
lead us to expect (Dysthe et al. 2008). More recently, Rogue
Waves have been identified inmany different noisy nonlinear
wave systems (Chabchoub et al. 2015; Onorato et al. 2013b),
including Bose–Einstein condensates (He et al. 2014) and
optics (Dudley et al. 2014).

There is intense debate on the modelling of RogueWaves,
especially on the mechanisms responsible for their emer-
gence. Numerous studies link them with breathers (Chab-
choub et al. 2012; Dudley et al. 2014; Kibler et al. 2015;
Onorato et al. 2013) or other special solutions of nonlinear
Schrödinger equations.

Many authors point out that Benjamin–Feir instabilities
of focusing nonlinear waves must play a key role in the for-
mation of RogueWaves (Chabchoub et al. 2015; Kibler et al.
2015; Onorato et al. 2013b). In this work, we quantify for
the first time how a continuous superposition of Benjamin–
Feir-type instabilities can create a highly localized, rapidly
growing perturbation of a noisy wave background. A key
novelty of our analysis is that it can be applied to any back-
ground Fourier spectrum, not just plane waves. Another key
point is that we quantify how spatially-periodic Benjamin–
Feir-type modes can combine to yield persistently localized
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unstable modes, and what are the fundamental lengthscales
and timescales of this localization.

To achieve this, we study the Wigner transform of the
nonlinear Schrödinger equation, and then carry out a linear
stability analysis of the resulting exact, nonlinear Wigner
equation in phase space.On the technical level,we adapt tools
originally invented by Penrose for the study of the Vlasov–
Poisson equation (Penrose 1960).

Finally, it must be mentioned that our approach can be
applied to a large family of nonlinear pseudodifferential
equations (including in particular realistic Whitham opera-
tors). This is due to the pseudodifferential calculus available
for the Wigner transform (Athanassoulis et al. 2011; Gérard
et al. 1997).

1.1 Nonlinear Schrödinger equations and the role of the
functional framework

Nonlinear Schrödinger equations (NLS) of the form

i∂t u + p

2
�u + q|u|2u = 0 (1)

are used to model a wide variety of nonlinear wave phenom-
ena including water waves, see (Chabchoub et al. 2015; Mei
et al. 2005; Onorato et al. 2013, b; Segur et al. 2005; Sulem
and Sulem 1999; Zakharov 1968) and the references therein.
A key dichotomy in this class lies between the focusing and
defocusing cases: if pq < 0, then we have the defocusing
NLS, and strong stability results and a priori estimates are
available. On the other hand, if pq > 0, then we have the
focusing NLS, and much more unstable behaviour is possi-
ble.

In the context of ocean waves with a central wavenumber
k0, the envelope can be seen to satisfy a focusing NLS of the
form (1) with (Mei et al. 2005, Eqs. (13.2.45), (13.2.61))

p = −√
g

4k
3
2
0

, q = −
√
g

2
k

5
2
0 . (2)

In this paper, we will use the forced and damped focusing
NLS

i∂t u + p

2
�u + q|u|2u + i

2
Du = f (3)

for the envelope u as a basic model for the unidirectional
propagation of narrowband ocean waves (Slunyaev et al.
2015; Segur et al. 2005). The envelope u(x, t) and the phys-
ical sea surface elevation η(x, t) (on an appropriate frame
of reference) are related by Mei et al. (2005), Onorato et al.
(2013), Segur et al. (2005) and Zakharov (1968)

η(x, t) = Re
�
u(x, t)ei(k0·x−ω0·t)

�
. (4)

Thus, the Fourier spectrum for η usually has a peak at k = k0,
while the Fourier spectrum for the corresponding envelope
u is translated to have a peak at k = 0. The wavenum-
ber k0 will be called interchangeably the central, carrier or
modal wavenumber. The central frequency ω0 = ω(k0) is
determined by virtue of the deep water dispersion relation,
ω2 = gk (Mei et al. 2005, Eq. (13.2.20b)).

The parameter D > 0 models dissipation (Slunyaev et al.
2015; Segur et al. 2005), which in most cases is very small,
but physically present. The right hand side term f mod-
els applied pressure (e.g., by the wind) (Bühler et al. 2016;
Maleewong et al. 2005), wave breaking (Cousins and Sapsis
2014), and other processes.

While modified NLS equations with additional terms
have been proposed to model accurately higher order effects
(Trulsen and Dysthe 1996; Trulsen et al. 2000), in many
cases, the basic model (3) contains the most fundamen-
tal physics of the problem. Indeed, we will see that key
mechanisms and scalings generating localized instabilities
are already contained in Eq. (3). This is consistent with the
consensus that Rogue Waves are a generic phenomenon of
nonlinear dispersive waves (Chabchoub et al. 2015; Dudley
et al. 2014; He et al. 2014; Kibler et al. 2015; Onorato et al.
2013b), and thus, they do not originate from some peculiar
term arising only in a very specific context.

A mathematical aspect of Eq. (3) that is sometimes phys-
ically underestimated is that of the boundary conditions or,
in other words, of the behaviour at infinity. A “harmless”
assumption like u(t = 0) ∈ L2

x means that the wavefunction
has to decay to zero at infinity—an assumption seemingly
inappropriate for ocean waves. Indeed, the mathematical
study of focusing Schrödinger equations with non-vanishing
behaviour at infinity indicates that it is much more unsta-
ble than the vanishing case, and this aspect seems to play a
role in the formation of RogueWaves. One realization of this
effect is the formation of breathers, long linked with Rogue
Waves (Chabchoub et al. 2012; Dudley et al. 2014; Kibler
et al. 2015; Onorato et al. 2013). However, breathers grow
out of a plane wave background; the object of our analysis
is to capture the first stages of a breather-like solution grow-
ing out of a background consistent with a realistic Fourier
spectrum, in particular not an exact plane wave.

1.2 The Wigner transform and phase-space modelling

Given a wavefunction u(x, t), its Wigner transform (WT) is
defined as

W (x, k, t) = W [u(t)](x, k)=
�

y

e−2π ikyu(x+ y

2
, t)u(x− y

2
, t)dy.

Observe that W [u(t)](x, k) is real valued for any complex
valued function u(x, t).
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The WT keeps track of how much “wave action” can be
found in each wavenumber k, at every point x and every
moment in time t (Cohen 1976; Rubinstein and Wolansky
2005; Mallat 1999; Lions and Paul 1993).

Broadly speaking, the advantage of working with
W (x, k, t) as opposed to u(x, t) is that it can be used as
a tool for homogenization: in a problem with a large number
of individual waves N , it will take at least O(N ) degrees
of freedom to meaningfully represent (in a non-parametric
way) u(x, t). In contrast,W (x, k, t) plays the role of a phase-
space energy density, and its complexity does not grow with
N ; in fact, in many problems, the WT “cleans up” for large
N . Thus, theWT offers a way to coarse-grain the problem. It
has been extensively used inmany linear problems, including
the semiclassical limit of quantummechanics (Athanassoulis
2008; Athanassoulis et al. 2009; Lions and Paul 1993; Gérard
et al. 1997) and the simulation of graphene (Fermanian-
Kammerer and Méhats 2016).

A particularity of the WT is that, since it is essentially a
secondmoment ofu, in nonlinear problems, youdonot obtain
automatically an exact, closedWigner equation.However, for
the NLS equation a closed, exact Wigner equation derived
by exploiting the correct marginal property

|u(x)|2 =
�

k

W [u](x, k)dk

effectively as a moment closure. This control of the mag-
nitude of point values of u(x, t) is also instrumental in
describing localized instabilities quantitatively.

We directly compute the WT of Eq. (3) in Sect. 2.2. The
same ideas can be used to derive the exact, closed nonlinear
Wigner equation corresponding to a wide range of nonlinear
dispersive equations, including the MMT equation (Majda
et al. 1997; Cousins and Sapsis 2014), Ginzburg–Landau
models (Aranson and Kramer 2002), Hartree equations
(Athanassoulis et al. 2011), and the Szegö equation (Pocov-
nicu 2011). In particular, the Whitham pseudodifferential
operator (Whitham 1967) can be treated in the place of the
Laplacian, so that fully realistic dispersion is used.

It must be noted that if u is thought of as a stochastic
process u = u(x, t;β), the Wigner spectrum

〈W (x, k, t)〉β

:= Eβ

�

�
�

y

e−2π ikyu(x + y

2
, t;β)u(x − y

2
, t;β)dy

�

� ,

i.e., the average Wigner transform, can also be used for the
analysis of u. This has been used in the context of signal
processing for non-stationary random processes (Martin and
Flandrin 1985) and for the propagation of waves in random

media (Bal et al. 2003; Ryzhik et al. 1996; Erdös and Yau
2000). In the context of water waves, Alber (1978) used the
Wigner spectrum to study the directional stability of solu-
tions of the two-dimensional Davey–Stewartson equations in
a narrowband setting. The Alber equation was derived under
a Gaussianity assumption, and it has since been studied in the
context of directional stability, as well as numerically (Ribal
et al. 2013; Crawford et al. 1980; Stiassnie et al. 2008; Regev
et al. 2008; Dysthe et al. 2003).

1.3 Structure of the paper

In Sect. 2.1, some key properties of the WT are revisited,
and in Sect. 2.2, the exact, nonlinear equation governing the
WT of the NLS (3), Eq. (11), is derived. In Sect. 2.2, it is
checked that, in the absence of forcing, i.e., for f = 0, any
homogeneous initial data W0(x, k) = P(k) give rise a time-
decaying homogeneous solution of the Wigner equation,
W (x, k, t) = e−Dt P(k). Indeed, since there is dissipation
in Eq. (3), the absence of forcing any solution would have to
decay in time. However, the combination of dissipation and
forcing can create solutions that are homogeneous as well as
stationary. We call this combination the Deterministic Bal-
anced Wigner (DBW) equation, cf. Eq. (12). That way we
recover the setting widely observed in ocean waves, namely,
of wavefields that appear to be homogeneous and stationary,
at least for timescales of a few hours, and space scales of
several kilometers. These are exactly the scales, where the
emergence of extreme events is most interesting.

