Periprostatic Fat Adipokines Expression Correlated with Prostate Cancer Aggressiveness in Men Undergoing Radical Prostatectomy for Clinically Localised Disease
Dahran, Naief; Szewczyk-Bieda, Magdalena; Vinnicombe, Sarah; Fleming, Stewart; Nabi, Ghulam
Published in:
BJU International
DOI:
10.1111/bju.14469
Publication date:
2018
Document Version
Peer reviewed version

Citation for published version (APA):
Periprostatic Fat Adipokines Expression Correlated with Prostate Cancer Aggressiveness in Men Undergoing Radical Prostatectomy for Clinically Localised Disease

Naief Dahrana,b, Magdalena Szewczyk-Biedaa, Sarah Vinnicombea, Stewart Fleminga, *Ghulam Nabia

a Division of Cancer Research, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
b Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia.

*Correspondence to:
Professor Ghulam Nabi
Professor of Surgical Uro-Oncology & Consultant Urological Surgeon,
Head of Division for Cancer Research,
Division of Cancer Research, School of Medicine,
University of Dundee
Email: g.nabi@dundee.ac.uk

\textbf{Funding:} ND was funded by Kingdom of Saudi Arabia Government for his Ph D.

\textbf{Conflicts of Interest:} None
Abstract

Objectives: To investigate the relationship between periprostatic adipose tissue (PPAT) adipokines expression and PCa aggressiveness using both pathological features of radical prostatectomy (RP) and multiparametric MRI parameters.

Patients and methods: Sixty-nine men were recruited to assess immunohistochemical expression of TNFα- and VEGF of periprostatic fat of radical prostate specimens. Percent immunopositivity was quantified on scanned slides using Aperio Positive Pixel Count algorithm for PPAT TNFα, VEGF and androgen receptors. Periprostatic fat volume (PFV) was segmented on contiguous T1-weighted axial MRI slices from the level of the prostate base to apex. PFV was normalised to prostate volume (PV) to account for variations in PV (NPFV=PFV/PV). MRI quantitative values (Kep, Ktrans, and ADC) were measured from PCa primary lesion using OleaSphere software. Patients were stratified into three groups according to RP GS: 6, 7(3+4) and 7(4+3) or more.

Results: The mean rank of VEGF and TNFα were significantly different between the groups [H(2)= 11.038, p=0.004] and [H(2)=13.086, p=0.001], respectively. Patients with stage pT3 had higher TNFα (18.2±8.95) positivity than patients with stage pT2 (13.27±10.66), t (67) =-2.03, p=0.047. TNFα expression significantly correlated with Ktrans (r=0.327, p=0.023). TNFα (p=0.043) and VEGF (p= 0.02) correlates with high-grade PCa (GS≥7) in radical prostatectomy specimens and correlated significantly with upgradation of Gleason score from biopsy to radical prostatectomy histology.

Conclusions: Expression level of TNFα and VEGF on immunostaining significantly correlated with aggressivity of PCa. As biomarkers, these suggest the risk of having high-grade PCa in men undergoing RP.

Keywords: prostate cancer; periprostatic adipose tissue; TNFα; VEGF; MRI; radical prostatectomy
1 Introduction

Several studies have found an association between periprostatic fat adiposity and the aggressivity of prostate cancer (PCa) using several different imaging modalities and measurement techniques [1-3]. In a recent MRI study, we found normalised periprostatic fat volume (NPFV) to be a significant predictor for high-grade localised prostate cancer in men opting for radical prostatectomy [4]. However, imaging alone cannot discriminate between metabolically more active and less active periprostatic adipose tissue (PPAT).

Adipocytes have an important role in synthesizing and storing triglycerides from free fatty acids (FFA) and in producing adipokines [5-8]) have reported that there are two kinds of adipocytes: “fat” and “thin”. Besides being storage cells for free-fatty acids (the major source of energy for the cancer cell), the more active “fat” cells, which are common in obese populations, may differentiate into “cancer-associated adipocytes” and crosstalk with cancer cells via a paracrine effect, resulting in the secretion of more inflammatory adipokines and chemokines (e.g. CCL7), stimulating macrophage infiltration, which in turn encourages insulin resistance that leads to disease progression and local dissemination [5, 8-13].

Periprostatic adipose tissue inflammation has been found to be associated with high-grade PCa [14]. When adipose tissue expands, hypoxia occurs, and certain adipokines become up-regulated. In response, hypoxia inducible factor 1 alpha (HIF-1α), may interact with endothelial cells and lead to a reduction in nitric oxide that regulates vasodilation, stimulates angiogenesis and increases vascular permeability to overcome the hypoxia [15-17]. Tumour necrosis factor alpha (TNFα) and vascular endothelial growth factor (VEGF) are adipokines which have been widely implicated for their roles in
tumourigenesis by inducing inflammatory and angiogenic responses, respectively, and increasing the risk of metastasis [18-24].

