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Abstract

Earthquakes have been historically perceived as one of the most damaging
natural hazards. Seismic soil liquefaction is often one of the major sources of
damage and disruptions, and has been observed to severely a�ect key lifelines.
Settlement and tilting of shallow foundations resting on saturated sandy/silty
soils has been repeatedly observed throughout the world as a consequence of
liquefaction or softening of the foundation soil. Such settlements and tilts can
render structures unusable, and homes uninhabitable, causing signi�cant eco-
nomic losses. Despite the undoubted relevance of this phenomenon, �eld data
on the liquefaction induced settlement of shallow foundations are scarce. New
data from 24 buildings that su�ered settlement and tilting as a consequences
of soil liquefaction during the February 27th 2010 Maule earthquake in Chile,
are presented in this work to supplement the existing �eld cases database.
Due to the complexity of this phenomenon, �eld data are not su�cient to fully
understand the mechanisms controlling the settlement of structures resting on
lique�ed or softened ground.In this framework, centrifuge modelling provides
a valuable tool for research by reproducing �eld conditions in a controlled
environment.

A series of 10 dynamic centrifuge tests were performed as part of this work.
Thanks to the University of Dundee newly installed centrifuge-mounted servo-
hydraulic earthquake simulator, scaled version of �eld earthquake motions were
reproduced in the models tested, enhancing the reliability of experimental
results. Particular attention was given to the e�ect of key parameters on the
observed foundation settlement. These parameters are the bearing pressure of
the foundation, the thickness of the lique�ed soil layer and the soil’s relative
density. The e�ect of the soil layering pattern was also investigated, with
particular attention to the e�ect of a low permeability soil crust overlying the
lique�ed soil. Results suggest that the excess pore pressure generation in the
foundation soil is signi�cantly in
uenced by the stress distribution due to the
presence of the foundation itself. In particular, lower excess pore pressure
where measured in soil subjected to high static shear stresses (i.e. below the
edge of a footing). The soil strati�cation pattern, and the relative thicknesses
of the lique�ed and un-lique�ed portions of the soil pro�le, were also found to
play a crucial role in determining the seismic demand at foundation level and
the type of failure mechanism leading to foundation settlement.



Observed di�erences between centrifuge (i.e. �eld) and element testing soil
response are also discussed. Experimental results are compared to �eld obser-
vations, with the aim of improving the current understanding of the behaviour
of structures built on shallow foundations in the eventuality of seismic induced
liquefaction of their foundation soil.



\La natura comincia dalla ragione e termina
nella sperienza; a noi bisogna seguitare in

contrario, cio cominciando dalla sperienza, e
con quella investigare la ragione."

\Although nature commences with reason and
ends in experience it is necessary for us to do

the opposite, that is to commence with
experience and from this to proceed to

investigate the reason."

Leonardo da Vinci
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Chapter 1

Introduction

Earthquakes have been historically perceived as one of the most damaging nat-
ural hazards. Since this work commenced in 2009 several major earthquakes
have been experienced across the world, among which �gure the Maule (Chile)
earthquake (2010; Mw = 8.8), the Haiti earthquake (2010; Mw = 7), the Can-
terbury (New Zealand) earthquake (2010; Mw = 7.2), the Christchurch (New
Zealand) earthquakes (February and June 2011; Mw = 6.2 and 6) and the To-
hoku (Japan) earthquake (2011; Mw = 9). Cumulative economic losses from
the above listed earthquakes only may exceed 300 billion US dollars (MRP
Engineering, 2012). Moreover, because of the fast growing globalization of the
world economy, earthquake damages are more and more likely to cause indi-
rect repercussion in non-seismically active countries too. This aspect increases
the urgency for a better understanding of the e�ects of earthquakes on the
built environment in order to mitigate the seismic risk and improve the safety
of structures. Earthquake induced soil liquefaction is often one of the major
sources of damage and disruptions, and has been observed to severely a�ect
key lifelines such as bridges and utilities. In addition, settlement and tilting
of shallow foundations on saturated sandy/silty soils has been repeatedly ob-
served throughout the world as a consequence of liquefaction or softening of
the foundation soil. Such settlements and tilts can render structures unusable,
and homes uninhabitable, causing signi�cant economic losses.