Crucially, by virtue of the WT, we can work with any
observed Fourier spectrum P(k), despite the lack of explicit
representations for realistic u(x, t) or f (x, t). The merit of
this is that now, we can perform a linear stability analysis
for the Fourier spectrum P(k), with dynamics equivalent
to the NLS Eq. (3). In Sect. 3.1, we proceed to investi-
gate small perturbations of P(k) by denoting W (x, k, t) =
P(k) + εw(x, k, t), ε � 1, and obtaining a linearized equa-
tion for the evolution of the perturbation w(x, k, t), namely,
Eq. (14).

This linearization is grounded on smallness of
εw(x, k, t); that is, this is a weakly non-stationary, weakly
non-homogeneous regime. In particular, we do not introduce
any additional1 smallness assumptions for the amplitude of
the background waves, which is controlled by

	
P(k)dk.

Following an approach Penrose devised for the classical
Vlasov–Poisson equation (Penrose 1960; Bardos and Besse
2013), we introduce the ansatz

wζ (x, k, t) = Fζ (k)e
iζ(x−2π(αζ +iβζ )t) (5)

1 There is an inherent smallness assumption in using the NLS as an
approximate equation.
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for solutions of the linearized Eq. (14). Should such a solu-
tion exist, ζ is its wavenumber, 2παζ its velocity, and 2πζβζ

its exponential rate of growth or decay, depending on its sign.
If ζβζ > 0 we say the mode is unstable. (The k-profile Fζ (k)
plays only a secondary role.) We will also use the notation
ζ = αζ + iβζ for the complex “Penrose frequency”. Plug-
ging the ansatz (5) in the linearized equation, we obtain the
Penrose condition

2πζ

q
=

�

k∈R

P



k − ζ

4π

�
− P



k + ζ

4π

�

pk −  − i
D

2πζ

dk. (6)

If the denominator becomes singular, the integral should be
interpreted in the Cauchy principal value sense (it becomes
essentially aHilbert transform). This connectionwill become
apparent when looking into some more detailed questions in
Sect. 5.3.

Observe that Eq. (6) is a system of two real-valued equa-
tions (real and imaginary part) for three real unknowns
(ζ, α, β), hence in general we expect the solution set to be a
(union of) curve(s) inR3. Every solution (ζ, α, β) of the Pen-
rose condition leads to a Penrose mode, which automatically
is a solution of Eq. (14). However, the interesting Penrose
modes are the unstable ones, i.e., the ones with ζβζ > 0.
To work with these unstable modes systematically, we will
call the set of all ζ ∈ R for which there are unstable Penrose
modes the set of resonant Penrose numbers, denoted by

P = {ζ ∈ R | ∃ζ ∈ C so that Eq.(6) is satisfied,

and ζ Imζ > 0}. (7)

Unstable Penrose modes generalize Benjamin–Feir side-
bands. Indeed, it is checked in Sect. 4.2 that when u is a
plane wave, our approach is an equivalent construction of
the standard modulation instability. The advantage of Pen-
rose stability analysis though is that it can be carried out
for any background Fourier spectrum P(k), as opposed to
around plane waves only.

Moreover, since the linearized Eq. (14) is by construc-
tion linear in w, we can create more interesting solutions by
superpositions of unstable Penrose modes

w(x, k, t) =
�

G(ζ )wζ (x, k, t)dζ

for various weights G(ζ ). In Sect. 3.2, we demonstrate that
such composite solutions can be highly localized— in con-
trast to the spatially periodic Penrose modes. Moreover, we
observe that their key scalings (how sharply localized they
can become, how fast they grow) are controlled by the Pen-
rose condition (6), and not the weight G(ζ ), which seems to

not play an essential role. This is elaborated with the help of
numerical results in Sect. 4.3.

A key finding is that for each observed Fourier spectrum
P(k), the Penrose bandwidth |P|, i.e., the Lebesgue measure
of the set P of unstable Penrose numbers, is controlling how
sharply localized any instabilities of Eq. (3) can become.
Localized unstable modes can be interpreted as a concentra-
tion of energy from the homogeneous background into small
regions; in this context, a linearly unstable mode localized
over a single typicalwavelength,λ0 = 2π

k0
, will be interpreted

as the emergence of a Rogue Wave. Moreover, we find that
the timescale τ at which the linearly unstable modes grow,
measured in wave periods T0 = 2π

ω0
, does not depend on

k0. In particular, we find that within ≈ 40 wave periods, the
perturbation grows from ≈1% to ≈1. This is consistent with
state-of-the-art numerical results for the prediction of Rogue
Waves in the NLS, (Cousins and Sapsis 2016).

InSect. 4,wework explicitly the narrowband limit P(k) ≈
A2δ(k−k0).This allows an explicit comparisonwith the stan-
dard modulation instability and a systematic investigation
of the emergence of localized instabilities with the benefit
of some explicit results. In Sect. 5, a numerical scheme for
the resolution of the Penrose condition (6) is formulated.
It is then applied to a realistic Ochi–Hubble spectrum. It is
found that as the spectrum becomes broader, if Hs remains
the same, then the localization of unstable modes deterio-
rates. In that sense, our analysis can be used to quantify
the trade-off between the size of the support of the Fourier
spectrum and the wave height, i.e., the “stabilization through
spectral broadening”. That would essentially amount to a
Benjamin–Feir indexwhich takes fully into account the shape
of the Fourier spectrum. A semi-analytic technique to deter-
mine whether there are solutions of the Penrose condition is
presented in Sect. 5.3, along with some resulting characteri-
sations of symmetric unimodal spectra.

2 Wigner transform and the DBW equation

2.1 The Wigner transform

The Wigner transform (WT) is a sesquilinear transform

W : u, v 	→ W [u, v](x, k) =
�

y∈Rn

e−2π ikyu
�
x+ y

2


v̄
�
x − y

2


dy.

When u = v, i.e., in the quadratic version of the Wigner
transform, the notation can be simplified to

W [u] := W [u, u] =
�

y

e−2π ikyu
�
x + y

2


u
�
x − y

2


dy.

(8)
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Lemma 2.1 The following correct marginal properties

�

k

W [u](x, k)dk = |u(x)|2,
�

x

W [u](x, k)dx = |�u(k)|2,

(9)

and the operational properties

W [u, v] = W [v, u], W [xu, v] =


x − 1

4π i
∂k

�
W [u, v],

W [∂xu, v] =


2π ik + 1

2
∂x

�
W [u, v] (10)

hold true.

Proof The proofs follow fromdirect computations (Athanas-
soulis 2008; Gérard et al. 1997). ��

Lemma 2.2 (Wigner transform of plane waves) The plane
wave u(x, t) = Ae2π i(ξ x−ωt), A, ξ ∈ R, ω ∈ C, has WT
given by

W [u(t)](x, k) = A2e4π Imωtδ(k − ξ).

Proof By direct computation, we obtain

W [Ae2π i(ξ x−ωt)](x, k) = |A|2e4π Imωt
�

y

e−2π ikye2π iξ(x+
y
2 )−2π iξ(x− y

2 )dy

= |A|2e4π Imωt
�

y

e−2π iy(k−ξ)dy = A2e4π Imωtδ(k − ξ).

��

Finally, we will also use the following computation:

Lemma 2.3 Let V : R → R, u : R → C. Then

W [Vu, u] − W [u, Vu] =
�

y

e−2π iky V
�
x − y

2

�− V
�
x + y

2

�

y
dy ∗k

× ∂k

2π i
W [u](x, k),

where ∗k denotes convolution in the k variable only.

Proof We will normalize the Fourier transform as

Fx→k[ f (x)](k) = �f (k) =
�

x∈R

e−2π ik·x f (x)dx .

Then, one readily checks that

W [Vu, u] − W [u, Vu] =
�

y

e−2π iky
�
V
�
x + y

2



− V
�
x + y

2

 �
u
�
x + y

2


u
�
x − y

2


dy

= Fy→k

�
V
�
x + y

2

�− V
�
x − y

2

�

y
yu
�
x + y

2


u
�
x − y

2

�

= Fy→k

�
V
�
x + y

2

�− V
�
x − y

2

�

y

�

∗k ∂k

−2π i
W [u](x, k)

=
�

λ,y

e−2π iλy V
�
x − y

2

�−V
�
x+ y

2

�

y
dy

∂k

2π i
W [u](x, k−λ)dλ.

��

2.2 DBW equation and stationary and homogeneous
solutions

The derivation of the Wigner equation corresponding to (3)
is known (Athanassoulis et al. 2009). However, for the sake
of completeness, we outline it here: let u satisfy Eq. (3), and
W = W [u(t)](x, k); then

∂tW = W [∂t u, u] + W [u, ∂t u] = i

2

�
W [p�u, u] − W [u, p�u]



+ iq
�
W [|u|2u, u] − W [u, |u|2u]


− DW + W [ f ],

leading to the exact Wigner equation

∂tW + 2πpk∂xW

− q

2π

�

λ,y∈R

e−2π iλy V (x − y
2 , t) − V (x + y

2 , t)

y
dy∂k

×W (x, k − λ, t)dλ + DW = W [ f ],
V (x, t) =

�

ξ

W (x, ξ, t)dξ,

W (x, k, t = 0) = W0(x, k), (11)

by virtue of Lemmas 2.1 and 2.3. Observe that as long as
V (x, t) = 	

ξ
W (x, ξ, t)dξ is differentiable (e.g., either C1

or H1), then
V (x− y

2 ,t)−V (x+ y
2 ,t)

y makes sense for almost all
y; in particular, for |y| � 1, it simply looks like ∂x V (x, t).
Thus, the dy integral in Eq. (11) makes sense as a Fourier
transform under simple differentiability conditions.

At first glance, any homogeneouswave spectrum P(k) can
be seen as a time-decaying solution of the unforced Wigner
equation (11): indeed, if f = 0, the Wigner equation (11)
with homogeneous initial data, W0(x, k) = P(k), has the
homogeneous solution:
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W (x, k, t) = e−Dt P(k)

since

∂tW + 2πpk��∂x P

− q

2π

�

λ,y∈R

e−2π iλy����������	

ξ

P(ξ)dξ − 	
ξ

P(ξ)dξ

y
dy

∂kW (x, k − λ, t)dλ + DW = 0 ⇒ ∂tW = −DW.

