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ABSTRACT 

 
The cutaneous microcirculation represents an index of the health status of the cardiovascular system. Conventional 

methods to evaluate skin microvascular function are based on measuring blood flow by laser Doppler in combination with 

reactive tests such as post-occlusive reactive hyperaemia (PORH). Moreover, the spectral analysis of blood flow signals 

by continuous wavelet transform (CWT) reveals nonlinear oscillations reflecting the functionality of microvascular 

biological factors, e.g. endothelial cells (ECs). Correlation mapping optical coherence tomography (cmOCT) has been 

previously described as an efficient methodology for the morphological visualisation of cutaneous micro-vessels. Here, 

we show that cmOCT flow maps can also provide information on the functional components of the microcirculation. A 

spectral domain optical coherence tomography (SD-OCT) imaging system was used to acquire 90 sequential 3D OCT 

volumes from the forearm of a volunteer, while challenging the micro-vessels with a PORH test. The volumes were 

sampled in a temporal window of 25 minutes, and were processed by cmOCT to obtain flow maps at different tissue depths. 

The images clearly show changes of flow in response to the applied stimulus. Furthermore, a blood flow signal was 

reconstructed from cmOCT maps intensities to investigate the microvascular nonlinear dynamics by CWT. The analysis 

revealed oscillations changing in response to PORH, associated with the activity of ECs and the sympathetic innervation. 

The results demonstrate that cmOCT may be potentially used as diagnostic tool for the assessment of microvascular 

function, with the advantage of also providing spatial resolution and structural information compared to the traditional 

laser Doppler techniques. 
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1. INTRODUCTION 
 

1.1 Cutaneous microcirculation for the assessment of cardiovascular risk 

The microcirculation  is a network of tiny blood vessels distributed in all the tissues of the body, which ensure the normal 

perfusion of the organs, the maintenance of a normal blood pressure, and the exchange of nutritive substances and waste 

metabolites between blood and tissue1,2. Microvascular dysfunction is involved in the development of several diseases, 

such as cardiovascular complications of diabetes, cardiomyopathy, and hypertension1. Therefore, the evaluation of the 

microcirculation is a powerful modality for the assessment of cardiovascular disease (CVD) risk, which could find potential 

diagnostic applications1. Nonetheless, the examination of microvascular function in-vivo relies on invasive techniques such 

as coronary angiography1. This problem may be addressed by using non-invasive methodologies for the in-vivo 

examination of microcirculation from peripheral organs, i.e. skin1,3,4. Indeed, several studies have demonstrated that skin 

microcirculation reflects the health status of the coronary microvasculature4, and could be used as biomarker of CVD risk. 

For this reason, over the past number of years, many non-invasive technologies have been developed for either the 

evaluation of skin microvascular function or the imaging of skin microvascular structure. 

 

 

 



 

1.2 Examination of cutaneous microvascular function by Laser Doppler and LSCI 

The conventional methods for the evaluation of skin microvascular function are laser Doppler or laser speckle contrast 

imaging (LSCI) in combination with functional tasks, e.g. post-occlusive reactive hyperaemia (PORH). Laser Doppler 

techniques are generally classified in laser Doppler flowmetry (LDF) and laser Doppler imaging (LDI), based on sensing 

the Doppler shift of red or infrared light backscattered by moving red blood cells (RBCs) for the calculation of the mean 

blood perfusion in small tissue areas2,3,5,6. LDF allows the continuous measurement of blood flow by a single-point laser 

probe in direct contact with the cutaneous tissue5. The application of spectral analytical methods, i.e. the continuous 

wavelet transform (CWT), on LDF time series is powerful to investigate  the nonlinear dynamics of blood flow providing 

information on the function of biological microvascular factors, such as endothelial cells (ECs), vascular smooth muscle 

cells (VSMCs), and the microvascular sympathetic nerves7,8. Nonetheless, LDF has low reproducibility because of the 

heterogeneous structure of skin compared to the small area analysed by the single-point probe2,3,5,6. This shortcoming is 

addressed by LDI, a contactless method that employs a laser placed at a distance above the skin to generate two-

dimensional perfusion maps covering a larger skin region3,5,6. However, LDI cannot be used for the study of flow nonlinear 

fluctuations due to the slow sampling frequency of discrete perfusion maps during the measurements3. LSCI is a contactless 

technique based on sensing the reduction of the speckle contrast pattern caused by moving RBCs when a laser beam hits 

the skin, for estimating a perfusion value proportional to RBCs velocity5,6. The advantage of LSCI is providing both 

temporal and spatial resolution, however the method has low penetration depth compared to laser Doppler, and is highly 

sensitive to movement artefacts5,6. Furthermore, both of laser Doppler and LSCI do not allow the visualisation of micro-

vessels2,5,6. Laser Doppler and LSCI blood flow data are expressed in perfusion arbitrary units (PU), making it necessary 

the combination of measurements with reactive tasks for assessing the relative changes of flow while challenging blood 

vessels with a variety of stimuli5,6. An example of functional task is PORH, based on monitoring the blood perfusion 

increase induced by a temporary period of ischaemia obtained through the occlusion of flow in the brachial artery5,6. The 

occlusion is performed by using a pressure cuff placed on the upper part of the tested arm, and the microcirculation is 

generally monitored from the volar forearm or the fingertips5,6. 