Earthquake loading can induce an undrained or partially drained soil
response, depending on the ground motion characteristics and soil proper-
ties. This may result in a reduction in e�ective stresses and a consequent
degradation of the soil’s shear sti�ness and strength, facilitating settlement of
structures on shallow foundations (Figure 1.1). If the generated excess pore
pressure is high enough to induce full liquefaction (de�ned for this work as be-
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ing when excess pore water pressure equals the initial e�ective vertical stress)
underneath the footing, very large deformations may take place, severely af-
fecting the overlying structures. The damaging nature of the phenomenon is
increased by the fact that areas geologically susceptible to liquefaction, like
river 
oodplains and shorelines, are often highly populated. Man made earth-
�lls, which often host key facilities (e.g. port docks, arti�cial islands, etc.) also
represent a category of soils strongly susceptible to liquefaction.

Despite the undoubted relevance of this phenomenon, �eld data on the
liquefaction induced settlement of shallow foundations are scarce because of
the objective di�culty in estimating the extent of lique�ed soil at damaged
sites. Both lique�ability and, retrospectively, extent of liquefaction are com-
monly achieved by means of semi-empirical methods, such as the \simpli�ed
procedure" (Youd et al. 2001; Idriss and Boulanger, 2008), based on SPT
blow-count or CPT tip resistance. A �rst estimation of the liquefaction in-
duced settlement of structures resting on shallow foundations is sometimes
obtained by the Ishihara and Yoshimine (1992) method as a function of the
soil relative density and expected shear strain. However, this method was de-
veloped for free-�eld deposits and only accounts for the post-liquefaction volu-
metric soil deformation due to the re-consolidation of soil particles and excess
pore pressure dissipation. Field observations showed that in case of founda-
tion soil liquefaction, a structure resting on such soil may su�er signi�cant
settlements of deviatoric nature (e.g. bearing failure induced by soil soften-
ing) on top of the post-liquefaction volumetric deformations. The deviatoric
component of footing settlement usually dominates over the volumetric one,
therefore the use of Ishihara and Yoshimine method for the estimation of the
liquefaction induced footing settlement may lead to severe under-estimation
of such settlement and is therefore inadequate. Liu and Dobry (1997) devel-
oped an empirical chart for the estimation of liquefaction induced settlement
of structures resting on shallow foundations (Figure 1.2). This is based pri-
marily on �eld data of building settlement observed following the 1964 Niigata
earthquake by Yoshimi and Tokimatsu (1977). Liu and Dobry (1997) based
their design chart on the observation that liquefaction induced settlements de-
creased with increasing foundation width, B (measured as the smaller footing
dimension). Both axes on the chart are normalized by the thickness of the
lique�ed soil. The normalization of the induced settlement by the thickness of
the lique�ed soil deposits is based on the assumption that a linear relationship
exists between these two variables. Although this is true for free-�eld deposits,
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Figure 1.1: Liquefaction-induced settlement of buildings having shallow foun-
dations: a) 2011 Tohoku (Japan) Earthquake (Ashford et al., 2011); b) 2010
Maule (Chile) Earthquake (Bray & Frost, 2010); c) Kocaeli (Turkey) Earth-
quake (Youd et al., 2000); d) Luzon (Philippines) Earthquake (Orense, 2011).

as observed above, the extension of this assumption to the case of a shallow
foundation resting on the ground surface is unveri�ed. Based on the results of
dynamic centrifuge tests, Dashti et al. (2010) pointed out the inadequacy of
such normalization in the case of relatively thin lique�ed layers. This method
however is very simplistic and overlooks potentially important variables such
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Figure 1.2: Chart for the estimation of the liquefaction induced settlement of
buildings (Liu & Dobry, 1997).

as the footing bearing pressure, the lique�able soil relative density, the char-
acteristics of the earthquake motion and the layering of the soil deposits.