Angiogenesis in periprostatic fat may facilitate the seeding of a PCa microenvironment with adipocyte precursors (lipoblasts), that secrete numerous factors (e.g. IL-6 and TNFα) involved in the inflammatory response, particularly in pathological conditions such as obesity [25]. Zhang et al [26] have described that the tumour microenvironment may contain lipoblasts seeded by visceral fat (VF) through blood vessels. It was suggested that periprostatic fat has more lipoblasts than VF [27]. Thus, periprostatic fat could be a major source for seeding the microenvironment of PCa with lipoblasts, facilitating tumour progression. Understanding the metabolic pathways between PPAT, as an inflammatory promotor, and PCa could reveal new diagnostic and therapeutic possibilities. Anti-angiogenic treatments, in combination with radiotherapy, could be successful ways to treat PCa [28].

This study aimed to:

1. Investigate the correlation between PPAT metabolic activity and prostate cancer aggressiveness by comparing inflammatory and angiogenic adipokine (TNFα and VEGF) expression levels in the periprostatic fat with Gleason scores (GS) and pathological tumour staging (pT).

2. Correlate expression level of adipokines (TNFα and VEGF) with quantifiable MRI parameters of PCa aggressivity.
2 Patients, materials and methods

2.1 Cohort selection and power calculation

This was a prospective study with institutional approval (Caldicott/CSAppGN021211) for follow-up. A sample size of 69 was calculated based on information from a pilot phase of the study \((n = 15)\) and a power calculation (Table S1). The pilot phase also evaluated the quality of immunostaining. Between January 2010 and December 2015, we recruited 69 men with localised prostate cancer opting for RP. Demographic details were recorded in a database. Periprostatic-fat tissue sections were selected from the excised prostate surface at three or more different periprostatic regions. Tissue block sectioning and immunohistochemistry (IHC) were performed at the Tayside Tissue Biorepository (TBR), Study inclusion criteria were:

- Men with localised prostate cancer (PCa) who underwent Radical Prostatectomy (RP).
- Gleason score and histopathological stage of RP specimens reported and discussed at multidisciplinary meetings by an experienced uropathologist.

Exclusion criteria were: men with metastatic PCa or those with localised disease who had external beam radiotherapy/brachytherapy or focal treatment prior to radical surgery. Men were also excluded if they had hormones in neoadjuvant settings.

The primary aim of the study was evaluation of the magnitude of correlation between the immunohistochemical expression of PPAT and histopathological parameters of PCa. The correlation between quantitative MRI parameters and adipokine expression levels was the secondary aim (Figure S1).
2.2 Antibody selection and immunohistochemistry preparation

Table S2 summarises the characteristics of the selected antibodies. Antigen retrieval and deparaffinisation were performed using a DAKO EnVision™ FLEX Target Retrieval solution (high pH) buffer (50x conc.) (K8004) in a DAKO PT Link (serial number PT2794Y1205) for 10 minutes at 97°C. Immunostaining using the DAKO EnVision™ FLEX system on a DAKO Autostainer Link 48 (serial number AS2383D1203) was conducted according to the manufacturer’s protocol. Sections were initially washed in a Flex Wash Buffer (K8006). Table S3 summarises the protocols used for TNFα, VEGF, and AR.

2.3 Immunohistochemistry Analysis

After IHC application, the stained sections were scanned at 40x magnification using a Leica Aperio® slide scanner and the results assessed employing the local ImageScope (version 12.3.2.1813) for staining quality assessment and the linked online eSlide Manager (version 12.1.0.5029) for digital analysis.

The region of periprostatic adipose tissue (PPAT) was manually selected from different periprostatic regions. An experienced pathologist (SF) reviewed histopathology and guided selection of regions specifically but not exclusively around tumour within the prostate gland. We did not include damaged adipose tissue at section edges, blood vessels, and artefacts. The selected total area on each slide was not less than 30,000μm². Following standardised parameters, we used the Leica Aperio Positive Pixel Count algorithm to quantify the positive and negative staining of 3,3’-diaminobenzidine (DAB) and Hematoxylin (counterstain), respectively (Figure 1). The algorithm automatically analysed the positive DAB staining of the selected regions into three different coloured pixels: strong positive (Sp) (red), positive (p) (orange), and weak positive (Wp) (yellow). The Hematoxylin
counterstain was represented by blue negative pixels. At the same time, the positivity (%) was calculated \[\text{Positivity} (\%) = \frac{(Wp + p + Sp)}{N_{total}} \times 100 \] (Figure 2), where \(N_{total} \) is the total number of positive and negative pixels in the selected regions. The positivity (%) represents the concentration of the protein in PPAT.