 

1.3 Methods for the imaging of skin micro-vessels 

The cutaneous micro-vessels can be imaged in-vivo by a variety of techniques based on optical microscopy, 3D 

photoacoustic imaging or optical coherence tomography (OCT). The optical microscopy methods, i.e. capillaroscopy, 

orthogonal polarisation spectral imaging (OPS) and sidestream dark-field imaging (SDF), are based on the use of a 

microscope provided with a light source (white or green polarised light) for the transmission of images to a videocamera2,6. 

Capillaroscopy allows mainly the imaging of the structural organisation of capillaries in skin sites with thinner epithelium 

(i.e. the nailfold)2,9. This method is limited by the generation of low-contrast images6 and the requirement of invasive 

fluorescent dyes to visualise blood vessels from thicker skin regions2,6. OPS and SDF provide better resolution images 

than capillaroscopy thanks to the use of non-invasive green polarised light2,10. However, both the techniques are sensitive 

to motion and pressure artefacts6 and the imaging is optimal only for thinner cutaneous areas, e.g. the sublingual tissue2. 

All the optical microscopy methods provide two-dimensional images with ambiguous depth resolution leading to the 

impossibility of establishing the exact origin of the imaged microvascular layer9,11. This shortcoming has been solved by 

the implementation of techniques for the three-dimensional imaging of the microcirculation, such as 3D photoacoustic 

imaging and OCT9,11. The 3D photoacoustic imaging is a full light penetration depth method12, employing low scattering 

ultrasound waves generated in all the directions by a pulsed laser light and absorbed by haemoglobin and melanin in the 

skin to provide contrast agents for the imaging of blood vessels9,13,14. Although photoacoustic imaging provides a full light 

penetration depth, the technique is characterised by low spatial resolution associated with the detection of ultrasound waves 

leading to poor structural images9. The development of photoacoustic microscopy (PAM) and optical resolution 

photoacoustic microscopy (OR-PAM) has allowed addressing the problem providing high-resolution images, even though 

this is still restricted to superficial capillaries9. Furthermore, photoacoustic imaging is limited by the use of a coupling 

medium at direct contact with the skin, which can affect the microcirculation and false the results9. OCT is a non-invasive 

method that uses a broadband near infrared light source placed at a distance above the skin to generate a low coherence 

gate for the selection of backscattered light from different tissue depths, providing two-dimensional and three-dimensional 

in-vivo morphological images15. OCT allows overcoming some shortcomings of photoacoustic imaging, by providing 

cross-sectional images comparable to conventional optical biopsies with high structural resolution in the order of 

micrometers16,17. However, OCT suffers of poor penetration depth compared to photoacoustic imaging18. 

 

 

 



 

1.4 Simultaneous assessment of microcirculation morphology and function 

The advantage of laser Doppler and LSCI compared to the techniques for the visualisation of micro-vessels is the 

possibility to detect functional information that may be used for diagnostic purposes. Indeed, microvascular dysfunction 

is an early factor preceding the morphological damage to micro-vessels, which characterises the initial stages of 

cardiovascular pathologies1,3. However, LDI and LSCI are not suitable for a complete evaluation of the microcirculation 

because they do not allow micro-vessels visualisation and are characterised by uncertain spatial and depth resolution. For 

these reasons, many methods for the morphological imaging of the microcirculation have been implemented further to 

allow the simultaneous assessment of microvascular function and structure. For example, photoacoustic imaging may 

provide functional information associated to the oxygenation of the examined microvascular area, by tracing the light 

absorbed by haemoglobin at different wavelengths19. Additional examples are the improvements of OCT, adding contrast 

mechanisms based on the Doppler shift (DOCT)20 and the speckle variance (svOCT)21 principles to image blood flow, or 

by the development of data processing methods based on the discrimination of static and flow dynamic regions of the skin, 

i.e. Doppler optical micro-angiography (DOMAG)22. Nonetheless, the mentioned methods are not optimal for different 