1.1 Methodology of Research

Exploring the literature of earthquake geotechnical engineering there are many
instances in which hypotheses are formulated based on earthquake case histo-
ries. However, due to the large number of variables associated with natural
phenomena, it is not always possible to isolate the e�ect of a given variable on
the dynamic behaviour of the ground/structure of interest. For this reason,
case history analysis is often limited to speculation. For this reason the work
described herein is divided into two main parts. The �rst part is concerned
with the analysis of the available case histories of liquefaction induced building
settlement and the presentation of a new set of case histories from the 2010
Maule earthquake (Chile). The second part of the work is concerned with
the experimental veri�cation of the trends observed in the �eld cases and the
investigation of the fundamental mechanisms driving the liquefaction induced
settlements of structures built on shallow foundations for di�erent con�gura-
tions of soil strati�cation. The experimental work herein presented is entirely
based on centrifuge modelling, as this is the only tool which allows testing of a
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model under similar conditions to those found in situ. However the soil mod-
els tested were not meant to reproduce the analyzed �eld cases but instead
represent a controlled and simpli�ed general case (clean loose sand with no
�nes content). Complementing �eld observations with centrifuge modelling is
a key aspect of this work, as the �rst on their own are not su�cient to gain full
understanding of a complex phenomenon such as the liquefaction induced set-
tlement of structures resting on shallow foundations. During earthquakes, the
behaviour of structures resting on the ground surface is a function of several
variables, including soil properties, motion characteristics, structure charac-
teristics, etc., and their interaction. Seismic soil liquefaction in presence of
a structure interacting with the soil represents a dramatic example of such a
phenomenon; as a consequence of its degree of complexity its e�ects on the
built environment are not fully understood yet. In this framework, geotech-
nical dynamic centrifuge modelling provides a valuable tool for research by
reproducing �eld conditions in a controlled environment. Thanks to the sig-
ni�cant development in dynamic geotechnical centrifuge modelling in the last
30 years, beside soil conditions and model geometry, we are today able to care-
fully reproduce �eld motions enhancing the reliability of experimental results.
This is the case for the centrifuge tests discussed in this work, which have been
performed on the newly acquired Actidyn Q67-2 servo-hydraulic earthquake
shaker at the University of Dundee.

1.2 Aims and Objectives

As discussed above, the current practice in estimating liquefaction induced
building settlement is based on fairly simplistic empirical methods or on pro-
cedures developed to calculate post-liquefaction consolidation settlement in
the free-�eld. The aim of this work is to extend the scienti�c knowledge con-
cerning this type of settlement by investigating the e�ect of several variables
currently neglected in engineering practice. Moreover, this work aims to pro-
vide new �eld data on the liquefaction induced settlement of buildings during
earthquakes. Data concerning this problem are invaluable as a very limited
documented case history is available in the literature. The philosophy fol-
lowed was that of balancing practical usable results and enhanced scienti�c
understanding of the investigated topic. In particular, the speci�c objectives
pursued in this work have been:

� Provide new documented case histories of liquefaction induced building
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settlement and reassess the existing database of �eld cases available in
the literature.

� Finalise the procedures for creating suitable dynamic centrifuge models
in the University of Dundee geotechnical laboratories. This includes the
design and manufacturing of a model container capable of minimising
boundary e�ects in the soil model during earthquake shaking, the as-
sembly and setting of a suitable data acquisition system and the choice,
modi�cation, preliminary testing and calibration of suitable instrumen-
tation.

� Identify the e�ect of the foundation bearing pressure on the liquefaction
induced settlement.

� Improve the understanding of the e�ect of a sur�cial crust layer having
lower permeability on the liquefaction induced settlement.

� Provide insights on the failure mechanisms developing in the soil under-
neath shallow foundations for di�erent strati�cation patterns (footing
resting directly on lique�able soil, sur�cial crust of di�erent strength
overlying a lique�able soil deposit, footing resting on soil deposit con-
taining ‘deep’ lique�able layers).