The conclusion now follows by solving an ODE.
However, the time-decaying solutions described above do

not correspond to what is usually observed in the ocean.
Indeed, forcing terms describing wind, wave breaking, etc
are crucial in explaining why certain stationary spectra are
common, and some are almost never observed. To observe a
given stationary spectrum P , the dissipation term DW has to
cancel out the effective forcing.2 This situation can be cap-
tured as follows: if W0(x, k) = P(k) and W [ f ] = DP(k),
then the deterministic balanced Wigner equation

∂tW + 2πpk∂xW

− q

2π

�

λ,y∈R

e−2π iλy V (x − y
2 , t) − V (x + y

2 , t)

y
dy∂k

×W (x, k − λ, t)dλ + DW = DP(k),

V (x, t) =
�

ξ

W (x, ξ, t)dξ, W (x, k, 0) = P(k) (12)

has the stationary and homogeneous solution:

W (x, k, t) = P(k).

Indeed, one readily checks that

∂tW + 2πpk��∂x P

− q

2π

�

λ,y∈R

e−2π iλy����������	

ξ

P(ξ)dξ − 	
ξ

P(ξ)dξ

y
dy

× ∂kW (x, k − λ, t)dλ +��DP = ��DP ⇒ ∂tW = 0.

We call Eq. (12) the deterministic balanced Wigner equa-
tion, because it contains effective forcing and damping terms,
in addition to the free evolution terms.

2 This situation is reminiscent of the fluctuation–dissipation theorem
in classical statistical mechanics.

3 Penrose stability analysis

3.1 Linearization, unstable Penrose modes, and the
Penrose condition

We investigate small perturbations of the stationary and
homogeneous solution W (x, k, t) = P(k) of Eq. (12), and
whether such perturbations can growarbitrarily.More specif-
ically, we look for solutions of Eq. (12) of the form

W (x, k, t) = P(k) + εw(x, k, t), (13)

and particularly whether w can grow rapidly, so that
εw(x, k, 0) is negligible at t = 0 but εw(x, k, T ) becomes
comparable to the backgroundwaves over somemeaningful3

timescale T . Using Eq. (13) to rewrite the problem for the
perturbation w(x, k, t) only, Eq. (12) becomes

∂tw + 2πpk∂xw

− q

2π

�

λ,y∈R

e−2π iλy

	

ξ

�
w(x− y

2 , ξ, t) − w(x+ y
2 , ξ, t)

�
dξ

y
dy∂k

×
�
P(k − λ) + εw(x, k − λ, t)


dλ + Dw = 0.

Dropping the quadratic term, we are led to the linearized
DBW equation:

∂tw + 2πpk∂xw

− q

2π

�

λ,y∈R

e−2π iλy

	

ξ

�
w(x − y

2 , ξ, t) − w(x + y
2 , ξ, t)

�
dξ

y
dy∂k

×P(k − λ)dλ + Dw = 0. (14)

The driving question now becomes; are there solutions w

of Eq. (14) that can grow rapidly in time? To answer this
question, we will use an idea originally introduced by Pen-
rose for the stability of plasmas (Penrose 1960), namely, the
introduction of an appropriate ansatz for the solutions of Eq.
(14). In the process, we will also recover the timescales and
other qualitative features of linearly unstable modes.

We will seek solutions of the linearized DBW equation
(14) as inEq. (5). Such solutionswill be calledPenrosemodes
of wavenumber ζ . The first question is, for which ζ , Fζ (k),
and ζ do Penrose modes exist? In addition, second, are
there Penrose modes with Im

�
ζζ

�
> 0? If solutions with

Im
�
ζζ

�
> 0 exist, these correspond to perturbations of

3 Meaningful here means not so fast that it would not be physically
plausible, but not so slowly that, e.g., the weather would have changed
altogether destroying the stationarity assumption. An estimate of this T
in wave periods in the narrowband limit is made in Sect. 4.3.
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P(k) that grow arbitrarily, and they will be called unstable
Penrose modes.

Of course, once the perturbation grows sufficiently, the
linearized equation should no longer be expected to approx-
imate well the nonlinear problem; however, the question we
focus on is whether the growth of such perturbations is pos-
sible in the first place.

Plugging the ansatz (5) in Eq. (14), we get

2π iζ(pk − )F(k)eiζ(x−2πt) − q

2π

�

λ,y,ξ

e−2π iλy

×
F(ξ)

�
eiζ((x− y

2 )−2πt) − eiζ((x+ y
2 )−2πt)



y
dξdy∂k P(k − λ)dλ

+ DF(k)eiζ(x−2πt) = 0,

which finally leads to

Fζ (k)	
ξ
Fζ (ξ)dξ

= q

2πpζ

P(k − ζ
4π ) − P(k + ζ

4π )

k − 1
p − i D

2πpζ

(15)

for the admissible k profile of a Penrose mode. Moreover,
upon integrating Eq. (15) in k, obtain the Penrose condition,
i.e., Eq. (6).

Thus, if there are solutions ζ ∈ R, ζ ∈ C for the Penrose
condition (6), then the linearized DBW equation (14) has a
solution given by the Penrose mode:

wζ (x, k, t) = P(k + ζ
4π ) − P(k − ζ

4π )

ζk − ζ
pζ − i D

2πp

eiζ(x−2πζ t). (16)

Since Eq. (14) is a linear equation, applying scalar factors or
taking real parts is possible.

3.2 Superposition of unstable modes and localized
instabilities

So far, we have seen how solving the Penrose condition
(6) can lead to the construction of spatially periodic unsta-
ble modes for a given spectrum. However, physical extreme
events—including oceanic Rogue Waves—are typically due
to localized wavepackets, and not spatially periodic patterns.
Here, we will see how our construction can describe local-
ized instabilities aswell.While ourmathematical approach is
completely different, physically, our results are reminiscent
of (Kibler et al. 2015).

Assume that for a given background spectrum P(k), we
have resolved the Penrose condition, i.e., we have found all
ζ = αζ + iβζ , so that Eq. (6) holds and ζβζ > 0. This
of course means that we know all unstable Penrose modes,

by virtue of Eq. (16). Then, due to the linearity of Eq. (14),
superpositions of Penrose modes

w(x, k, t) = q

2πp
Re

×
�

ζ∈P

G(ζ )
P(k + ζ

4π ) − P(k − ζ
4π )

ζk − ζ
pζ − i D

2πp

eiζ(x−2πζ t) dζ

(17)

are also solutions of Eq. (14) for any weight G(ζ ). Recall
also that the whole point of Eq. (14) is that, for ε � 1,
P(k) + εw(x, k, t) ≈ W (x, k, t), where W (x, k, t) is the
solution of the nonlinear Wigner equation (12), at least until
some timewhenw becomes too large in an appropriate sense.
By virtue of the marginal property of the Wigner transform,
Lemma 2.1, P(k) + εw(x, k, t) ≈ W (x, k, t) implies

|u(x, t)|2 =
�

k

W (x, k, t)dk ≈
�

k

�
P(k) + εw(x, k, t)

�
dk

= A2 + ε

�

k

w(x, k, t)dk, (18)

where A2 := 	
k P(k)dk is the zero moment of the back-

ground Fourier spectrum. Therefore, the quantity

n(x, t) :=
�

k

w(x, k, t)dk (19)

controls the x, t localization of instability in the sense that

|u(x, t)| ≈
�

|A|2 + εn(x, t) (20)

as long as the linearization (14) provides an acceptable
approximation of (12).

Moreover, it can be seen that

n(x, t) =
�

k

w(x, k, t)dk

= q

2πp
Re
�

ζ∈P

�

k∈R

P(k + ζ
4π ) − P(k − ζ

4π )

ζk − ζ
pζ − i D

2πp

× dk G(ζ )eiζ(x−2π(ζ )t)dζ

= Re
�

ζ∈P

G(ζ )eiζ(x−2παζ t)+2πζβζ tdζ. (21)

The finding here is that the dk integral is exactly the one
controlled by the Penrose condition; hence, it can be carried
out explicitly and the result does not depend on ζ .

The behaviour of this expression depends more on P, αζ ,

βζ than on the weight G(ζ ), cf. Fig. 1. In fact, Eq. (21)
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Fig. 1 Numerical evaluation of εn(x, t) for A = 5.3, k0 = 0.24 and
different weights G(ζ ) and times t . Time is measured in timescales
τ, cf. Eq. (22). Top left plot for G(ζ ) = 1

3 , t = 1τ. Top right plot for

G(ζ ) = 1
3 , t = 7τ.Bottom left plot forG(ζ ) = −iζ(ζ 2−ζ 2

max)e
− 4ζ2

ζ2max ,

t = 1τ. Bottom right plot for G(ζ ) = −iζ(ζ 2 − ζ 2
max)e

− 4ζ2

ζ2max , t = 7τ

becomes very powerful once we have found all (ζ, α, β) sat-
isfying the Penrose condition, as we will see in detail in
Sect. 4.3.

A related question that we can address here is that of
timescales: since we have been working with a linearized
equation, for how long can we trust this linearization to be
qualitatively correct? The answer is determined by the fastest
rate of growth of any unstable Penrose mode.

Thus, the timescale

τ = 1

sup
ζ∈P

2πζβζ

(22)

appears.

4 Case study for a prototypical narrowband
spectrum

4.1 Finding the unstable Penrose modes

To see precisely what the previous computation mean phys-
ically, it is instructive to apply them to the simplest narrow-
band, stationary solution of the NLS, namely

P(k) = A2δ(k − 0).

This is the case of the Fourier spectrum for the envelope
u, concentrated at k = 0. It is equivalent with a Fourier

spectrum of A2δ(k − k0) for the sea surface elevation η. The
analysis that follows can be applied to either spectrum; the
difference between the two is a question of normalization,
not dynamics.

In this prototypical case, the Penrose condition (6)
becomes

A2
�

k∈R

δ(k − ζ
4π ) − δ(k + ζ

4π )

k − 
p − i D

2πpζ

dk = 2πpζ

q

⇔ 1
pζ
4π −  − i D

2πζ

− 1

− pζ
4π −  − i D

2πζ

= 2πζ

q A2

finally leading to

ζ = −i
D

2πζ
±
�
p2ζ 2 − 4pq A2

4π
. (23)

In particular, as long as

ζ 2 < 4
q

p
A2, (24)

we have the purely imaginary solutions:

ζ = βζ = −i
D

2πζ
±
�
p2ζ 2 − 4pq A2

4π

= −i
D

2πζ
± i

�
4pq A2 − p2ζ 2

4π
. (25)
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This leads to the Penrose mode

wζ (x, k, t) = P(k + ζ
4π ) − P(k − ζ

4π )

ζ



k ± i

4π

�
2k30 A

2 − ζ 2

�

× eiζ x e



−D±ζ

√
4pq A2−p2ζ2

2

�
t
, ζ 2 < 8k40 A

2.