reasons, such as angular dependence of the acquisitions leading to the production of incomplete flow maps (DOCT)9,11, 

requirement of previous knowledge of the morphology to trace blood flow (svOCT)9, and long post-processing time 

required for obtaining blood flow maps (DOMAG)9. To address these shortcomings, recently a novel technique for the in-

vivo visualisation of micro-vessels named correlation mapping OCT (cmOCT) has been developed, which provides high-

resolution structural maps of the microcirculation with potential to gain also functional information9,11. The technique is 

based on correlation coefficient statistics to detect blood flow from the OCT signal9,11, by discriminating the moving 

scatters characterising the cutaneous areas containing active blood vessels and the stationary scatters in the skin locations 

lacking of blood vessels9,11. This is achieved by performing the cross-correlation analysis between adjacent two-

dimensional B-frames of an OCT volume sampled from the skin, which returns high correlation coefficients for the static 

areas similar between different B-frames, and low correlation coefficients for the microvascular areas characterised by the 

presence of blood flow9,11. The correlation map generated from the analysis reveals the location of blood flow allowing 

the visualisation of the micro-vessels9,11. The benefits of cmOCT are the apparent angle independence of the method11, the 

fact that it is not required the previous knowledge of the microvascular morphology to determine blood flow areas, and 

fast data processing to generate the flow maps9. 

 

1.5 Goal and findings of the research 

Despite the suitability of cmOCT for the imaging of microvascular structure has been demonstrated9,11, less proof is 

reported about the use of this method for the study of microvascular function. In this work, we show that cmOCT can be 

applied successfully for the study of microvascular function. We demonstrate that collecting many sequential low-

resolution 3D OCT volumes from the human forearm during PORH functional task and processing the volumes by cmOCT 

it is possible to generate sequential blood flow maps at several tissue depths clearly tracing the temporal changes of flow 

typical of PORH test. Furthermore, the intensity of cmOCT flow maps was used to reconstruct a continuous time series 

for the study of blood flow nonlinear fluctuations by the application of the CWT spectral analysis. The wavelet examination 

of the reconstructed signal revealed blood flow oscillations associated with the physiological activity of biological factors 

playing a fundamental role in microvascular function: oscillations related to endothelial vasodilatory mechanisms mediated 

by ECs, and the neurogenic oscillation that reflects the contribution of the microvascular sympathetic nerves to vasomotion. 

The CWT oscillators displayed changes in their spectral energy during reactive hyperaemia similar to those described in 

literature for the LDF signal. Therefore, our results demonstrate that cmOCT is suitable for the simultaneous evaluation of 

microcirculation structure and function. Next step will be the application of the technique to a larger number of subjects 

for testing the reproducibility of cmOCT and its applicability to clinical studies. 

 

2. METHODS 
 

2.1 Images acquisition 
Data were collected from the volar forearm of a healthy woman aged 28, which signed an informed consent form. The 

experiment was performed in a laboratory room with controlled temperature ( 20 ± 1 °C), allowing 15-20 min of 

acclimatisation of the subject. The scans were obtained from the left volar forearm while the volunteer was laying in a 

clinical bed. The tested arm was fixed by employing a house-designed soft support to ensure a static and comfortable 

position during the examination preventing motion artefacts. The location for the acquisitions was selected avoiding hairy 

and injured areas. A pressure cuff was fixed in the upper part of the arm for performing a PORH functional test during the 

acquisition of the images. PORH response was induced by blocking blood flow through the brachial artery by applying a 



 

pressure of 200 mmHg. A spectral domain (SD) OCT device (TEL2200C1, Thorlabs Inc., USA) was employed for imaging 

three-dimensional skin volumes. The system is provided with a superluminescent diode (SLD) with a center wavelength 

of 1300 nm, supporting a maximum imaging depth of 3.5 mm in non-scattering samples, an axial acquisition rate between 

5.5 and 76 kHz, and an axial resolution of 5.5 µm in non-scattering samples. The sample arm contains a LSM003 (Thorlabs 

Inc., USA) scanning lens supporting a transverse resolution of 13 µm in air. An initial volume of 1.50 x 1.50 x 1.82 mm3 

was sampled from the forearm at a speed of 48 kHz with a sampling density of 1024 (length) x 1024 (width) x 512 (depth) 

pixels, to image the microvascular morphology of the examined location. The time employed for the acquisition of the 

structural volume was 50.9 s, which is too long for the evaluation of functional dynamics. Thus, the study of functional 

dynamics was performed by decreasing the scanning density to 256 x 256 x 512 pixels that can be acquired in ~6 s, allowing 

the fast collection of consecutive OCT volumes suitable for assessing microvascular function. Moreover, a fundamental 

requirement for visualising blood flow by cmOCT is a dense sampling below the lateral resolution of the consecutive 2D 

B-scans of the OCT volume, which guarantees a robust correlation between the motionless scatters of the adjacent B-scans. 