Reproducibility of the slide digital analysis was assessed in a subgroup of 14 randomly selected patients by repeated measures in two-week intervals. An excellent interrater reliability was shown with an intraclass correlation coefficient of 0.951 in single measures \((p < 0.001)\).

2.4 MRI technique

The full MRI protocol is detailed elsewhere [4]. PFV was determined using a semi-automated segmentation technique on contiguous T1-weighted axial MRI slices from the level of the prostate base to the apex. PFV was normalised to prostate volume (PV) to account for variations in PV \((\text{NPFV} = \frac{\text{PFV}}{\text{PV}})\). High-resolution T2 weighted scans and apparent diffusion coefficient (ADC) maps derived from diffusion weighted imaging (DWI) were used for identification of the index PCa lesion by an experienced uroradiologist. Subsequently, in 48 patients who underwent dynamic contrast enhancement, quantitative parameters \((K_{\text{trans}} \text{ and } K_{\text{ep}})\) were extracted with OleaSphere software version 3.0 (Olea Medical, La Ciotat, France).

2.5 Statistical Analyses

Patients were stratified into three groups according to the Gleason score of the final prostatectomy specimen: \(\leq 6 \), 7(3+4) and 7(4+3) or more. The association between the three groups and adipokine expression levels including AR and clinical and pathological data was determined using Kruskal-Wallis and one-way analysis of variance (ANOVA) tests for parametric and non-parametric continuous variables, respectively, and Chi-square test for
categorical variables (WHO weight classification, pT stage and D’Amico risk classification). Receiver Operating Characteristic (ROC) curve analysis was used to test the ability of TNFα and VEGF to differentiate between high-grade (GS ≥ 7) and low-grade (GS ≤ 6) prostate cancers. Binary logistic regression analysis was used to establish an independent effect of TNFα and VEGF on high-grade (GS ≥ 7) vs low-grade (GS ≤ 6) prostate cancers. Independent sample t-test was used to compare the adipokine levels, AR, functional MRI quantitative values ($K_{\text{trans}}, K_{\text{ep}},$ and ADC value) and age with pT and GS upgrading from biopsy specimen to RP. Spearman correlation coefficients (ρ) were used to evaluate the relationship between the adipokine levels (TNFα and VEGF), AR, MRI parameters ($K_{\text{trans}}, K_{\text{ep}},$ and ADC value), NPFV and pre- and post-operative GS. p value of < 0.05 was considered statistically significant. IBM Statistical Package for the Social Sciences (SPSS) (version 23) for OS X was used for data analyses.
3 Results

The mean age of the cohort (N=69) was 66.13 ± 5.47 years (range, 53-78), and the mean BMI was 28.12 ± 4.37 kg/m² (range, 20.5 - 40.6). According to WHO classification, 17 patients were classified as normal weight (27.86 %), 27 as overweight (44.26%), 13 as obese class I (21.31 %), three as obese class II (4.93 %), and 1 as obese class III (1.64%). Table 1 summarises the patients’ characteristics categorised into three groups according to the post-operative GS based on histopathology.

The mean ranks of the positivity of vascular endothelial growth factor (VEGF) and tumour necrosis alpha (TNFα) were statistically different between the three groups (GS ≤ 6, GS = 7(3+4) and GS ≥ 7(4+3), with [H (2) = 11.038, p = 0.004] and [H (2) = 13.086, p = 0.001], respectively (Figure 3). There were no differences in the mean ranks of immunopositivity for AR between the three groups [H (2) = 1.388, p = 0.5], nor in mean age [H (2) = 1.880, p = 0.391] (Table 1).

After dichotomisation of PCa histopathology into low (GS ≤ 6) and high (GS ≥ 7) grade groups, ROC curve analysis yielded areas under the curves for TNFα and VEGF of 0.897 (p = 0.001) and 0.910 (p = 0.001), with Youden’s indices of 9.03 and 4.22, respectively. Use of these cut-offs provided a sensitivity and specificity for differentiating between low and high-grade cancers of 74.6% and 100%, respectively for TNFα and 85.7% and 100%, respectively for VEGF (Figure 4).

Binary logistic regression analysis showed that both TNFα and VEGF could predict the risk of having high-grade PCa (GS ≥ 7), with odds ratios (OR) of 1.343 (95% CI, 1.01-1.79; p = .043) and 1.921 (95% CI, 1.11-3.33; p = .02), respectively. A Hosmer-Lemeshow test revealed that the data fit the model well [$\chi^2(8) = 1.81$, $p = 0.986$].
Patients with stage pT3 had statistically significantly higher positivity of TNFα (18.2 ± 8.95) than patients with stage pT2 (13.27 ± 10.66), \(t(67) = -2.03, p = 0.047 \). There was no relationship between AR and VEGF and pT stage of PCa, \(t(67) = .458, p = 0.649 \) and \(t(67) = -.547, p = 0.586 \), respectively.