� Investigate the e�ect of the ‘depth of liquefaction’ (total thickness of
lique�ed soil) and of the lique�able soil relative density on the induced
foundation settlement.
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Chapter 2

Literature Review

2.1 Liquefaction De�nition

When a shear stress (such as the one induced by the vertical propagation of
earthquake induced shear waves) is applied to the soil under these conditions,
its structure tends to collapse resulting in a contractive response. The tendency
of loose sand to contract under shear is prevented by the incompressible pore

uid which �lls the voids, causing a rapid transferral of load to the pore 
uid
itself, thereby increasing its pressure. If the loading occurs faster than the
dissipation of the excess pore pressures (EPP) generated in the pore 
uid,
e�ective stress is reduced, eventually reaching a state of complete liquefaction
if it drops to zero. In general terms it is accepted that for liquefaction to occur,
two conditions must be satis�ed. First, the soil must be saturated (i.e. the
voids must be �lled by a pore 
uid). Second, it must be loose enough to, at
least for small strains, contract under shearing.

Soil liquefaction has been given many de�nitions over the years. The
term liquefaction was �rst used by Terzaghi & Peck (1948), where they refer to
‘spontaneous liquefaction’ while studying the change of loose sand deposits into
viscous 
ows caused by slight disturbances (Ishihara, 1993). The phenomenon
was initially associated uniquely with slope failures, only later it was realised
that soil liquefaction could cause major damage even in level ground deposits.
Based on observations from a series of undrained cyclic triaxial tests, Seed
& Lee (1966) stated that a soil may be considered lique�ed if \its resistance
to deformation is zero over a wide strain amplitude. In sands this can occur
only when the e�ective con�ning pressure is also zero". The authors de�ned
as ’initial liquefaction’ the condition where excess pore pressure equals the
vertical e�ective stress acting on the soil, and observed that this condition

7



is easily attained in the cyclic loading of loose sands. On the contrary, in
denser sands signi�cant excess pore pressure generation may occur only \over
a certain range of stress and strains", as cyclic dilation may occur limiting
the magnitude of the generated excess pore pressure. The latter condition
was termed by Seed & Lee (1966) ‘partial liquefaction’. Robertson & Wride
(1998) de�ne the response observed in dense sands ‘cyclic softening’, further
distinguishing between ‘cyclic liquefaction’, during which shear stress reversal
takes place with the possibility of large deformations, and ‘cyclic mobility’, if
shear stress reversal does not take place. The latter de�nition is due to Castro
(1975). According to Florin & Ivanov (1961), a state of complete liquefaction
corresponds to a full loss of inter-particle contacts, signi�cantly reducing the
soils shear strength. Once this condition has been reached the soil �nds itself in
a state of sedimentation; the soil particles then begin to re-consolidate due to
gravity, squeezing the pore 
uid out of the voids as they settle. This process
may generate high strains resulting in signi�cant settlement of the ground
surface. A fairly precise de�nition of soil liquefaction has been given by Sladen
et al. (1985) as \a phenomenon wherein a mass of soil loses a large percentage
of its shear resistance, when subjected to monotonic, cyclic or shock loading,
and 
ows in a manner resembling a 
uid until the shear stresses acting on the
mass are as low as the reduced shear resistance".

The term ’liquefaction’ has been associated to di�erent phenomena oc-
curring in saturated cohesionless soil involving excess pore pressure generation
and signi�cant e�ective stress loss. However these phenomena may di�er signif-
icantly and be responsible for markedly di�erent consequences (Coelho, 2007).
Some of the de�nitions presented are based on �eld observations, while oth-
ers are based entirely on laboratory testing; this may lead to di�erences in the
observed response of saturated cohesion-less soil as a consequence of the di�er-
ent loading and drainage features between �eld and laboratory conditions. In
particular Scho�eld (2005) suggests that 
ow liquefaction observed in triaxial
testing of loose sand samples may be due to the speci�c boundary conditions
imposed by the test equipment, and thus may be a poor simulation of �eld
conditions.
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2.2 Undrained Response of Sands

Despite earthquake loading being the result of a complex system of di�erent
wave types the majority of ground deformation is seen to be caused by upward
propagating shear waves, so that a soil element experiences a series of cycling
shear stresses. Earthquake shaking usually occurs at frequencies varying be-
tween 1 and 5 Hz (periods between 1 to 0.2 seconds). Even in the case of
loose sands, which have a relatively high permeability, EPP dissipation during
cyclic loading is negligible due to high rate at which the loading occurs. For
practical reasons earthquake loading is often assumed to occur in undrained
conditions.