Thus, to ensure a spatial separation between the B-scans suitable for the cmOCT analysis the sampled area was reduced to 

0.75 x 0.75 x 1 .82 mm3, corresponding to a spatial separation of 2.9 µm. Although the possibility of acquiring each scan 

in ~6 s, the samples were collected at a rate of one volume every 16.6 s because the software associated with the OCT 

system (ThorImage OCT 4.3, Thorlabs Inc., USA) required around 10.6 s for saving each sample. In total, 90 consecutive 

low-resolution volumes were acquired from the forearm of the volunteer in a temporal period of ~25 min, while performing 

the PORH functional task. An initial 10 min collection of 36 OCT volumes was carried out to establish the blood flow at 

rest, then 18 volumes were collected for a 5 min occlusion period, and finally 36 volumes were collected for 10 min after 

the removal of the occlusion for tracking blood flow dynamic changes during PORH response. 

2.2 cmOCT analysis 

The cmOCT analysis to extract blood flow maps at different tissue depths from each OCT volume was carried out by using 

the Java algorithm implemented by Enfield et al.9 and Jonathan et al.11. The algorithm is able to estimate the correlation 

coefficients between consecutive two-dimensional B-frames extracted from the OCT volume, by calculating the cross-

correlation of a square grid from the first B-scan 1 (I1) to the same grid from the adjacent B-scan 2 (I2), as follow, 

cmOCT(x,y) = ∑ ∑
[I1(x+p,y+q)-I1(x,y)̅̅ ̅̅ ̅̅ ̅̅ ][I2(x+p,y+q)-I2(x,y)̅̅ ̅̅ ̅̅ ̅̅ ]

√(I1(x+p,y+q)-I1(x,y)̅̅ ̅̅ ̅̅ ̅̅ )
2
(I2(x+p,y+q)-I2(x,y)̅̅ ̅̅ ̅̅ ̅̅ )

2 

N
q=0

M
p=0                                   (1) 

where M and N define the dimension of the grid, and 𝐼 ̅is the mean intensity of the grid. The grid is shifted along all the 

pixels of the B-frames to generate a 2D map with correlation coefficients between 0 and 1. The low correlation regions are 

displayed as bright areas representing blood flow, while the high correlation regions associated to the motionless scatters 

of the tissue are displayed as dark background areas of the map. A 7 × 7 kernel dimension of the grid was used to produce 

the cmOCT maps, which ensures a good sensitivity to blood flow without loss of spatial resolution due to kernal size. The 

maps were generated as maximum intensity projection (MIP) images, which allow a better visualisation of microvascular 

structure and the detection of the maximum flow intensity. To study micro-vessels from different cutaneous microvascular 

layers, the flow maps were produced from different depths of the OCT volumes, i.e. in the en face plane. This was achieved 

by determining the location of skin surface from the structural images, and employing the superficial region as a reference 

to determine the various depths of the underlying tissue. The typical anatomic morphology of cutaneous microcirculation 

was visualised, characterised by the presence of capillaries at a depth of 80-180 µm (dermal-epidermal junction) and  

horizontal micro-vessels at a depth of  300-400 µm (dermal plexus). 

 

2.3 Reconstruction of blood flow time series 

To test the suitability of cmOCT for the study of microvascular flow nonlinear dynamics by CWT spectral analysis, a 

continuous time series of blood flow was reconstructed from the cmOCT maps. First, the average image intensity was 

extracted by Matlab R2015a software from 90 sequential flow maps produced at the cutaneous depth of 300-400 µm during 

PORH test. Then, the intensity values were used as discrete data points to reconstruct a continuous signal, covering the 25 

minutes time used in the experiment for collecting the volumes. The reconstruction was performed by piecewise cubic 

spline interpolation using Matlab R2015a, applying a temporal interval of 16.6 s between each pair of discrete data points 

that corresponds to the sampling frequency employed during the collection of the OCT volumes. The spline interpolation 

is a mathematical procedure to approximate a function by interpolating equally spaced discrete data points of the function. 