(26)

This form represents an unstable mode as long as the expo-
nential rate of growth in time is positive, i.e., as long as

−D + |ζ |
�
4pq A2 − p2ζ 2

2
> 0.

This is the case if and only if

4D2

ζ 2 + p2ζ 2 < 4pq A2.

This in turn is at all possible if and only if the bi-quadratic
equation in ζ 2

p2ζ 4 − 4pq A2ζ 2 + 4D2 = 0 (27)

has two distinct roots, i.e., positive discriminant

A4 >
D2

q2
. (28)

Thus, if Eq. (28) holds, then for ζ in the nonempty set P =
{ζ | 4D2

ζ 2
+ p2ζ 2 < 4pq A2}, exactly, one of the Penrose

modes of Eq. (26) is unstable. We can work out P explicitly;
indeed, if

ζmin :=

�����2
q

p

�

�A2 −
�

A4 − D2

q2

�

�,

ζmax :=

�����2
q

p

�

�A2 +
�

A4 − D2

q2

�

�,

then

P = (−ζmax,−ζmin)
�

(ζmin, ζmax).

In particular, observe that if D = 0, then

ζmin = 0, ζmax = 2A
 
q

p
= 2

√
2Ak20 . (29)

4.2 Comparison with the modulation instability

It is instructive to compare our results with the classical
Benjamin–Feir (modulation) instability (Mei et al. 2005).
The appropriate setting would be the linear stability analysis
of the plane wave solution

u0(x, t) = Ae
i

!
ξ0·x−(

pξ20
2 −q A2)t

"

of the NLS

i∂t u+ p

2
�u+q|u|2u+ i

2
Du = D

2
Ae

i

!
ξ0·x−



pξ20
2 −q A2

�
t+ π

2

"

(30)

which is of the same type as Eq. (3). For brevity, we will treat
in full detail the case D = 0, cf. Eq. (1). Moreover, without
loss of generality (i.e., by choosing an appropriate frame of
reference), ξ0 = 0.

Thus, we start from

u0(t) = A0e
iq A2t ,

and consider small perturbations thereof, namely

u(x, t) = A0e
iq A2t (1 + δ(x, t)). (31)

Inserting the ansatz (31) in the NLS equation (1), we obtain

u0
�
iδt + p

2
�δ + q A2

0(δ + δ) + q A2
0(δ + δ)δ

+ q A2
0|δ|2(1 + δ)


= 0 (32)

for δ. To proceed, we divide by u0 and drop terms that are
high order in δ. Thus, we arrive to the linearized equation

iδt + p

2
�δ + q A2

0(δ + δ) = 0; (33)

upon separating real and imaginary parts δ = c + id, it
becomes a system

ct + p

2
�d = 0, dt − p

2
�c − 2q A2

0c = 0, (34)

and finally, by cross differentiation, we can eliminate d to
obtain

ctt + p2

4
�2c + pq A2

0�c = 0. (35)

One readily checks that the plane wave
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c(x, t) = Re
�
Cei

#ζ (x−2π#t)


= Re
�
Cei

#ζ (x−2π Re#t)e2π
#ζ Im#t



(36)

is a solution of Eq. (35) for any C ∈ C as long as

−4π2#ζ 2#2 + p2#ζ 4

4
− pq A2#ζ 2 = 0 (37)

This mirrors exactly Eq. (23).
A similar (but substantially lengthier) calculation is possi-

ble for D > 0 as well. In agreement with (Segur et al. 2005),
Eq. (28) implies that for strong enough dissipation (equiva-
lently small enough amplitude of the background waves), the
modulation instability completely vanishes, i.e., no linearly
unstable modes exist.

In conclusion, using Penrose stability analysis on a δ

spectrum, we recover exactly the well-known modulation
instability. The main point, however, is that Penrose stability
analysis can be applied to any background spectrum, some-
thing that is not possible on the level of the wavefunction u.
We proceed to treat some realistic Fourier spectra of ocean
waves in Sect. 5; however, first, we need to introduce some
more concepts related to the emergence of sharply localized
instabilities.

4.3 Emergence of Rogue Waves

InSect. 4.1,we completely resolved thePenrose condition for
a δ spectrum. Now, we can exploit Eq. (21) to extract quan-
titative information possible about Rogue Wave phenomena
emerging from a very narrow spectrum.

Lemma 4.1 (Localization bound in the absence of dissipa-
tion) Let P(k) = A2δ(k − 0) be the background Fourier
spectrum for thewave envelope u, k0 be the centralwavenum-
ber, and D = 0. Then, no superposition of unstable Penrose
modes can be spatially localized in a region smaller than

4

ζmax
= 4
�
8k40 A

2
.

More specifically, for any weight G(ζ ), consider the super-
position of unstable Penrose modes with weight G(ζ ), cf. Eq.
(17). This will give rise to

|u(x, t)| ≈
�
A2 + εn(x, t),

n(x, t) =
�

s

g(x − s, t)
sin(s

�
8k40 A

2)

s
�
8k40 A

2
ds (38)

where g is depends explicitly on G and the parameters of the
problem.

Remark 4.2 In fact, this result is valid more generally,
namely, when the solutions of the Penrose condition are of
the form (ζ, α0, β(ζ )), where ζ ∈ (−ζmax, ζmax)\{0}, and
ζβ(ζ ) > 0. This turns out to be the case for other spectra as
well.

Proof By virtue of Eq. (21)

n(x, t) = Re
�

|ζ |<2
�

q
p A

G(ζ )eiζ(x−2π(ζ )t)dζ

= Re
�

|ζ |<2
√
2Ak20

G(ζ )eiζ x+2π |ζ |
√

4pq A2−p2ζ2
4π tdζ

= Re
�

|ζ |<2
√
2Ak20

G(ζ )eiζ x+|ζ |

�
g
2 k0 A

2− g
16k30

ζ2

2 tdζ.

Now, denoting #Gt (ζ ) := G(ζ )e|ζ |

�
g
2 k0 A

2− g
16k30

ζ2

2 t , we get

n(x, t) = Re
�

|ζ |<2
�
2k30 A

#Gt (ζ )eiζ xdζ

= Re
�

ζ∈R

eiζ x#Gt (ζ )χ[−2
√
2Ak20 ,2

√
2Ak20 ](ζ )dζ

= 2π Re
�

ζ∈R

e2π i
ζ
2π x#Gt



2π

ζ

2π

�
χ

[−
√
2Ak20
π

,

√
2Ak20
π

]



ζ

2π

�
dζ

2π

= 2π ReF−1
ζ→x

!
#Gt (2πζ)χ

[−
√
2Ak20
π

,

√
2Ak20
π

]
(ζ )

"

= 2

√
2Ak20
π

F−1
ζ→x

�#Gt
� � x

2π


∗ sin(x2

√
2Ak20)

x2
√
2Ak20

.

In otherwords, however,we chooseG(ζ ),n(x, t)will always
be of the form:

n(x, t) = Re
�

s∈R

g(x − s, t)
sin(s2

√
2Ak20)

s2
√
2Ak20

ds

where of course g(x) = 2
√
2Ak20
π

F−1
ζ→x [G(ζ )

e2π |ζ |

�
g
2 k0 A

2− g
16k30

ζ2

4π t ]( x
2π ).

As is well known, sin(xL)
(xL)

has a main lobe supported over

a region of size roughly 4
L . The proof is complete. ��

In Fig. 1, we see the profiles of the perturbation εn(x, t)
for two different weights G(ζ ), measured in timescales τ.

As was seen in Eq. (38), εn(x, t) should be compared with
A2; in this case, A2 = 28.09. Once the values of the per-
turbation become comparable with A2, we can no longer
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trust our linearization as describing accurately the dynamics.
It is clear that the qualitative behaviour of the perturba-
tions does not depend on G(ζ ), but mainly on ζmax, which
controls the lengthscale of persistent localization, and on
τ. Crucially, in Fig. 1, we observe that the perturbation of
A2 increases from approximately 1% of the background
wave to comparable to the background wave within approx-
imately 7τ.

Thus, we can use Lemma 4.1 to formulate a criterion for
the appearance of localized unstable modes which does not
depend on G(ζ ).

Definition 4.3 (Rogue Wave criterion) We will say that a
superposition of unstable Penrose modes can lead to a Rogue
Wave if its effective support is small enough to be comparable
to a single wavelength: λ0 = 2π

k0
.

(i) If we stay in the setting of Lemma4.1 (i.e., no dissipation,
very narrow spectrum), this can be formalized as

2π

k0
�

4

2
√
2Ak20

⇔ A �
1

k0
√
2π

. (39)

This leads to a scaling of A0 ≈ 1
k0π

√
2

≈ 0.2251 · k−1
0

as the smallest amplitude for which instabilities local-
ized within a single wavelength are expected to arise for
η(x, t) with Fourier spectrum P(k) = A2δ(k − k0).

(ii) More generally, if we have unstable Penrose modes with
ζ ∈ P = (−ζmax, ζmax)\{0}, α ≈ α0, and ζβ(ζ ) > 0
for all ζ ∈ P, then the criterion becomes

ζmax >
2k0
π

,

irrespectively of P(k).

In particular, the existence of linearly unstable modes
leads to Rogue Waves only if there is a sufficiently large
collection of unstable modes, which, by superposition, can
create instabilities localized over regions small enough to be
comparable to a single wavelength.

Since the wavelengths λ0 of ocean waves are roughly in
the range 5–200 m, the corresponding wavenumbers k0 are
roughly in the range 1–0.01. Equation (39) means that longer
waves need to have larger amplitudes to trigger localized
enough instabilities to be considered Rogue Waves. More-
over, by virtue of Eqs. (22) and (25), the timescales for the
emergence of these instabilities are given by

τ = 1

max
ζ∈P

2πζβζ

= 2
√
gA2k

5
2
0

.