2.2.1 Undrained Monotonic Response

2.2.1.1 Critical and Steady States

Density strongly a�ects the behaviour of granular materials. In particular,
while loose dry soils contract under the application of shear stress, dense
ones tend to increase in volume. This aspect was extensively investigated
by Casagrande (1936). By performing direct shear box tests he found that
both dense and loose samples converge to a unique value of void ratio when
large strains are attained. He termed this value critical void ratio (ec), being a
function of mean e�ective stress and soil type only. In particular, critical void
ratio is seen to decrease with increasing mean e�ective stress; the locus of ec
in the e � lnp0 is termed the Critical State Line (CSL), and it represents the
boundary between contractive and dilative behaviour. Based on these �ndings
Scho�eld and Wroth (1968) developed a framework known as critical state soil
mechanics. This new approach considered density to be a soil variable rather
than a soil property, better capturing the di�erent behaviour of loose and dense
soils. A given soil �nds itself to be at critical state (CS) when it reaches its
critical void ratio during shearing, at this point a further increase in shear
strain would happen at constant shear stress and volume. In the very same
year Castro (1969) performed a series of stress controlled triaxial tests on loose
sand samples, in the attempt of reproducing in situ stress conditions. All of
these tests resulted in liquefaction leading to a unique and well-de�ned steady
state (SS). The locus of the void ratios corresponding to the steady state was
termed by Castro Steady State Line (SSL) (Figure 2.1). For sandy soils CS and
SS can be considered equivalent, however, when dealing with the undrained
loading of sands (e.g. earthquake loading), the majority of authors seem to
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Figure 2.1: Steady state of Toyura sand (Ishihara,1993).

prefer the steady state de�nition. Triaxial tests are limited for what concerns
the strain imposed to the sample, for this reason Je�eries & Been (2006) argue
that since SS is only reached for large deformations, this condition may not be
achieved in such tests.

2.2.1.2 Quasi Steady State

Results from Verdugo (1992) provide additional insights on the undrained be-
haviour of sands under monotonic loading at di�erent e0 and con�ning pres-
sure. Loose samples, under high con�ning stresses, are seen to reach a peak
in deviator stress followed by a subsequent drop with increasing shear strain
(contractive behaviour) leading to a minimum in the shear stress. After this
value has been reached a further increase in shear strain causes the soil to
approach its steady state with a regain of shear strength (dilative behaviour).
The value of minimum shear stress at which this transition occurs has been
named by Ishihara the Quasi Steady State (QSS) (Figure 2.2). The word
‘quasi’ (from Latin qua (‘as’) and si (‘if’)) underlines the analogy with the
steady state as both QSS and SS represent a zero volume change state. How-
ever the QSS is a transitory state during the undrained shearing of soil while
the SS is the ultimate state attained by the soil itself for large strains. For
increasing density the post-peak reduction in shear stress reduces in magni-
tude and the QSS gets closer to the SS. A limit behaviour is seen for high DR

where QSS and SS coincide, no peak in the stress-strain curve are observed
in this case, with shear stress growing monotonically with strain until leveling
o� (Figure 2.3). Ishihara (1993) points out that QSS, other than on con�ning
stress (Figure 2.1b), strongly depends on the soil fabric. Unlike SS, which is
unique for a given soil type, QSS cannot be considered a soil property but
rather a variable. The transition between contractive and dilative behaviour
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Figure 2.2: Undrained behaviour of loose sand (Ishihara, 1993).

occurs at a given value of the ratio of q to p0 on the ‘phase transformation line’
(PT) (Ishihara et al., 1975) or ’characteristic line’ (CL) (Luong & Sidaner,
1981) (Figure 2.4). In terms of stresses during undrained shearing p0 decreases
during soil contraction as pore water pressure increases while, on reaching
PT, a regain in p0 occurs due to the reduction of EPP caused by dilation in
undrained conditions. Therefore, sand deposits presenting a super-critical void
ratio would, under undrained shearing (e.g. earthquake loading), develop pos-
itive EPP that may eventually cause liquefaction if large enough to equal the
e�ective overburden stress.