The technique uses a low-degree piecewise polynomial named spline, which reduces the interpolation error compared to 



 

the normal polynomial interpolation. The method is advantageous for the approximation of a function over large intervals, 

which is not optimal by using a single polynomial that would require a large degree of the approximating polynomial 

introducing oscillatory artefacts (Runge’s phenomenon) during the interpolation process. The spline interpolation 

addresses this problem by subdividing the interval [a,b] where the function f is continuous in smaller sub-intervals, and 

approximating f in every sub-interval by the use of low-degree polynomial pieces that define a composite spline function 

s. In this study, a third-degree cubic natural spline was used which allows the reconstruction of continuous processes 

reproducing the smooth curvature of the function to be approximated. As displayed by equation 2, the cubic spline function 

employs four terms to define a piecewise cubic polynomial between each pair of data points, 

p3(x) = ax3 + bx2 + cx + d ,                                                                                                                                                   (2) 

where p3 is the piecewise cubic polynomial, and a, b, c and d are the four coefficients defining p3. The final curve is the 

result of the sum of many pieces reconstructed between each pair of data points. The reconstruction was carried out by 

employing the cftool instrument in Matlab R2015a, which allows performing the cubic spline interpolation by entering the 

vectors of time and experimental data points. Specifically, we have used a time vector of 90 time points defining an 

acquisition rate of each flow measurement every 16.6 s and a vector containing the 90 flow intensity values extracted from 

the sequential cmOCT maps. The values of the continuous signal obtained from the reconstruction were saved for the 

subsequent application of the CWT analysis. As discussed previously, a benefit of spline interpolation is that the 

approximation process does not produce oscillatory artefacts. Thus, applying this technique we have ensured that the results 

of the subsequent CWT analysis were representative of the real fluctuations of microvascular flow detected by cmOCT, 

without the effect of artefacts introduced during the reconstruction. However, a shortcoming of spline interpolation is the 

low accuracy in the reconstruction of the right and left ends of the function, due to the presence of a single known data 

point at each extremity. To prevent the generation of artefacts at the extremities of the reconstructed signal, the curve was 

broken off at the left and right tips ensuring that the beginning and termination of the signal were corresponding 

respectively to the initial and final experimental data points. Finally, it should be clarified that in this work, the spline 

interpolation was not employed as a numerical analysis to fit a model but the method was used as a technical procedure to 

obtain a continuous signal, which is a compulsory requirement to allow performing the CWT spectral analysis. 

 

2.4 CWT spectral analysis 

The continuous wavelet transform technique allows the study of microvascular flow nonlinear dynamics, revealing the 

contribution of specific components in the microcirculation (i.e. ECs, VSMCs, and sympathetic nerves) to the temporal 

dynamic changes of flow. The method is advantageous for the analysis of the oscillatory behaviour of signals showing 

heterogeneous oscillations over a large range of frequencies, e.g. the LDF signal, providing a good time-frequency 

resolution7,8. Here, the CWT was used for analysing the dynamic fluctuations of a blood flow signal reconstructed from 

the cmOCT maps generated at a skin tissue depth of 300-400 µm, to prove that cmOCT can provide functional 

microvascular information related to vasomotion. The method allowed the detection of fluctuations in the frequency ranges 

21-52 x 10-3 Hz, 9.5-21 x 10-3 Hz and 5-9.5 x 10-3 Hz that respectively reflect the neurogenic activity of sympathetic nerves, 

the ECs activity nitric oxide (NO)-dependent, and the ECs activity NO-independent8. The myogenic oscillation related to 

VSMCs function was not detected because the OCT volumes were sampled at a frequency of each volume every 16.6 s, 

restricting the study to fluctuations up to ~60 x 10-3 Hz that is not enough to cover the entire myogenic frequency range 

located between 52-145 x 10-3 Hz 8. The CWT analysis was implemented by using Matlab R2015a, according to the 

principles described by Stefanovska et al.7,8. The method is based on the employment of a set of non-orthogonal basic 

functions Ψs,t providing a large frequency window scaled and shifted along the time domain for the extraction of the CWT 

ensuring an optimal time-frequency resolution8. The functions Ψs,t for the calculation of the CWT of blood flow signals is 

obtained according to equation 3, by using a Morlet mother wavelet ψ scaled in the temporal domain by a factor s and a 

center time t, providing a window size suitable for the analysis of highly time-varying signals8, 

 Ψs,t (u) = |s|-1/2 ψ (
u-t

s
),                                                                                                                                                          (3) 

where the Morlet mother wavelet ψ is estimated as displayed in equation 4 8, 

ψ(u) = 
1

√𝜋
e-iue-u

2/2.                                                                                                                                                                     (4) 

The CWT spectrum of a signal g(u) is then extracted as shown in equation 5 8, 

g̃(s,t) = ∫ Ψ̅s,t
∞

-∞
 (u)g(u)du,                                                                                                                                                   (5) 



 

where Ψ̅ is a complex conjugate of the basic window function removing any dependence of the technique from frequency 

scales, and g̃(s,t) is the CWT spectral function defined by the scale s and time t 8. The obtained CWT spectrum is 

characterised by a power/energy distributed at various frequencies, indicating the amount of signal located at specific 

frequencies at the time t. Explained in physiological terms, the CWT energy indicates the contribute of each microvascular 

oscillator (i.e. ECs) associated with a specific frequency range to blood flow changes at a precise time that for example 

may be the stage of a reactive test. Monitoring the changes of the CWT energy from specific frequency intervals allows 

the assessment of the function of specific microvascular components with potential clinical diagnostic applications. 