Given that the period T0 for a wave of wavenumber k0 is
given by

T0 = 2π√
gk0

,

the timescale for the emergence of the instability, measured
in wave periods, is

τ

T0
=

2
√
gA2

0k
5
2
0

2π√
gk0

= 1

π A2k20
. (40)

Now, if we combine this with Eq. (39) for amplitudes close
to the critical value A0, it follows that the time (measured in
wave periods) it takes for an instability to arise for the critical
amplitude A0 does not depend on k0, since

A0 ≈ 1

k0π
√
2
,

τ

T0
≈ 1

π A2
0k

2
0

⇒ τ

T0
≈ 2π. (41)

Thus, for any k0, the timescale at which localized insta-
bilities emerge should be measured in wave periods T0.
Furthermore, within approximately 7τ = 14πT0 wave
periods, a 1% perturbation becomes comparable to the back-
ground, cf. Fig. 1. This is in close agreement with the
numerical study of emergence of Rogue Waves in Cousins
and Sapsis (2016). It is also broadly in agreement with
Birkholz et al. (2015).

An observation is in order with respect to moving towards
a more realistic setting than that of Lemma 4.1: if the dissi-
pation term i

2Du in Eq. (3) does describe reasonably well the
effective dissipation, then values of D as small as O(10−3)

can have an O(1) impact on the formation of Rogue Waves.
Indeed, Eq. (28) means that, in the presence of dissipation,
there are no unstable modes at all unless

A2 >
D2

g
4 k

3
0

.

More generally, as long as the two sides of this inequality are
comparable, the effect of dissipation will be noticeable. For
k0 ≈ 10−2, A0 ≈ 0.2251k0; this means that D as small as
D ≈ 0.00237 would have an O(1) effect in our analysis, and
thus require noticeably larger amplitude A before sufficiently
localized instabilities could be observed.

The results of this section, and in particular, the criterion
of Eq. (39) can only be considered indicative: for example,
if A = 0.95

k0π
√
2
our Rogue Wave criterion is not satisfied, but

of course, we would still get an unstable mode localized in a
region very nearly as small as a single wavelength. The main
point here is that the scalings we recover look reasonable in
realistic contexts.

Furthermore, it is desirable to apply our analysis to more
general background Fourier spectra P(k) and not only δ
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spectra. This requires the numerical resolution of the Pen-
rose condition. A numerical scheme for this is developed
and implemented in the next section.

5 Investigation of the Penrose condition for general
spectra and applications

Aswas repeatedly emphasized, the advantageof our approach
is that it can be applied to problems with continuous spectra.
Before we proceed to the presentation of concrete results, it
is worth discussing the modelling side of this investigation.
We work in a setting comparable to (Cousins and Sapsis
2016); namely, we work with the deterministic problem of
Eq. (3), using a given Fourier spectrum P(k) as a proxy for
a quasi-stationary, quasi-homogeneous u(x, t). In Cousins
and Sapsis (2016), the reconstruction of such a wavefunction
was carried out numerically. Here, we do not need to gen-
erate a u(x, t) that would be consistent with P(k), because
we only need its Wigner transform. By virtue of the quasi-
homogeneity and quasi-stationarity of u(x, t)

W [u(t)](x, k) =
�

y

e−2π ikyu(x + y

2
, t)u(x − y

2
, t)dy

≈ P(k)

for any x, t . This is a modelling step which allows the treat-
ment of wavefunctions that are empirically observed to be
approximately homogeneous and stationary in terms only of
partial (or “coarse-grained”) spectral information.

As a physical case study, in Sect. 5.2, we will study
numerically wave trains consistent with the Ochi–Hubble
spectrum with central wavenumber k0, shape parameter σ ,
and significant wave height Hs (Ochi and Hubble 1977).
Physical spectra for ocean waves are often resolved over
frequencies

S(ω) = (4σ + 1)σ

4σ+1�(σ)

(Hs)
2

ω0

�ω0

ω

4σ+1
e− 4σ+1

4

� ω0
ω

�4
, (42)

where of course, ω0 is the central frequency. To express this
in terms of wavenumbers, we will use the deep water disper-
sion relation ω(k) = √

gk and conservation of energy (Ochi
1998):

P(k) = (4σ + 1)σ

4σ+1�(σ)

(Hs)
2

√
gk0


√
gk0√
gk

�4σ+1

e
− 4σ+1

4


√
gk0√
gk

�4

∂ω

∂k
= H2

s

k0

(σ + 1
4 )

σ

8�(σ)



k0
k

�2σ+1

e
− 4σ+1

4
k20
k2 . (43)

The shape parameter σ affects how broadband the spectrum
is (larger σ leads to more peaked spectrum, smaller σ leads
to less pronounced peaks).

Now, using P(k) of this form, a Penrose condition can be
formulated. In Sect. 5.1, a numerical method for the numer-
ical resolution of the Penrose condition is presented, and
applied to the Ochi–Hubble spectrum in Sect. 5.2.

A related question is to formulate a robust and computable
criterion for whether the Penrose condition has a solution at
all. This is formulated in Sect. 5.3 for the case without dissi-
pation, and is based on ideas from Bardos and Besse (2013);
Penrose (1960). Some useful ramifications are explored in a
case study for a Gaussian spectrum.

Finally, let us recall some basic facts about extracting
information for waves from a continuous spectrum. In the
case of a plane wave u(x, t) = Aei(k0·x−ω0·t), the Fourier
spectrum is A2δ(k − k0) and the amplitude is plainly A.
However, when we have a more realistic wavefield, which
includes waves of different wave amplitudes, there are dif-
ferent notions of amplitude that can be associated with the
wavefield. The most important one is the significant wave
height, Hs, which is related with m0 = 	

P(k)dk through
Hs = 4

√
m0 (Ochi 1998). Similarly, an estimate of the

slope associated with a given Fourier spectrum with central
wavenumber k0 is Huang et al. (1989)

βp =
√
m0

λ0
= Hsk0

8π
. (44)

Slopes larger than 0.0505 are considered unphysical, and a
common value is 0.01 (Huang et al. 1989); this will provide
an additional way to check the physical plausibility of our
results.

5.1 A numerical scheme for the investigation of the
Penrose condition

We describe a practical scheme for the numerical investiga-
tion of the Penrose condition (6) given a background Fourier
spectrum P(k).

We assume that the given spectrum is piecewise constant

P(k) =
N$

j=1

Pjχ[y j ,y j+1)(k). (45)

Of course, any spectrum can be well approximated by one of
the form (45) for N large enough. Indeed, measurements are
noisy, and in many cases, the error in this approximation by
a histogram would be within measurement error anyway.

Now, we can carry out the integrals appearing in the Pen-
rose condition explicitly. First of all, we write separately the
imaginary and real parts of the Penrose condition:
�

k∈R

P(k − ζ

4π
) − P(k + ζ

4π
)

(pk − α)2 + (β + D

2πζ
)2

dk = 0 (46)
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and

�

k∈R

P(k − ζ

4π
) − P(k + ζ

4π
)

(pk − α)2 + (β + D

2πζ
)2

(pk − α)dk = 2πζ

q
, (47)

respectively. Now, the left hand side of Eq. (46) becomes

Iim =
�

k∈R

P(k − ζ
4π ) − P(k + ζ

4π )

(pk − α)2 + (β + D
2πζ

)2
dk

=
N$

j=1

Pj

�

�
�

k

χ[y j ,y j+1)(k − ζ
4π ) − χ[y j ,y j+1)(k + ζ

4π )

(pk − α)2 + (β + D
2πζ

)2
dk

�

�

= 1

p

N$

j=1

Pj

�

%%
�

py j+1+ pζ
4π −α�

k=py j+ pζ
4π −α

1

k2 + (β + D
2πζ

)2
dk

−
py j+1− pζ

4π −α�

k=py j− pζ
4π −α

1

k2 + (β + D
2πζ

)2
dk

�

&&
� . (48)

At this point, denote for brevity

#β := β + D

2πζ
; (49)

then we have

Iim = 1

p#β

N$

j=1

Pj

�

arctan

’
#β(py j+1 − py j )

#β2 + (py j+1 + pζ
4π − α)(py j + pζ

4π − α)

(

− arctan

’
#β(py j+1 − py j )

β2 + (py j+1 − pζ
4π − α)(py j − pζ

4π − α)

(�

. (50)

Similarly, if we work on the left hand side of Eq. (47), we
have

Ire =
�

k

P(k − ζ
4π ) − P(k + ζ

4π )

(pk − α)2 + #β2
(pk − α)dk

=
N$

j=1

Pj

�

k

χ[y j ,y j+1)(k− ζ
4π )−χ[y j ,y j+1)(k+ ζ

4π )

(pk − α)2 + #β2
(pk−α)dk

= 1

2p

N$

j=1

Pj log

�

�

�
#β2+(py j+1+ pζ

4π −α)2
� �

β2+(py j− pζ
4π − α)2

�

�
#β2+(py j+ pζ

4π −α)2
� �
#β2+(py j+1− pζ

4π − α)2
�

�

� .