2.2.2 Undrained Cyclic Response

Ishihara (1996) investigated the undrained response of Toyura sand under both
monotonic and cyclic loading conditions (Figure 2.5). Despite the oscillation of
q occurring in the case of cyclic loading, the overall behaviour observed under
the two di�erent loading conditions is remarkably similar. However, although
the SS framework remaining valid for cyclic loading conditions, the cyclic shear
strains generated are seldom high enough to reach such a state. Figure 2.6
shows the behaviour of a loose sand sample subjected to uniform cyclic loading
in torsional shear tests. EPP starts to build up from the �rst loading cycle,
not being able to dissipate faster than stress reversal. Very limited strain takes
place until the pore pressure ratio approaches unity. At this point further cyclic
loading cause a sudden increase in EPP denoting the onset of liquefaction. In
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Figure 2.3: Undrained behaviour of Toyura sand: (a) Dense, (b) Medium
dense, (c) Loose (Verdugo & Ishihara, 1996).
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Figure 2.4: Characteristic Line bounding contractancy and dilatancy domains
(Luong & Sidaner, 1981).

denser soil, after initial liquefaction, further cyclic loading may induce a strain-
hardening response caused by dilation. EPP does not grow steadily as in loose
sands but follows the cyclic stress dropping when it reverses, resulting in a
cyclic regain in e�ective stress and, hence, in shear strength (Figure 2.6). This
condition has been sometimes referred to as ‘limited’ or ‘partial’ liquefaction.
Once at PT, loose and dense samples present a similar response to cyclic
loading; in a typical loading cycle EPP initially increases with shear stress,
after crossing the PT line EPP starts decreasing until �cyc starts to decrease.
As shear stress drops and reverses direction EPP begins to increase again until
the lower PT line (in extension) is crossed, again causing the EPP to drop
until the peak negative �cyc is reached. The loading cycle is completed when
the negative �cyc starts dropping again to zero and EPP once again starts to
increase. During a full loading cycle PT is reached twice, causing the EPP to
oscillate at a frequency equal to double the loading frequency.

For cyclic strains exceeding approximately 10�5, the soil’s shear modulus
(G) starts to degrade resulting in an elasto-plastic behaviour as energy is dis-
sipated in each loading cycle. The typical stress-strain curve associated with
this kind of behaviour shows a degree of hysteresis proportional to the level of
damping occurring during one cycle. During cyclic EPP generation, the soil is
softened and larger strains are attained, in particular if liquefaction is reached
strains higher than 10�2 may be achieved. The EPP build-up results in increas-
ing strains as loading progresses, generating a stress-strain behaviour known
as ‘degraded hysteresis’, characterized by G and damping ratio (�) varying
with each cycle (Figure 2.6b). If signi�cant dilation takes place during loading
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Figure 2.5: Undrained response of Toyura sand under monotic and cyclic load-
ing conditions (Ishihara, 1996).

the load loop assumes a characteristic S-shape, which denotes strain sti�ening.

2.2.3 E�ect of Initial State Variables

Most current understanding of the mechanics governing soil liquefaction has
been derived by laboratory element testing (mainly cyclic triaxial and cyclic
simple shear tests), leading to the recognition of three main initial state vari-
ables controlling the cyclic resistance of lique�able soils: relative density, con-
�ning pressure and static shear stress. In this section the e�ect of each of these
variables on the undrained cyclic response of sands is reviewed. Despite being
described separately it is important to understand that the e�ects of these
variables are markedly mutually dependent.