 

3. RESULTS 

 

3.1 Visualisation of skin microcirculation morphology 

A first three-dimensional OCT volume was acquired from a 1.50 × 1.50 × 1.82 mm3 area in the volar forearm of the 

volunteer to visualise the microcirculation morphology. The acquisition was performed in 50.9 s employing 1024 × 1024 

A-scans, and the MIP flow maps were extracted at different tissue depths by cmOCT analysis. Figure 1 shows the structural 

enface MIPs at three different tissue depths obtained from the volunteer, displaying the classical cutaneous microvascular 

morphology described by Enfield et al.9. 

 
Figure 1 Morphological visualisation of skin micro-vessels from the forearm. (a) 2D structural B-scan from a 1.50 × 1.50 × 1.82 

mm3 OCT volume. The red area outlines the epidermis surface, the yellow region defines the dermal-epidermal junction, and the green 

area marks a part of the dermal plexus. (b) Enface 1.50 × 1.50 mm2 MIP of the epidermis (0-40 µm). (c) Enface 1.50 × 1.50 mm2 MIP 

of the dermal-epidermal junction (80-180 µm) where the capillaries are located. The smaller yellow square marks the 750 × 750 µm2 

region selected to study capillaries function. (d) Enface 1.50 × 1.50 mm2 MIP of the dermal plexus (300-400 µm) characterised by a 

horizontal network of micro-vessels. The smaller green square marks the 750 × 750 µm2 area selected to study arterioles/venules 

function. 



 

Figure 1 (a) shows a structural 2D B-frame of the OCT volume, displaying a longitudinal view of the locations from which 

the cmOCT maps were produced. Figure 1 (b) displays the MIP enface map from the epidermis (0-40 µm) that, as expected, 

was characterised by absence of micro-vessels. Figure 1 (c) shows the MIP generated from a depth of 80-180 µm (dermal-

epidermal junction), displaying the presence of micro-vessels with vertical direction corresponding to the capillary loops 

originated from the ascending blood vessels of the dermal layer, and appearing as red points in a black background. Figure 

1 (d) shows an enface MIP of the skin at a depth of 300-400 µm (dermal plexus), displaying a network of arterioles and 

venules orientated horizontally from which, respectively, the nutritive substances are transferred to the capillaries and the 

waste metabolites to the venous system. To study microvascular function from 80-180 µm and 300-400 µm tissue depths, 

an enface plane of 0.75 × 0.75 mm2 was selected from the structural images to perform sequential temporal acquisitions 

of 3D OCT volumes during reactive hyperaemia task. Figure 1 (c) and (d) illustrate the 750 × 750 µm2 areas selected for 

monitoring capillaries and arterioles/venules functional dynamics, respectively marked by yellow and green squares. 

 

3.2 Examination of blood flow functional dynamics from cmOCT maps 

Ninety low-resolution volumes of the 0.75 × 0.75 × 1.82 mm3 yellow/green regions shown in Figure 1 (c-d) were collected 

from the forearm of the volunteer during a 25 min PORH test, sampling each volume every 16.6 s. First, 36 samples were 

collected during a 10 min resting period, then 18 samples were acquired during a 5 min occlusion of blood flow, and finally 

36 samples were collected in a 10 min period after the removal of the occlusion for monitoring flow changes during PORH 

response. The volumes were processed by cmOCT to obtain consecutive flow maps at 80-180 µm and 300-400 µm 

cutaneous depths for tracing, respectively, the flow dynamics of capillaries (Figure 2) and arterioles/venules (Figure 3). 

 

Figure 2 Consecutive cmOCT flow maps obtained at a depth of 80-180 µm from OCT volumes collected during PORH task. 

Temporal enface MIPs from the 750 × 750 µm2 yellow region marked in Figure 1 (c) for the examination of capillaries microvascular 

function. The MIPs were generated from 0.75 × 0.75 × 1.82 mm3 volumes collected every 16.6 s with a sampling density of 256 × 256 

A-scans. The baseline 1-8 maps illustrate the flow detected at baseline before the application of  the occlusion, the occlusion 1-4 and 5-

8 maps correspond respectively to the flow detected  after the beginning of the occlusion and before the end of the occlusion, and the 

porh 1-8 maps show the flow detected during the hyperaemic response. 