(51)

Now, we can reformulate the Penrose condition as

)))))))

�

k∈R

P(k − ζ
4π ) − P(k + ζ

4π )

(pk − α)2 + (β + D
2πζ

)2
dk

)))))))

+

)))))))

�

k

P(k − ζ
4π ) − P(k + ζ

4π )

(pk − α)2 + #β2
(pk − α)dk − 2πζ

q

)))))))
= 0,

and in terms of the fitness function FP as

FP : =
))))))

1

p#β

N$

j=1

Pj

�

arctan

’
#β(py j+1 − py j )

#β2 + (py j+1 + pζ
4π − α)(py j + pζ

4π − α)

(

− arctan

’
#β(py j+1 − py j )

#β2 + (py j+1 − pζ
4π − α)(py j − pζ

4π − α)

(�)))))

+
))))))

N$

j=1

Pj log

�

�

�
#β2 + (py j+1 + pζ

4π − α)2
� �
#β2 + (py j − pζ

4π − α)2
�

�
#β2 + (py j + pζ

4π − α)2
� �
#β2 + (py j+1 − pζ

4π − α)2
�

�

�− 4πpζ

q

))))))
= 0. (52)

In this form, it is straightforward to look for iso-surfaces of
the fitness function being close to zero

FP (ζ, α, β) = ε (53)

for various small values of ε. If there are exact solutions of the
Penrose condition, they will be outlined by the iso-surfaces.
We can use this scheme to approximate the solution set P of
the Penrose condition for any background spectrum. It must
be noted that an analogous scheme based on the approxi-
mation of a general spectrum by a sum of δ functions, i.e.,
working with P(k) = *N

j=1 Pjδ(k − k j ) was presented in
Ribal et al. (2013).
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Table 1 Summary of the case studies of Section 5.2

Spectrum Hs (m) σ Solutions of Eq. (6) with ζβ > 0 ζmax

H2
s

16 δ(k − k0) 5 +∞ ζ ∈ (−ζmax, ζmax)\{0}, Hs
2

�
q
p ≈ 0.2036,

α(ζ ) = pk0, β(ζ ) = sign(ζ )

√ pq
4 H2

s −p2ζ 2

4π cf. Eq. (29)

Narrow Ochi–Hubble 5 76.5 Single curve of the form: ≈ 0.165

ζ ∈ (−ζmax, ζmax)\{0},
α(ζ ) ≈ pk0, β(ζ ) ≈ sign(ζ )β(|ζ |)

Broad Ochi–Hubble 5 66.5 Main curve of the form: ≈ 0.13

ζ ∈ (−ζmax, ζmax)\{0},
α(ζ ) ≈ pk0, β(ζ ) ≈ sign(ζ )β(|ζ |),
plus some isolated solutions

5.2 Case study for the Ochi–Hubble spectrum

Now, we can use Eq. (53) as a practical way to look for
solutions of the Penrose condition in (ζ, α, β) space for
general spectra P(k). In particular, we can investigate the
formation of localized instabilities out of a background wave
train consistent with an Ochi–Hubble spectrum. We inves-
tigate the case with central wavenumber k0 = 0.24m−1

(corresponding to wavelengths λ0 = 26.18m) and negli-
gible dissipation, D = 10−8. By virtue of Sect. 4, we can
resolve completely the Penrose condition and the localized
unstable Penrose modes for a δ spectrum. Therefore, first, we
compare the δ-spectrum results with a narrow Ochi–Hubble
spectrum with Hs = 5m, σ = 76.5, and check that the
observed ζmax ≈ 0.165, cf. Table 1. For a broader Ochi–
Hubble spectrum, σ = 66.5, we observe that for the same
Hs = 5m, poorer localization of the unstable mode is found,
as evidenced by ζmax ≈ 0.13. The iso-surfaces of the fitness
function FP , which serve as an approximate solution of the
Penrose condition, are presented in Figs. 2 and 3. The results
are summarised in Table 1.

The first qualitative finding is that, for the narrow Ochi–
Hubble spectrum, we find a single branch of solutions of the
Penrose condition, effectively of the form (ζ, α0,±βζ ), for
ζ = (−ζmax, ζmax)\{0} (similar to the δ spectrum). Thus, the
analysis of Lemma 4.1 applies, and since ζmax ≈ 0.165 >
2k0
π

≈ 0.1528, Rogue Waves are expected. Using Eq. (44),
we see that this regime corresponds to a reference slope βp ≈
0.0477, i.e., a large but physically possible sea.

If we set σ = 66.5, we have a less peaked spectrum.While
the approximate solutions of the Penrose condition still con-
tain a recognizable main branch, isolated solutions account
for a larger percentage of the ζ bandwidth. In addition, we
find poorer localization of instabilities, in terms of smaller
ζmax ≈ 0.13. Technically, in this case, we do not have Rogue
Waves (understood as instabilities localized within a single
wavelength), although just barely.

If we were to further decrease σ below 66.5, keeping Hs

fixed, the set of solutions of the Penrose condition becomes
contained in a strip |ζ | � 0.13 and more irregular (breaks
up to many disconnected pieces). To reach ζmax ≈ 0.15 for
small σ, larger Hs is required. Eventually, this requirement
becomes unphysical, in terms of the slope constraint Hsk0

8π �
0.0505.

Moreover, for σ small enough (and keeping Hs = 5m
fixed), it seems that there will be no solutions whatsoever
of the Penrose condition, i.e., no unstable modes. Thus, we
find a trade-off between Hs (or equivalently m0) and the
effective support of the spectrum. Note that this outlines
a trade-off between spectral spread and Hs reminiscent of
the Benjamin–Feir index (Serio et al. 2005), and is consis-
tent with the findings of Gibbs and Taylor (2005). Using the
scheme of Sect. 5.1, we can investigate this trade-off taking
fully into account the shape of a given spectrum.

5.3 On the solvability of the Penrose condition

Let P(k) = A2σ S(σ (k − k0)) be a given background spec-
trum, where S(k) is a probability density function, S(k) � 0,	
k S(k)dk = 1,which is smooth enough andwith fast enough
decay (e.g., a Schwarz test function, S ∈ S(R)). The param-
eter A2 > 0 controls the amplitude of the background waves,
while σ > 0 controls how broad the spectrum is (larger σ

leads to more sharply localized spectrum). Without loss of
generality, we will assume k0 = 0 in the remainder of this
section.

Now, if we neglect dissipation, D = 0, the Penrose con-
dition becomes

2π

q
=
�

k∈R

P(k − ζ
4π ) − P(k + ζ

4π )

ζ(pk − )
dk
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Fig. 2 Top left a narrow Ochi–Hubble Fourier spectrum for η, Eq.
(43), with Hs = 5m, k0 = 0.24m−1, σ = 76.5, and its piece-
wise constant approximation, cf. Eq. (45), with 79 intervals. Top
right Projection on the α, β plane of the iso-surface FP (ζ, α, β) =

1
1,322,314 max(ζ ′,α′,β ′)∈B FP (ζ ′, α′, β ′), where B = [0.021, 0.2]ζ ×

[−1.605,−1.597]α ×[0.000015, 0.037]β is the parallelepiped spanned
by the axes of the plots. The number of points used is 453× 451× 455.
We work for ζ > 0, since the situation is essentially symmetric for
ζ < 0. Bottom The same surface projected on the ζ, α and ζ, β planes

⇔ 2πp

A2qσ 2 =
�

k∈R

S(k − σ
ζ
4π ) − S(k + σ

ζ
4π )

σζ

1

k − σ 
p

dk.

(54)

Denoting

Fζ,σ (k) := S(k − σζ
4π ) − S(k + σζ

4π )

σζ
,

Fζ,σ () = p.v.

�

k∈R

Fζ,σ (k)

k − σ
p

dk,

the Penrose condition now can be reformulated as

given σ > 0, ζ ∈ R, is there  such that Fζ,σ ()= 2πp

A2qσ 2 ?

(55)

As before, ζ Im > 0 is required for instability.

Remark 5.1 The divided difference Fζ,σ (k) has the proper-
ties Fζ,σ (k) = F−ζ,σ (k) and limζ→0 Fζ,σ (k) = − 1

8π S′(k).
The merit of the formulation (55) is that complex-analytic

function machinery can be readily adapted from (Bardos and
Besse 2013; Penrose 1960) to yield the following
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Fig. 3 Same as Fig. 2, but σ = 66.5 and the iso-surface plotted is defined by FP (ζ, α, β) = 1
1,186,513 max

(ζ ′,α′,β ′)∈B
FP (ζ ′, α′, β ′). Apart from the

main line, several small lines of isolated solutions are observed

Lemma 5.2 (Conditions for solvability of the Penrose con-
dition) Given ζ, σ there is a solution  of Eq. (55) in the
upper complex half plane if and only if the closed curve
+
,

-
z+(t) = p.v.

�

k∈R

Fζ,σ (k)

k − t
dk + iπ

σ

|p| Fζ,σ (t), t ∈ R

.
/

0

on the complex plane encloses the real point 2πp
A2qσ 2 .

Similarly, there is a solution  of Eq. (55) in the lower
complex half plane if and only if the closed curve
+
,

-
z−(t) = p.v.

�

k∈R

Fζ,σ (k)

k − t
dk − iπ

σ

|p| Fζ,σ (t), t ∈ R

.
/

0

on the complex plane encloses the real point 2πp
A2qσ 2 .

Proof First of all, observe that Fζ,σ is a bounded analytic
function in each of the upper and lower half planes, vanishing
at infinity (Bardos and Besse 2013). Moreover, the boundary
values are well defined on the real axis, although they exhibit
a jump across it. Indeed, for x ∈ R

lim
ε→0+ Fζ,σ (x ± iε) = lim

ε→0+ p.v.

�

k∈R

Fζ,σ (k)

k − σ
p (x ± iε)

dk

= lim
ε→0+ p.v.

�

k∈R

Fζ,σ (k)
k + σ

p x ∓ i σ
p ε

(k + σ
p x)

2 + σ 2

p2
ε2

dk
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= Fζ,σ (
σ

p
x) ± i lim

ε→0+

�

k∈R

Fζ,σ (k)
σ
|p|ε

(k + i σ
p x)

2 + σ 2

p2
ε2

dk,

where in the last step, we passed into the limit for the real part
and took into account the fact that p < 0. We complete the
computation by observing that, for any f ∈ S(R), X ∈ R,

lim
ε→0+

+∞�

−∞
f (ξ − X)

ε

ξ2 + ε2
dξ = π f (X).

Thus,we recover a kind of Sokhotsky–Plemelj formula (King
2009, Section 3.7) for our problem, namely

lim
ε→0+ Fζ,σ (x ± iε) = Fζ,σ (x) ± iπ

σ

|p| Fζ,σ (x).

In particular, the limit values at the real axis, either from
above or from below, are bounded and continuous.

Without loss of generality, we will carry out the rest of the
proof for  in the upper half plane only. Indeed, by virtue of
the argument principle, a value Z0 is attained Z0 = Fζ,σ ()

for some Im > 0 if and only if the curve Fζ,σ (R + i0) has
positive winding number around Z0.

While the structure of the nonlinearity is different here,
the overall proof is in the spirit of Bardos and Besse (2013);
Penrose (1960). The proof is complete. ��
Lemma 5.3 (Radial unimodal spectra)Let S be even, S(k) =
S(−k), and decreasing away from zero S′(k) < 0 ∀k > 0.
Then, there exist unstable Penrose modes for the spectrum S
if and only if

p.v.