2.2.3.1 Density

As shown in the previous section, Verdugo and Ishihara (1996) and Ishihara
(1985) showed the e�ect of soil density on the undrained behaviour of sand for
both monotonic (Figure 2.3) and cyclic loading conditions (Figure 2.6). Of the
three initial state variables analysed soil density is the one that in
uences the
undrained response of cohesionless soil most dramatically. In particular the
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Figure 2.6: Behaviour of Toyura sand in cyclic torsional tests: (a) Stress-strain
curve (b) Stress-path (c) EPP generation (Ishihara, 1985).
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density state controls the mechanism of strain development, strain softening
taking place in loose and strongly-contractive soils and ‘cyclic mobility’ (or
limited strain liquefaction) in denser ones. The threshold between these two
types of behaviour, other than on the soil type, depends on the �0v and �i acting
on the soil. Several indices exist which express the density measure of a soil,
the most common being the void ratio (e). However, Kramer (1996) pointed
out the inadequacy of such parameter on its own in the characterization of
potentially lique�able soils and suggests the use of the state parameter ( )
proposed by Been & Je�eries (1985):

 = e0 � ess (2.1)

where e0 represents the current void ratio and ess the void ratio at SS at the
same con�ning stress. This parameter has the advantage of being intrinsically
related to the con�ning stress (Figure 2.7). The state parameter gives a mea-
sure of how close the soil state is form steady state and whether it �nds itself
at a looser or denser state. Positive values of  indicate that the soil is looser
than steady state and therefore will tend to contract under shear, while nega-
tive values of  are associated with soils denser than steady state having the
potential to dilate under shear. Ishihara (1993) argued that using the SS as
a reference state is misleading as this condition is produced in sands for high
values of strain (on the order of 20-30% of axial strain) which seldom occur
during cyclic loading. An analogous parameter is proposed which uses QSS
(which is attained for axial strain on the order of 5-20%) as a reference state.
This parameter was termed State Index (Is) and is given by:

Is =
eIC � e0

eIC � eQSS
(2.2)

where eIC represents the void ratio of the soil at its loosest state consolidated
isotropically to the initial con�ning stress and eQSS the void ratio at QSS.

2.2.3.2 Con�ning Stress

Figure 2.5 shows how soil samples at the very same initial conditions behave
dramatically di�erently when the initial con�ning stress is increased from 0.02
MPa to 0.1MPa. At a relatively low p00, the soil exhibits a marked strain-
hardening behaviour, however a higher p00 may result in strain-softening since
dilation is impeded by the high con�ning stress.
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Figure 2.7: State parameter de�nition (Been & Je�eries, 1985).

Ishihara (1993) investigated the undrained response of Toyura sand under a
high range of p0, observing that also the SS is strongly in
uenced by the con-
�ning stress.

Steedman et al. (2000) observed that the response of saturated sands
under high p0 in the �eld is not well understood, being based on the extrapo-
lation of observed behaviour at shallow depths (i.e. low p0). Several authors,
based on the results of con�ned laboratory tests, have postulated a reduction
of the cyclic resistance of sands under high p0. Seed (1983) �rst proposed an
overburden correction factor (K�) in order to take into account the e�ect of
high con�ning stress on the cyclic resistance of sands. K� was derived as the
ratio of the cyclic resistance of samples subjected to high con�ning pressures,
obtained from isotropically consolidated triaxial tests, over that of samples at
a reference con�ning pressure (1 atm). Over the years the curves describing
the variation of K� with �0v have been re-evaluated by Olson and Hynes (1998)
and more recently by Idriss and Boulanger (2004) (Figure 2.8). Steedman &
Sharp (2001) observed that the use of the overburden correction factor K� in
the assessment of liquefaction under high con�ning pressures (e.g. underneath
earth dams) may be over-conservative. They observe that although a precise
threshold depth beyond which soil liquefaction is impeded by the high over-
burden vertical stress cannot be identi�ed, there is no evidence of liquefaction
at depths greater than a few tens of meters. This suggests that a soil subjected
to high con�ning pressures may possess a higher resistance toward liquefaction
as the generated EPP needs to equal a greater initial e�ective stress for ini-
tial liquefaction to take place. In order to investigate these hypotheses several
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centrifuge tests were performed by the authors, simulating level ground soil
deposits with maximum �0v ranging between 100 to 1000 kPa. These mod-
els were tested in a ‘tall’ ESB (Equivalent Shear Beam) container (627 mm
deep), allowing the simulation of deep soil pro�les, using the large geotechnical
centrifuge of the ERDC (U.S. Army Engineering Research and Development
Centre) described by Steedman et al. (2000). Test results show that under
high initial con�ning pressure complete liquefaction (ru=100%) is less likely
to occur, with EPP growing steadily during shaking until levelling at a value
lower than the initial �0v. Figure 2.9 reports the maximum ru achieved during
those tests against the initial vertical e�ective stress. However the results of
these tests are of di�cult interpretation as water was used as pore 
uid in the
models, resulting in a seepage velocity 50 times higher than in the modeled
prototype. This may have resulted in faster excess pore pressure dissipation
during shaking limiting the shaking induced pore pressure build-up.