Mean expression levels of TNFα and VEGF for Gleason score ≤ 6 disease were 4.1 (± 3.7) and 2.8 (±1.1) respectively. In contrast mean levels of expression for TNFα and VEGF for Gleason score 7 and more disease were 15.4 (±9.7) and 15.1 (±11.3) respectively. There were 22 (31.8%) patients with upgraded GS from biopsy specimen to final RP (14 had Gleason score 6 disease on biopsies and were upgraded to GS 7 or more). Analysis of 20 radical prostatectomy cases (20/69; 28.9%) diagnosed with Gleason 6 on biopsies showed that 70% (14/20; 70%) were upgrade to Gleason 7 or more on final histopathology. Performance of expression level analysis for TNFα and VEGF in those with upgraded disease vs. non-upgraded disease showed statistically significant differences (Table 2). VEGF expression between the non-upgraded (2.83 ± 1.18; n = 6) and upgraded (6.85 ± 3.45; n = 14) groups was statistically significant \(t(18) = -2.75, p = 0.013 \). Similarly, there was a difference in the mean of TNFα expression between the non-upgraded (4.11 ± 3.77; n = 6) and upgraded (10.55 ± 8; n = 14) groups with statistically significance \(t(18) = -1.86, p = 0.039 \). This suggests a high expression of TNFα and VEGF in presence of low grade disease on biopsy may indicate presence of high grade disease in the prostate.

Immunohistochemical expression of TNFα was significantly positively correlated with \(K_{\text{trans}} \) \((\rho = 0.327, p = 0.023) \), but not with \(K_{\text{ep}} \) \((\rho = 0.162, p = 0.270) \) or ADC value \((\rho = -0.096, p = 0.516) \). There was no significant correlation between VEGF expressions with any of quantitative MRI parameters. Table 3 summarises the correlations results.
4 Discussion

To our knowledge, this is the first study to investigate the relationship between the inflammatory and angiogenic adipokine (TNFα and VEGF) expression levels in PPAT and the aggressivity of PCa by comparing their immunohistochemical expression with Gleason scores (GS), pathological tumour staging (pT), and quantifiable MR imaging biomarkers. The results indicate a strong correlation between PPAT TNFα positivity and histopathological GS, as well as pT stage. We observed that both TNFα and VEGF were significant correlating with the risk of having high-grade PCa (GS ≥ 7) following RP. However, PPAT androgen receptor expression had no relationship with either post-operative GS or pT stage. It is, however interesting to observe that men who were upgraded from low GS on biopsy had statistically significant different level of expression for both TNFα and VEGF to those who continued to have low grade disease with similar GS on biopsy and radical prostatectomy histology.

Recent studies [1, 3, 29-31], including our previous study [4], have confirmed the relationship between the adiposity of periprostatic fat and the aggressivity of PCa. The cross-talk between PPAT and PCa cells could modify the phenotype and characteristics of closely related adipocytes, which can become more metabolically active adipocytes called “cancer-associated adipocytes” [11, 12]. These cells can stimulate and support PCa progression by releasing FFA, the major source of PCa energy, through lipolysis and secreting adipokines that stimulate tumour progression through a paracrine effect [12, 32]. This may suggest that both adiposity and adipokine activity of periprostatic fat have an impact on the aggressivity of PCa. However, at present, imaging is unable to assess adipokine activity of periprostatic fat. Interestingly, BMI, the marker of generalised obesity, has no relationship with NPFV nor PCa aggressiveness indicating that periprostatic fat adiposity is more important than BMI [4].
TNFα is a pro-inflammatory and lipolytic adipokine that induces apoptosis and inhibits carbohydrate metabolism and adipogenesis [33-37]. Serum TNFα has been reported as a biomarker for PCa diagnosis [20]. As a pro-inflammatory cytokine, it can influence PCa progression and increase the risk of metastasis [19, 23, 24]. Focusing on PPAT, a study showed that inflammation was associated with high-grade PCa [14]. PPAT TNFα is higher in obese men, which contributes to insulin resistance [9, 35, 38-40], but it is not associated with lipolysis in cachectic patients with gastrointestinal cancers [36]. Ribeiro et al [41] have reported that TNFα was expressed by approximately 1.7-fold higher in PPAT explants stimulated with a PC3 human PCa cell line conditioned medium, but not by stromal vascular fractions that did not contain mature adipocytes, suggesting that mature PPAT adipocytes, the cancer-associated adipocytes, can significantly crosstalk with PCa cells and secrete larger amount of TNFα [11]. Therefore, we investigated its relation to PCa grading along with staging and found that it was significantly correlated with the both.