�

k∈R

Fζ,σ (k)

k
dk >

2πp

A2qσ 2 (56)

Proof We will need to break the proof up in several steps:

Claim Fζ,σ (k) = 0 if and only if k = 0.

Proof of the claim: First of all,

Fζ,σ (0) = S(−σζ
4π ) − S(

σζ
4π )

σζ
= 0.

Moreover, observe that our assumptions imply that the
restriction S : [0,∞) → R is one-to-one. Now, we can
compute

Fζ,σ (k) = 0 ⇒ S



k − σζ

4π

�
= S



k + σζ

4π

�

⇒ k − σζ

4π
= ±



k + σζ

4π

�
⇒

1
ζ = 0, or
k = 0.

Since ζ = 0 is unphysical and we exclude it, the claim fol-
lows.

Fig. 4 Vizualization of Lemma 5.2 for a Gaussian envelope spectrum,
P(k) = A2 σ√

π
e−σ 2k2 . The black point in the third plot is the real

number 2πp
A2qσ 2 . Observe that this curve looks like a reflection along the

imaginary axis of the corresponding curve for the defocusing Vlasov–
Poisson equation (Penrose 1960). This is due to the focusing character
of the problem here, leading to (large enough) unimodal profiles being
in general unstable

Claim Each of the curves z±(t) tends to 0 or t → ±∞.

Proof of the claim

lim
t→∞ z+(t) = lim

t→∞

�

�p.v.

�

k∈R

Fζ,σ (k)

k − t
dk + iπ

σ

|p| Fζ,σ (t)

�

�

= lim
t→∞ p.v.

�

k∈R

Fζ,σ (k)

k − t
dk = 0

by the standard results on the Hilbert transform (King 2009).
In fact, since Fζ,σ (k) has zero mean, the Hilbert transform

p.v.
	
k∈R

Fζ,σ (k)
k−t dk inherits from Fζ,σ (k) the superpolyno-

mial decay in t (King 2009, Section 4.7). The other cases
follow similarly.

The proof of the claim is complete.
To complete the proof, we need to extract the geom-

etry encoded in these claims. The only points where the
curve z+(t) intersects the real axis are t = 0, where
z+(t) = p.v.

	
k∈R

Fζ,σ (k)
k−t dk, and in the limit t → ±∞,

where z+(+∞) = z+(−∞) = 0. Thus, the onlyway the real
number 2πp

A2qσ 2 is enclosed in the curve, is if it lies between

0 and z+(0). Moreover, this does not depend on whether 

belongs in the upper or lower half plane. Cf. Fig. 4.
The proof is complete. ��

123



370 J. Ocean Eng. Mar. Energy (2017) 3:353–372

By substituting S(k) = 1√
π
e−k2 in Lemma 5.3, we obtain

the following

Corollary 5.4 (Gaussian spectra) There are unstable modes
for the Gaussian spectrum P(k)=A2 σ√

π
e−σ 2k2 if and only if

∞�

k=0

e−(k− σζ
4π )2 − e−(k+ σζ

4π )2

σζk
dk >

π
3
2 p

A2qσ 2

Fixing all parameters and taking A large enough, one
quickly sees that eventually (i.e., for A large enough), there
will be unstable Penrose modes irrespective of the precise
values of σ, ζ. Similarly, fixing all parameters and taking ζ

large enough, one sees that the inequality eventually cannot
hold. In other words, the unstable Penrose numbers have to
be contained in a bounded interval.

6 Conclusions

In this paper, we construct a methodology to compute
Benjamin–Feir-type linearly unstable modes growing out of
any background Fourier spectrum. These are spatially peri-
odic modes which grow exponentially in time, and their
parameters are obtained by resolving the Penrose condition,
Eq. (6). Localized unstable modes can arise by superposition
of the spatially periodic ones, cf. Lemma 4.1. It turns out
that the ζ bandwidth of different spatially periodic modes
controls the sharpest possible localization. This computa-
tion leads naturally to the description of Rogue Waves as
unstable modes, localized in a region not larger than a sin-
gle wavelength, Definition 4.3. In other words, appropriate
superposition of unstable Penrose modes, when they exist,
hints towards the existence of breather-like solutions emerg-
ing out of homogeneous backgrounds with spectrum P(k).
Thus, linear instability and the emergence of Rogue Waves
are clearly distinguished; the former is a necessary but not
sufficient condition for the latter.

This is illustrated in a simple case, where analytic calcu-
lations are possible (narrowband limit). In more complicated
settings, we can use the numerical scheme of Eq. (53) to
resolve the Penrose condition. It is found that for narrow
spectra, generation of Rogue Waves seems to be within
the physically realistic region of parameters. As the spec-
trum becomes broader (keeping Hs fixed), the localization
of unstable modes deteriorates, and beyond a certain thresh-
old, it is completely destroyed. This is natural in the sense
that breather-like solutions can emerge from “any narrow-
band enough” spectrum P(k); however, once the background
spectrum becomes broadband enough, these breathers disap-
pear. In particular, we find a “stabilization via spectral broad-
ening” trend, which will be more precisely quantified with
further work. It is worth noting that similar trends have been

identified in Gibbs and Taylor (2005) through detailed fine-
scale computations using nonlinear numerical simulations.

It must also be mentioned that the localized instabilities
wefind seem to growover a fewwave periods T0 uniformly in
k0; this is both physically reasonable and in agreement with
other studies in the topic Birkholz et al. (2015); Cousins and
Sapsis (2016). It is desirable to understand better the non-
linear evolution of these localized instabilities, which seem
to correspond to breathers emerging from an almost periodic
background.

Finally, let us comment on the numerical scheme of Sect.
5.1 for the resolution of the Penrose condition. It amounts
essentially to solving a nonlinear system of equations with a
spanning method. While it does give reasonable approxima-
tions for the loci of possible solutions, it is not completely
satisfactory as a stand-alone solver; in particular, it can-
not reliably determine whether solutions exist (as opposed
to near solutions). It is complemented by a semi-analytic
method for determining the existence of solutions, elaborated
in Sect. 5.3. This latter method uses adapted Sokhotsky–
Plemelj formulas to come up with a geometric criterion for
the solvability of the Penrose condition for given ζ, and
involves only quadrature errors in the computation of cer-
tain integrals. Under additional assumptions on the shape of
the spectrum, it can yield compact criteria, shedding some
light in the tradeoffs between power m0 and the effective
width of the spectrum. In particular, all symmetric spectra
decreasing away from the peak wavenumber have unstable
Penrose modes for high enough power, cf. Lemma 5.3.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Alber IE (1978) The effects of randomness on the stability of two-
dimensional surface wavetrains. Proc R Soc Lond A Math
363:525–546. doi:10.1098/rspa.1978.0181

Aranson I, Kramer L (2002) The world of the complex Ginzburg–
Landau equation. Rev Mod Phys 74:99–143. doi:10.1103/
RevModPhys.74.99

Athanassoulis A (2008) Exact equations for smoothed Wigner trans-
forms and homogenization of wave propagation. Appl Comput
Harmon Anal 24:378–392. doi:10.1016/j.acha.2007.06.006

Athanassoulis A,Mauser N, Paul T (2009) Coarse-scale representations
and smoothed Wigner transforms. J Math Pure Appl 91:296–338.
doi:10.1016/j.matpur.2009.01.001

Athanassoulis A, Paul T, Pezzotti F, Pulvirenti M (2011) Semiclassical
propagation of coherent states for the Hartree equation. Ann Henri
Poincare 12:1613–1634. doi:10.1007/s00023-011-0115-2

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1098/rspa.1978.0181
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1103/RevModPhys.74.99
http://dx.doi.org/10.1016/j.acha.2007.06.006
http://dx.doi.org/10.1016/j.matpur.2009.01.001
http://dx.doi.org/10.1007/s00023-011-0115-2


J. Ocean Eng. Mar. Energy (2017) 3:353–372 371

Bal G, Komorowski T, Ryzhik L (2003) Self-averaging ofWigner trans-
forms in randommedia. CommunMath Phys 242:81–135. doi:10.
1007/s00220-003-0937-y

Bardos C, Besse N (2013) The Cauchy problem for the Vlasov–Dirac–
Benney equation and related issues in fluid mechanics and semi-
classical limits. KRM 6:893–917. doi:10.3934/krm.2013.6.893

Birkholz S, Brée C, Demircan A, Steinmeyer G (2015) Predictabil-
ity of Rogue events. Phys Rev Lett 114:213901. doi:10.1103/
PhysRevLett.114.213901

Bühler O, Shatah J, Walsh S, Zeng C (2016) On the wind generation of
water waves. Arch Ration Mech Anal 222:827–878. doi:10.1007/
s00205-016-1012-0

Chabchoub A, Hoffmann N, Onorato M, Akhmediev N (2012) Super
rogue waves: observation of a higher-order breather in water
waves. Phys Rev X 2:011015. doi:10.1103/PhysRevX.2.011015

Chabchoub A, Kibler B, Finot C, Millot G, Onorato M, Dudley J,
Babanin A (2015) The nonlinear Schrödinger equation and the
propagation of weakly nonlinear waves in optical fibers and on the
water surface. Ann Phys 361:490–500. doi:10.1016/j.aop.2015.
07.003

Cohen L (1976) Quantization problem and variational principle in
the phasespace formulation of quantum mechanics. J Math Phys
17:1863–1866. doi:10.1063/1.522807

Cousins W, Sapsis T (2014) Quantification and prediction of extreme
events in a one-dimensional nonlinear dispersivewavemodel. Phys
D 280:48–58. doi:10.1016/j.physd.2014.04.012

Cousins W, Sapsis T (2016) Reduced-order precursors of rare events in
unidirectional nonlinear water waves. J Fluid Mech 790:368–388.
doi:10.1017/jfm.2016.13

Crawford D, Saffman P, Yuen H (1980) Evolution of a random inhomo-
geneous field of nonlinear deep-water gravitywaves.WaveMotion
2:1–16. doi:10.1016/0165-2125(80)90029-3

Dudley J, Dias F, Erkintalo M, Genty G (2014) Instabilities, breathers
and rogue waves in optics. Nat Photon 8:755–764. doi:10.1038/
nphoton.2014.220