 

 

Figure 3 Consecutive cmOCT flow maps obtained at a depth of 300-400 µm from OCT volumes collected during PORH task. 

Temporal enface MIPs from the 750 × 750 µm2 green region marked in Figure 1 (d) for the examination of arterioles/venules 

microvascular function. The MIPs were generated from 0.75 × 0.75 × 1.82 mm3 volumes collected every 16.6 s with a sampling density 

of 256 × 256 A-scans. The baseline 1-8 maps illustrate the flow detected at baseline before the application of  the occlusion, the occlusion 

1-4 and 5-8 maps correspond respectively to the flow detected  after the beginning of the occlusion and before the end of the occlusion, 

and the porh 1-8 maps show the flow detected during the hyperaemic response. 

 

Figure 2 and Figure 3 display the enface MIPs obtained from 24 volumes of the total 90 temporal samples, which represent 

the most important stages of PORH test. Although the quality of the maps was not optimal compared to the morphological 

images, they clearly traced the flow changes typical of PORH reactive task. The capillaries did not show relevant flow 

changes during occlusion (Figure 2, occlusion 1-8) compared to the flow at rest (Figure 2, baseline 1-8), while the micro-

vessels in the dermal plexus showed a relevant decrease and disappearance of flow during occlusion (Figure 3, occlusion 

1-8) compared to the flow at rest (Figure 3, baseline 1-8). These findings may indicate the delivery of the residual blood 
flow from arterioles to capillaries during the occlusion period, ensuring the feeding of the epidermis during ischaemia. On 

the other hand, a relevant growth of the flow typical of the hyperaemic response was observed during PORH either for the 

capillaries or the dermal micro-vessels (Figures 2-3, porh 1-8), related to the vascular reactivity for the restoration of a 

normal blood flow after removal of the occlusion. These findings prove that cmOCT allows tracking the microcirculatory 

dynamics and may be used for the investigation of microvascular function. 

 

3.3 Reconstruction of blood flow signal from cmOCT maps 

To demonstrate further the applicability of cmOCT for the study of microvascular function, the cmOCT maps were 

employed for tracing the nonlinear dynamics of blood flow to detect the oscillatory activity of microvascular components 

contributing to the rhythmic vaso-relaxation induced by PORH stimulation. The task was achieved by reconstructing a 

continuous flow signal from the intensities of the sequential temporal cmOCT maps and processing the obtained time 

series by CWT spectral analysis. The reconstruction process was a fundamental step to allow performing the CWT analysis, 

which is a technique applicable only on continuous time-varying signals. Figure 4 shows the blood flow time series 



 

obtained by using the mean intensity values extracted from the 90 sequential cmOCT maps generated at a depth of 300-

400 µm as discrete data points to reconstruct  a curve covering the 25 min period of the reactive test. The reconstruction 

was performed by piecewise cubic spline interpolation method that is advantageous because no oscillatory artefacts are 

introduced between each pair of discrete data points during the reconstruction process. The curve in Figure 4 clearly 

outlines the classic flow trend of the reactive hyperaemia task, showing a decrease of blood flow during the ischaemic 

period, and a relevant increase of flow during PORH vasodilation response up to a maximal peak before the gradual 

restoration of the baseline flow. This is a further proof that cmOCT is suitable for the study of functional dynamics. 

 

Figure 4 Reconstruction of a continuous blood flow signal from cmOCT maps. Blood flow curve reconstructed by piecewise cubic 

spline interpolation of the discrete average intensity values obtained from 90 sequential cmOCT maps produced at a cutaneous depth of 

300-400 µm. A time interval of 16.6 s was applied between each pair of discrete data points to cover the 25 min period of the PORH 

functional task. The flow is expressed in arbitrary units (AU). 

 

3.4 CWT spectral analysis of the blood flow signal reconstructed from cmOCT maps 

The CWT analysis of the signal reconstructed from cmOCT maps revealed oscillations in the frequency ranges 21-52 x 

10-3 Hz, 9.5-21 x 10-3 Hz and 5-9.5 x 10-3 Hz, which respectively reflect the neurogenic modulation of microvascular tone 

mediated by the sympathetic nerves, and the regulation of microvascular tone mediated by ECs through NO-dependent 

and NO-independent pathways8. Figure 5 displays the CWT analysis of the reconstructed flow signal shown in Figure 4. 

