Abstract—Fibre-based optical tweezers typically rely on engineered fibre terminations yielding limited flexibility in number and positioning of trap sites. Here, we demonstrate holographic optical tweezers delivered by a lensless, high-NA multimode fibre with full positioning control of multiple tweezers independently and in all directions.

Keywords—optical tweezers, multimode fibres, digital holography, wavefront shaping

Optical tweezers allow exerting and measuring minuscule forces in a contactless manner and, particularly in the domain of Biophotonics, have become ubiquitous tools for studying the mechanical properties of cells, molecular motors and biomolecules [1]. Conventional systems are usually based on bulk optical components such as high-NA microscope objective lenses to create sharp and aberrations-free foci that produce gradient forces overcoming the radiation pressure, thus achieving stable 3D trapping using a single beam of light. Miniaturised designs using optical fibres have been the object of intense research in the past two decades, aiming at applications spanning from optofluidics chips to minimally invasive probes capable of taking the study of the mechanics of biological processes deep within living tissue. Such designs rely mostly on single-mode as well as multicore fibres with elaborate fibre terminations and the optical traps are either static or have limited flexibility in terms of positioning the trap sites [2].

We have developed an all-solid, step-index multimode fibre based on compound ‘soft-glasses’ yielding an unprecedented NA exceeding 1 at wavelengths smaller than 600 nm, and 0.96 at 1064 nm. By utilising and further extending the methods of holographic wavefront shaping for controlling light propagation in multimode fibres [3,4], we demonstrate three-dimensional optical trapping and manipulation via a bare, single fibre [5]. Being inherently holographic, our approach allows generating an arbitrary number of optical tweezers, as well as precisely repositioning them independently in all directions (Fig. 1). Surprisingly, the high-NA fibre probe shows a remarkable macro-bending resilience even for radii of curvature up to 5 cm (Fig. 2), which should be sufficient for a
broad spectrum of real-world applications. Moreover, the possibility of generating aberration-free foci with NA exceeding 0.8 across the fibre core opens new perspectives for high-resolution holographic micro-endoscopy, paving the way for the delivery of advanced microscopy techniques through air-thin fibre-optic probes.

ACKNOWLEDGMENT

I.T.L. and S.T. acknowledge funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 608144. I.T.L., S.T. and T.Č. also acknowledge financial support from the Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft, the Thüringer Aufbaubank and the Federal Ministry of Education and Research, Germany (BMBF). M.Š. and T.Č. acknowledge support from the European Regional Development Fund through project no. CZ.02.1.01/0.0/0.0/15003/0000476. T.Č. also acknowledges the University of Dundee and SUPA (Scottish Universities Physics Alliance; PaLS initiative) for financial support.

REFERENCES