K_{trans}, representing the rate of accumulation of gadolinium-based contrast agent in the extravascular extracellular space, is a measure of capillary permeability. Our study showed that K_{trans} in the primary lesion was significantly correlated with PPAT TNFα but not to PPAT VEGF. This may reflect the consequence of the inflammatory response of PPAT and increased vascular permeability leading to transfer of the contrast agent from blood vessels to the extracellular matrix. It has been reported that PPAT angiogenesis may facilitate seeding of a PCa microenvironment with adipocyte precursors (lipoblasts) [42]. These lipoblasts secrete numerous factors (e.g. IL-6 and TNFα) involved in the inflammatory response, particularly in obesity [25]. Taking all of this into consideration, there is a clear implication that TNFα has a significant role as a pro-inflammatory adipokine, secreted by activated mature PPAT adipocytes, together with the angiogenic PPAT VEGF, creating a favourable stromal
microenvironment that promotes PCa progression by inducing vascularity and increasing vascular permeability [43-50], which facilitates seeding PPAT lipoblasts to the PCa tumour stromal microenvironment [42]. Moreover, as a lipolytic factor, PPAT TNFα may increase the release of FFA, which has been found to be the major source of PCa energy[32]. The quantitative Ktrans of primary prostate lesion could provide an estimate of angiogenic activity of periprostatic fat, however this needs further research.

Our results showed that both TNFα and VEGF positivity at IHC can distinguish between low (GS ≤ 6) and high (GS ≥ 7) grade PCa. TNFα and VEGF expression levels above 9.03% and 4.22% had a 74.6% and 85.7% chance of having high-grade PCa, respectively. These findings have strong clinical implications, if externally validated to predict upgrading from GS biopsy to RP, the practical utility of measuring the expression of TNFα and VEGF in the periprostatic fat sample during prostate biopsy could be realised, and the level of expression for both could become a marketable test, similar to Oncotype DX, Prolaris, and Decipher tests, that predict upgrading and help in decision-making such as in active surveillance versus radical treatment [51].

Androgens upregulate the adrenoreceptors of catecholamines in adipose tissue, and their receptors are more prominent in visceral fat than subcutaneous fat [52, 53]. This may indicate the uptake of the lipolytic catecholamines in visceral fat is higher, leading to the release of greater amounts of FFA, the major source of PCa energy [32, 52, 53]. Therefore, we included PPAT AR in our analysis, but did not find any correlation with GS or pT stage.

There are some limitations to our study. The present investigation was a single centre cohort and the results require further validation through a multicentre design. Quantitative MRI data was available for only 48 cases in the cohort (we had no imaging data for the remaining 21 cases as they were scanned on 1.5T MRI). Though we demonstrated no correlation between
PPAT VEGF and K_{trans} of the primary lesion at MRI, a larger sample size might have altered this result. Although we had only 6 patients in Gleason score 6 diseases, trends do suggest that periprostatic fat biopsies at the time of prostatic biopsy for immunostaining for inflammatory biomarkers could represent a time-saving way of obtaining useful information and predicting aggressive PCa.

In conclusion, PPAT TNFα and VEGF immunostaining was significantly positively correlated with the aggressivity of PCa (grade and stage) in men undergoing radical prostatectomy for clinically localised disease. As PCa biomarkers, PPAT metabolic activity measured by immunohistochemical expression of TNFα and VEGF significantly correlates with the risk of having high-grade prostate cancer disease including upgradation from prostate biopsy results.
5 Acknowledgements

We would like to thank the Tayside Biorepository team (TBR) especially Dr Susan Bray and Dr Sharon King for their close support in immunohistochemistry slide preparation and digital scanning to ensure the quality of the study. We also want to thank Dr Petra Rauchhaus from Dundee Epidemiology and Biostatistics Unit (DEBU) for her supervision in statistical analyses.
Conflicts of interest:

None.
References

10. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B: Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 2006, 17(1):4-12.