Dysthe K, Krogstad H, Müller P (2008) Oceanic Rogue Waves.
Annu Rev Fluid Mech 40:287–310. doi:10.1146/annurev.fluid.40.
111406.102203

Dysthe K, Trulsen K, Krogstad H, Socquet-Juglard H (2003) Evolution
of a narrow-band spectrum of random surface gravity waves. J
Fluid Mech 478:1–10. doi:10.1017/S0022112002002616

Erdös L, Yau H-T (2000) Linear Boltzmann equation as the weak cou-
pling limit of a random Schrödinger equation. Commun Pure Appl
Math 53:667–735. doi:10.1007/978-3-0348-8745-8_20

Fermanian-KammererC,Méhats F (2016)Akineticmodel for the trans-
port of electrons in a graphene layer. J Comput Phys 327:450–483.
doi:10.1016/j.jcp.2016.09.010

Gérard P, Markowich P, Mauser N, Poupaud F (1997) Homogeniza-
tion limits and Wigner transforms. Commun Pure Appl Math
50:323–379. doi:10.1002/(SICI)1097-0312(199704)50:4<323::
AID-CPA4>3.0.CO;2-C

Gibbs R, Taylor P (2005) Formation of walls of water in ’fully’ nonlin-
ear simulations. Appl Ocean Res 27:142–157. doi:10.1016/j.apor.
2005.11.009

He J, Charalampidis E, Kevrekidis P, Frantzeskakis D (2014) Rogue
waves in nonlinear Schrödinger models with variable coefficients:
application to Bose–Einstein condensates. Phys Lett A 378:577–
583. doi:10.1016/j.physleta.2013.12.002

Huang N, Tung C, Long S (1989) The probability structure of the ocean
surface. In: Mehaute BL, Hanes DM (eds) The sea, vol 9, Wiley,
Amsterdam

Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V (2015)
Superregular breathers in optics and hydrodynamics: omnipresent
modulation instability beyond simple periodicity. Phys Rev X
5:041026. doi:10.1103/PhysRevX.5.041026

King F (2009) Hilbert transforms. Cambridge University Press, Cam-
bridge

Lions P-L, Paul T (1993) Sur lesmesures deWigner. RevMater Iberoam
9:553–618. doi:10.4171/RMI/143

Majda A,McLaughlin D, Tabak E (1997) A one-dimensional model for
dispersive wave turbulence. J Nonlinear Sci 7:9–44. doi:10.1007/
BF02679124

Maleewong M, Asavanant J, Grimshaw R (2005) Free surface flow
under gravity and surface tension due to an applied pressure dis-
tribution: I Bond number greater than one-third. Theor Comput
Fluid Dyn 19:237–252. doi:10.1007/s00162-005-0163-7

Mallat S (1999) A wavelet tour of signal processing. Academic Press,
Cambridge

Martin W, Flandrin P (1985) Wigner–Ville spectral analysis of non-
stationary processes. IEEE Trans Acoust Speech 33:1461–1470.
doi:10.1109/TASSP.1985.1164760

Mei C, Stiassnie M, Yue D (2005) Theory and applications of ocean
surface waves, part 2: nonlinear aspects. World Scientific, Singa-
pore

Ochi M (1998) Ocean waves: the stochastic approach. Cambridge Uni-
versity Press, Cambridge

Ochi M, Hubble E (1977) On six-parameter wave spectra. Coast Eng
1976:301–328. doi:10.9753/icce.v15

OnoratoM, Proment D, Clauss G, KleinM (2013a) RogueWaves: from
nonlinear Schrödinger breather solutions to sea-keeping test. PLoS
One 8:e54629. doi:10.1371/journal.pone.0054629

Onorato M, Residori S, Bortolozzo U, Montina A, Arecchie F (2013)
Rogue waves and their generating mechanisms in different phys-
ical contexts. Phys Rep 528:47–89. doi:10.1016/j.physrep.2013.
03.001

Penrose O (1960) Electrostatic instabilities of a uniform non
Maxwellian plasma. Phys Fluids 3:258–265. doi:10.1063/1.
1706024

Pocovnicu O (2011) Traveling waves for the cubic Szegö equation on
the real line. Anal PDE 4:379–404. doi:10.2140/apde.2011.4.379

Regev A, Agnon Y, Stiassnie M, Gramstad O (2008) Sea–swell interac-
tion as a mechanism for the generation of freak waves. Phys Fluids
20:112102. doi:10.1063/1.3012542

Ribal A, Babanin A, Young I, Toffoli A, Stiassnie M (2013) Recurrent
solutions of the Alber equation initialized by Joint North SeaWave
Project spectra. J FluidMech719:314–344. doi:10.1017/jfm.2013.
7

Rubinstein J, Wolansky G (2005) A weighted least action principle
for dispersive waves. Ann Phys 316:271–284. doi:10.1016/j.aop.
2004.09.019

Ryzhik L, Papanicolaou G, Keller J (1996) Transport equations for
elastic and other waves in random media. Wave Motion 24:327–
370. doi:10.1016/S0165-2125(96)00021-2

Segur H, Henderson D, Carter J, Hammack J, Li C-M, Pheiff D, Socha
K (2005) Stabilizing the Benjamin–Feir instability. J Fluid Mech
539:229–271. doi:10.1017/S002211200500563X

Serio M, Onorato M, Osborne A, Janssen P (2005) On the computa-
tion of the Benjamin–Feir index. Nuovo Cimento C 28:893–903.
doi:10.1393/ncc/i2005-10134-1

SlunyaevA, SergeevaA, Pelinovsky E (2015)Wave amplification in the
framework of forced nonlinear Schrödinger equation: the rogue
wave context. Phys D 303:18–27. doi:10.1016/j.physd.2015.03.
004

Stiassnie M, Regev A, Agnon Y (2008) Recurrent solutions of Alber’s
equation for random water-wave fields. J Fluid Mech 598:245–
266. doi:10.1017/S0022112007009998

Sulem C, Sulem P-L (1999) The nonlinear Schrödinger equation: self-
focusing and wave collapse. Springer, New York

TrulsenK,DystheK (1996) Amodified nonlinear Schrödinger equation
for broader bandwidth gravity waves on deep water. Wave Motion
24:281–289. doi:10.1016/S0165-2125(96)00020-0

123

http://dx.doi.org/10.1007/s00220-003-0937-y
http://dx.doi.org/10.1007/s00220-003-0937-y
http://dx.doi.org/10.3934/krm.2013.6.893
http://dx.doi.org/10.1103/PhysRevLett.114.213901
http://dx.doi.org/10.1103/PhysRevLett.114.213901
http://dx.doi.org/10.1007/s00205-016-1012-0
http://dx.doi.org/10.1007/s00205-016-1012-0
http://dx.doi.org/10.1103/PhysRevX.2.011015
http://dx.doi.org/10.1016/j.aop.2015.07.003
http://dx.doi.org/10.1016/j.aop.2015.07.003
http://dx.doi.org/10.1063/1.522807
http://dx.doi.org/10.1016/j.physd.2014.04.012
http://dx.doi.org/10.1017/jfm.2016.13
http://dx.doi.org/10.1016/0165-2125(80)90029-3
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1038/nphoton.2014.220
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102203
http://dx.doi.org/10.1017/S0022112002002616
http://dx.doi.org/10.1007/978-3-0348-8745-8_20
http://dx.doi.org/10.1016/j.jcp.2016.09.010
http://dx.doi.org/10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C
http://dx.doi.org/10.1016/j.apor.2005.11.009
http://dx.doi.org/10.1016/j.apor.2005.11.009
http://dx.doi.org/10.1016/j.physleta.2013.12.002
http://dx.doi.org/10.1103/PhysRevX.5.041026
http://dx.doi.org/10.4171/RMI/143
http://dx.doi.org/10.1007/BF02679124
http://dx.doi.org/10.1007/BF02679124
http://dx.doi.org/10.1007/s00162-005-0163-7
http://dx.doi.org/10.1109/TASSP.1985.1164760
http://dx.doi.org/10.9753/icce.v15
http://dx.doi.org/10.1371/journal.pone.0054629
http://dx.doi.org/10.1016/j.physrep.2013.03.001
http://dx.doi.org/10.1016/j.physrep.2013.03.001
http://dx.doi.org/10.1063/1.1706024
http://dx.doi.org/10.1063/1.1706024
http://dx.doi.org/10.2140/apde.2011.4.379
http://dx.doi.org/10.1063/1.3012542
http://dx.doi.org/10.1017/jfm.2013.7
http://dx.doi.org/10.1017/jfm.2013.7
http://dx.doi.org/10.1016/j.aop.2004.09.019
http://dx.doi.org/10.1016/j.aop.2004.09.019
http://dx.doi.org/10.1016/S0165-2125(96)00021-2
http://dx.doi.org/10.1017/S002211200500563X
http://dx.doi.org/10.1393/ncc/i2005-10134-1
http://dx.doi.org/10.1016/j.physd.2015.03.004
http://dx.doi.org/10.1016/j.physd.2015.03.004
http://dx.doi.org/10.1017/S0022112007009998
http://dx.doi.org/10.1016/S0165-2125(96)00020-0


372 J. Ocean Eng. Mar. Energy (2017) 3:353–372

Trulsen K, Kliakhandler I, Dysthe K, VelardeM (2000) Onweakly non-
linear modulation of waves on deep water. Phys Fluids 12:2432–
2437. doi:10.1063/1.1287856

Whitham G (1967) Variational methods and applications to water
waves. ProcRSocLondAMath299:6–25. doi:10.1098/rspa.1967.
0119

Zakharov V (1968) Stability of periodic waves of finite amplitude on
the surface of a deep fluid. J Appl Mech Technol Phys 9:190–194.
doi:10.1007/BF00913182

123

http://dx.doi.org/10.1063/1.1287856
http://dx.doi.org/10.1098/rspa.1967.0119
http://dx.doi.org/10.1098/rspa.1967.0119
http://dx.doi.org/10.1007/BF00913182

	Localized instabilities of the Wigner equation as a model  for the emergence of Rogue Waves
	Abstract
	1 Introduction
	1.1 Nonlinear Schrödinger equations and the role of the functional framework

	2 Wigner transform and the DBW equation