Figure 5 (a) displays the CWT scalogram chart that shows a gradient coloured map representing the distribution of the 

wavelet energy of the signal in the time-frequency domain. The dark blue regions represent the lowest energies and the 

dark red areas the highest energies. The chart clearly outlines the growth of energy during PORH response in all the 

identified oscillatory frequency intervals, reflecting the endothelial and sympathetic modulatory mechanisms activated 

during vasodilation. The time-averaged CWT spectrum in Figure 5 (b) distinguishes the maximum wavelet energy peaks 

at various frequency intervals corresponding to the specific microvascular oscillators (neurogenic, ECs NO-dependent, 

ECs NO-independent). This allows tracking the activity of each oscillator and making comparisons between different 

individuals, by extracting values of the maximal energy (amplitude), the overall energy (area under the curve), and the 

frequency from each wavelet peak during the different stages of PORH task. For example, in Figure 5 (b) an increase of 

the amplitude and energy of all the oscillators was clearly observed during PORH response (black line) compared to 

occlusion (red line) and baseline (blue line). These data are in agreement with the results reported for the spectral analysis 

of LDF signals measured during PORH functional test23. Indeed, the growth of energy reflects the vasodilation modulated 

by ECs, VSMCs and the neurogenic control to allow the reperfusion of the cutaneous tissue after an occlusion period. The 

CWT spectral analysis showed results in agreement with the current techniques for the examination of microvascular 

nonlinear fluctuations. Therefore, this is an additional evidence of the suitability of cmOCT for monitoring microvascular 

function. 

 



 

 

Figure 5 CWT spectral analysis of a blood flow signal reconstructed from cmOCT maps produced at a depth of 300-400 µm.  

(a) CWT scalogram displaying the distribution of the wavelet power in the time-frequency domain represented by a coloured gradient 

map ranging from dark blue (low power) to dark red (high power). The coloured areas in the scalogram are part of the “cone of 

influence”, which is a time-frequency region where distortions of the wavelet transform due to the finite duration of the signal are 

irrelevant24. In contrast, the transparent regions in the corners at the bottom of the chart are regions outside of the cone in proximity of 

the time edges of the signal, where the CWT is characterised by boundary effects making the calculations from these areas uncertain24. 

(b) Time-averaged CWT spectra estimated for all the steps of PORH functional task.  The graphs discriminate the CWT maximum 

amplitude peak and overall energy (area under the curve of the peak) related to each specific microvascular oscillator. The neurogenic 

(21-52 x 10-3 Hz), ECs NO-dependent (9.5-21 x 10-3 Hz), and ECs NO-independent (5-9.5 x 10-3 Hz) oscillators were detected. 

 

4. DISCUSSION AND CONCLUSIONS 
 

In this study, we have shown that cmOCT method allows the simultaneous imaging of skin microcirculation morphology 

and monitoring of microvascular function. Although the resolution of the functional temporal cmOCT maps was low,  they 

allowed tracking the overall microvascular dynamics with spatial resolution at various tissue depths, showing results 

similar to those reported for the conventional techniques employed to study microvascular function (i.e. LDF). This is 

demonstrated by the blood flow trend typical of PORH reactive test observed on the cmOCT maps (Figures 2-3), and also 

reflected on the reconstructed flow signal displayed in Figure 4. Furthermore, additional evidence was provided by the 

identification of dynamic microvascular oscillators characterising the reconstructed signal associated with biological 

components in the microcirculation (Figure 5), which displayed trends of the wavelet spectral energy similar to those 

reported for the spectral analysis of LDF time series recorded  during PORH test. The CWT analysis did not allow the 

detection of the myogenic oscillator related to the activity of VSMCs, which are implicated in the mechanical modification 

of micro-vessels diameter during vasomotion. This was due to the long time required by the ThorImage software (Thorlabs 

Inc., USA) for saving the OCT volumes during the acquisition of the images, allowing a scanning rate of one volume every 

16.6 s that was not sufficient to detect the myogenic oscillation. The use of a more powerful computer in the future may 

help to improve the performance of the software, allowing a faster data storage to increase the sampling frequency and 

detect the myogenic oscillator. Overall, the findings from this study suggest that cmOCT may be used as a tool for the 

study of microvascular function with possible diagnostic applications. However, further experiments in a larger number of 

subjects are required to demonstrate the robustness of the method and the eligibililty for clinical studies. In addition, the 

combination of cmOCT with the CWT spectral analysis may find several applications. For example, this may help to 

establish the contribution of each microvascular bed to vasomotion and clarify which layer is more involved in cutaneous 

PORH response, by comparing the spectral analysis of cmOCT blood flow signals reconstructed from different skin tissue 

depths. Another application may be the examination of endothelial function for diagnostic purposes by comparing the 

endothelial wavelet energy between healthy individuals and patients affected by cardiovascular disease (CVD). 
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