51. Wei, Wang, Lampert, Schlanger, Depriest, Hu, Gomez, Murakam, Glenn, Conroy, Morrison, Azabdaftari, Mohler, Liu, and Heemers. Intratumoral and Intertumoral Genomic Heterogeneity of Multifocal Localized Prostate Cancer Impacts

Figure 1: (I) Periprostatic adipose tissues were manually selected from multiple areas proximal and distal to the prostate tissue (red marks). The Positive Pixel Count algorithm was used to quantify the positive and negative staining within the selected regions. (II) A closer view of the net-shaped adipose tissue analysed by the Positive Pixel Count algorithm. Lipid droplets were not included in the analysis. Artefacts, blood vessels, and other types of tissues within the selected regions were manually excluded (green marks).
Figure 2: (I) Manually selected periprostatic adipose tissue before analysis. (II) After running the Positive Pixel Count algorithm, the positive DAB staining (I) of the selected region was divided into 3 different coloured pixels (yellow for weak positive; orange for positive; red for strong positive) based on standardised levels of intensity (the concentration of DAB staining). The Hematoxylin counterstain was represented by blue negative pixels. The positivity (%) was calculated by dividing the number of positive pixels by the total pixel count within the selected region and multiplying by 100.
Figure 3: Box plot showing the differences in the distribution and the median of the positivity of vascular endothelial growth factor (VEGF) and tumour necrosis factor alpha (TNFa) in the three groups stratified according to post-operative Gleason score.
Figure 4: ROC curve showing the areas under the curves of tumour necrosis factor alpha (TNFa; green line) and vascular endothelial growth factor (VEGF; blue line).
Table 1: Patient characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Group 1 Post-operative Gleason score ≤6</th>
<th>Group 2 Post-operative Gleason score 7 (3+4)</th>
<th>Group 3 Post-operative Gleason score 7 (4+3) and over</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Standard Deviation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>n = 6</td>
<td>n = 35</td>
<td>n = 28</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>64 ± 8.17</td>
<td>65.83 ± 5.67</td>
<td>66.96 ± 4.54</td>
<td>.391<sup>a</sup></td>
</tr>
<tr>
<td>VEGF (%)</td>
<td>2.83 ± 1.18</td>
<td>10.03 ± 7.74</td>
<td>9.45 ± 6.65</td>
<td>.004<sup>b</sup></td>
</tr>
<tr>
<td>AR (%)</td>
<td>7.44 ± 5.07</td>
<td>5.64 ± 3.71</td>
<td>7.15 ± 5.96</td>
<td>.500<sup>b</sup></td>
</tr>
<tr>
<td>TNFa (%)</td>
<td>4.1 ± 3.77</td>
<td>14.89 ± 10.76</td>
<td>18.32 ± 8.75</td>
<td>.001<sup>b</sup></td>
</tr>
<tr>
<td>Initial PSA (ng/ml)</td>
<td>7.9 ± 2.13</td>
<td>10.69 ± 7.53</td>
<td>11.53 ± 6.39</td>
<td>.317<sup>b</sup></td>
</tr>
<tr>
<td>PV (cm³)</td>
<td>64.64 ± 8.74</td>
<td>48.99 ± 26.035</td>
<td>55.44 ± 23.01</td>
<td>.165<sup>b</sup></td>
</tr>
<tr>
<td>WHO classification N (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>n = 4</td>
<td>n = 33</td>
<td>n = 24</td>
<td>.568<sup>c</sup></td>
</tr>
<tr>
<td>Normal weight</td>
<td>1 (25)</td>
<td>10 (30.3)</td>
<td>6 (25)</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>3 (75)</td>
<td>16 (48.5)</td>
<td>8 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Obesity class I</td>
<td>0</td>
<td>5 (15.2)</td>
<td>8 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Obesity class II</td>
<td>0</td>
<td>2 (6.1)</td>
<td>1 (4.2)</td>
<td></td>
</tr>
<tr>
<td>Obesity class III</td>
<td>0</td>
<td>0</td>
<td>1 (4.2)</td>
<td></td>
</tr>
<tr>
<td>Pathological stage N (%)</td>
<td></td>
<td></td>
<td></td>
<td>.027<sup>c</sup></td>
</tr>
<tr>
<td>No.</td>
<td>n = 6</td>
<td>n = 35</td>
<td>n = 28</td>
<td></td>
</tr>
<tr>
<td>T<sub>2</sub></td>
<td>5 (83.3)</td>
<td>24 (68.6)</td>
<td>11 (39.3)</td>
<td></td>
</tr>
<tr>
<td>T<sub>3</sub></td>
<td>1 (16.7)</td>
<td>11 (31.4)</td>
<td>17 (60.7)</td>
<td></td>
</tr>
<tr>
<td>D’Amico risk classification N (%)</td>
<td></td>
<td></td>
<td></td>
<td><.001<sup>c</sup></td>
</tr>
<tr>
<td>No.</td>
<td>n = 6</td>
<td>n = 35</td>
<td>n = 28</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>5 (83.3)</td>
<td>9 (25.7)</td>
<td>1 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>1 (16.7)</td>
<td>17 (48.6)</td>
<td>10 (35.7)</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>0</td>
<td>9 (25.7)</td>
<td>17 (60.7)</td>
<td></td>
</tr>
</tbody>
</table>

VEGF = Vascular endothelial growth factor; AR = Androgen receptors; TNFa = Tumour necrosis factor alpha; PSA = Prostate specific antigen; PV = Prostate volume.

Patients were stratified according to post-operative Gleason score

^aANOVA, ^bKruskal-Wallis test, ^cΧ² test

*(%) within each group

*p value is significant <0.05
Table 2. Independent-sample t test was used to compare the differences in the mean adipokine Immunopositivity (%) for upgraded and not upgraded from low-grade (GS = 3+3) PCa at biopsy ($n = 20$).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean (%)</th>
<th>Std. Deviation (%)</th>
<th>Std. Error</th>
<th>t</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>not upgraded</td>
<td>6</td>
<td>2.83</td>
<td>1.18</td>
<td>.48</td>
<td>-2.75</td>
</tr>
<tr>
<td></td>
<td>upgraded</td>
<td>14</td>
<td>6.85</td>
<td>3.45</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td>TNFa</td>
<td>not upgraded</td>
<td>6</td>
<td>4.11</td>
<td>3.77</td>
<td>1.53</td>
<td>-1.86</td>
</tr>
<tr>
<td></td>
<td>upgraded</td>
<td>14</td>
<td>10.55</td>
<td>8</td>
<td>2.14</td>
<td></td>
</tr>
</tbody>
</table>

(%) immunopositivity within each group
Table 3: The relationship between periprostatic adipose tissue adipokines (VEGF and TNFa), androgen receptors, age, prostate volume, Quantitative values of functional MRIs (DCE-MRI and DWI), fat measures, body mass index (BMI), prostate specific antigen (PSA) and pre- and post-operative Gleason scores using Spearman correlation coefficient.

<table>
<thead>
<tr>
<th>Spearman's rho</th>
<th>AR</th>
<th>VEGF</th>
<th>TNFa</th>
<th>Age</th>
<th>PV</th>
<th>AFA</th>
<th>SFT</th>
<th>PSA</th>
<th>BMI</th>
<th>Ktrans</th>
<th>Kep</th>
<th>ADC</th>
<th>NPFV</th>
<th>Post-op GS</th>
<th>Biopsy GS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>1.00</td>
<td>.269*</td>
<td>.226</td>
<td>.190</td>
<td>.057</td>
<td>.112</td>
<td>.062</td>
<td>.101</td>
<td>.107</td>
<td>.194</td>
<td>.084</td>
<td>.302*</td>
<td>.018</td>
<td>.045</td>
<td>.103</td>
</tr>
<tr>
<td>N</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>64</td>
<td>63</td>
<td>63</td>
<td>69</td>
<td>61</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>64</td>
<td>69</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.269*</td>
<td>1.00</td>
<td>.475**</td>
<td>.009</td>
<td>-.143</td>
<td>.040</td>
<td>.127</td>
<td>.175</td>
<td>.110</td>
<td>.158</td>
<td>.118</td>
<td>.012</td>
<td>.068</td>
<td>.190</td>
<td>.265*</td>
</tr>
<tr>
<td>N</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>64</td>
<td>63</td>
<td>63</td>
<td>69</td>
<td>61</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>64</td>
<td>69</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>TNFa</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.226</td>
<td>.475**</td>
<td>1.00</td>
<td>-.012</td>
<td>-.038</td>
<td>.156</td>
<td>.278</td>
<td>.177</td>
<td>.233</td>
<td>.327</td>
<td>.162</td>
<td>-.096</td>
<td>.082</td>
<td>.345**</td>
<td>.419**</td>
</tr>
<tr>
<td>N</td>
<td>69</td>
<td>69</td>
<td>69</td>
<td>64</td>
<td>63</td>
<td>63</td>
<td>69</td>
<td>61</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>64</td>
<td>69</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Ktrans</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.194</td>
<td>.158</td>
<td>.327</td>
<td>.126</td>
<td>.159</td>
<td>.070</td>
<td>.089</td>
<td>.060</td>
<td>.115</td>
<td>1.00</td>
<td>.682</td>
<td>.081</td>
<td>.157</td>
<td>.005</td>
<td>.110</td>
</tr>
<tr>
<td>N</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Kep</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.084</td>
<td>.118</td>
<td>.162</td>
<td>.032</td>
<td>.211</td>
<td>-.106</td>
<td>.061</td>
<td>.111</td>
<td>.051</td>
<td>.682</td>
<td>1.00</td>
<td>.122</td>
<td>.057</td>
<td>-.123</td>
<td>.054</td>
</tr>
<tr>
<td>N</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>ADC</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td></td>
</tr>
<tr>
<td>Sig. (2-tailed)</td>
<td>.302*</td>
<td>.012</td>
<td>-.096</td>
<td>.067</td>
<td>-.068</td>
<td>-.221</td>
<td>-.334*</td>
<td>-.230</td>
<td>-.365*</td>
<td>-.081</td>
<td>.122</td>
<td>1.000</td>
<td>-.163</td>
<td>-.473**</td>
<td>-.361**</td>
</tr>
<tr>
<td>N</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

AR = Androgen receptors; VEGF = Vascular endothelial growth factor; TNFa = Tumour necrosis factor alpha; PV = Prostate volume; AFA = Abdominal fat area; SFT = Subcutaneous fat thickness; PSA = Prostate specific antigen; BMI = Body mass index; Ktrans = Transfer constant; Kep = Reverse reflux rate constant; ADC = Apparent diffusion coefficient; NPFV = Normalised periprostatic fat volume; GS = Gleason score.

* Correlation is significant at the 0.05 level (2-tailed).

** Correlation is significant at the 0.01 level (2-tailed).
The histological parameters of prostate cancer:
- Post-operative Gleason score.
- Pathological tumour staging

Immunopositivity of periprostatic adipose tissue adipokines (TNFα and VEGF)

Multiparametric MRI parameters (Ktrans, Kep and ADC value)

Normalised periprostatic fat volume and other fat measures

Figure S1: Schematic diagram showing the primary and secondary outcomes of this study.
Table S1: Power analysis.

<table>
<thead>
<tr>
<th>Fat measures</th>
<th>Effect Size (f)</th>
<th>α error probability</th>
<th>Power (1-β error probability)</th>
<th>Sample size calculated</th>
<th>p value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>.46</td>
<td>.05</td>
<td>.8</td>
<td>51</td>
<td>.249</td>
</tr>
<tr>
<td>VEGF</td>
<td>.64</td>
<td>.05</td>
<td>.8</td>
<td>27</td>
<td>.082</td>
</tr>
<tr>
<td>TNFα</td>
<td>.39</td>
<td>.05</td>
<td>.8</td>
<td>69</td>
<td>.358</td>
</tr>
</tbody>
</table>

AR = Androgen Receptor; VEGF = Vascular endothelial growth factor; TNFα = Tumour necrosis factor alpha.

^aOne-way ANOVA test.
Table S2: The characteristics of the selected antibodies.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Clonality</th>
<th>Isotype</th>
<th>Host</th>
<th>Reactivity</th>
<th>Tissue specificity</th>
<th>Catalog number</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Androgen Receptor clone AR441</td>
<td>Monoclonal</td>
<td>IgG</td>
<td>Mouse</td>
<td>Human</td>
<td>Nucleus</td>
<td>M3562</td>
<td>DAKO</td>
</tr>
<tr>
<td>Anti-VEGF clone VG1</td>
<td>Monoclonal</td>
<td>IgG</td>
<td>Mouse</td>
<td>Human</td>
<td>Secreted</td>
<td>M7273</td>
<td>DAKO</td>
</tr>
<tr>
<td>Anti-TNFα</td>
<td>Polyclonal</td>
<td>IgG</td>
<td>Rabbit</td>
<td>Mouse, Rat, Guinea pig, Human, Pig, Fish, Cynomolgus monkey</td>
<td>Nucleus and cytoplasm</td>
<td>Ab6671</td>
<td>Abcam</td>
</tr>
</tbody>
</table>
Table S3: The protocol used for AR (1:50), VEGF (1:100) and TNFa (1:200).

<table>
<thead>
<tr>
<th>Category</th>
<th>Code</th>
<th>Reagent Name</th>
<th>Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Enzyme Pre-treatment</td>
<td></td>
<td>FLEX TRIS High PH Solution</td>
<td>10min 97°C</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Endogenous Enzyme Block</td>
<td>SM801</td>
<td>FLEX Peroxidase Block</td>
<td>5min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Primary Antibody</td>
<td></td>
<td>FLEX Ab Diluent + 1° Ab</td>
<td>o/n 4°C</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Secondary Reagent</td>
<td>SM804</td>
<td>FLEX + Mouse LINKER (LINKER; for VEGF only)</td>
<td>15min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Labelled Polymer</td>
<td>SM802</td>
<td>FLEX/HRP</td>
<td>20min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td>5min</td>
</tr>
<tr>
<td>Substrate-Chromogen</td>
<td>SM803</td>
<td>FLEX DAB + Substrate-Chromogen</td>
<td>5min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Auxiliary</td>
<td></td>
<td>Copper-Sulphate 0.5%</td>
<td>5min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>Counterstain</td>
<td>SM806</td>
<td>FLEX Hematoxylin</td>
<td>5min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>DI Water</td>
<td></td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>Buffer</td>
<td>5min</td>
</tr>
<tr>
<td>Rinse</td>
<td></td>
<td>DI Water</td>
<td></td>
</tr>
</tbody>
</table>