2.2.3.3 Static Shear Stress

The e�ect of static shear stress (�i) on the cyclic resistance to liquefaction of
sands has been investigated by several authors since the late 1960s. Initially
contrasting theories were formulated based on laboratory element testing. Lee

Figure 2.8: Variation of K� with increasing �0v (Idriss and Boulanger, 2004).
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Figure 2.9: ru;max against vertical e�ective stress (Steedman et al., 2000).

& Seed (1967), by performing a series of cyclic triaxial tests on anisotropi-
cally consolidated samples, �rst hypothesized that the presence of static shear
increases the soil’s cyclic resistance. A few years later Castro (1969, 1975)
and Castro & Poulos (1977) came to the conclusion that the presence of static
shear may result in a reduction of the cyclic resistance. These apparently con-
tradictory results were uni�ed in a more complex framework by Vaid & Finn
(1979) and Vaid & Chern (1983, 1985), which showed the e�ect of static shear
to be strongly dependent on the initial con�ning stress and soil density. The
addition of an initial shear stress in loose contractive materials would lower its
resistance to liquefaction as it moves it closer to the failure envelope. However
if such initial shear stress (�i) is higher than the cyclic shear stresses (�cyc)
applied, than no stress ‘reversal’ takes place in the soil, signi�cantly increasing
its cyclic resistance (Vaid & Finn, 1979; Boulanger & Seed, 1995; Kammerer,
2002). In order to adapt the empirical liquefaction triggering curves used in
current practice, which are based on level ground case histories, to sloping
ground conditions (i.e. presence of static shear), Seed (1983) �rst proposed a
correction factor K� dependent on the static shear. Over the years several sets
of curves relating K� values to static shear stress ratio (� = �i=�0v) have been
published (Seed & Harder, 1990; Harder & Boulanger, 1997). However due
to the signi�cant di�erences between the proposed values, the participants of
the 1998 NCEER workshop on evaluation of the liquefaction resistance of soils
(Youd et al., 2001) discourage the use of such curves in engineering practice,
stressing the need for further research on this topic. Based on the collective
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dependency of cyclic resistance on all initial state variables, Vaid et al. (2001)
question the use of independent factors in order to account for con�ning stress
and static shear. Results of a series of cyclic triaxial tests on Fraser River
sand presented by the authors, show that the empirical method currently used
underestimates the cyclic resistance, the degree of conservatism being more
dramatic for loose soils (Figure 2.10).

As mentioned above, many authors stressed the in
uence of shear stress
reversal on the cyclic EPP generation (Vaid & Finn, 1979; Boulanger & Seed,
1995; Kammerer, 2002). However, the magnitude of �i and �cyc is not su�cient
information to evaluate the degree of stress reversal as the direction of such
stresses has to be taken into consideration as well. Kammerer (2002) points
out that in the case of sloping ground, �i will be oriented parallel to the dip
direction of the slope, while the direction of �cyc is variable depending on the
ground motion. In this scenario, the potential for stress reversal is higher when
the principal direction of seismic loading is parallel to the dip direction of a
slope (i.e. to the plane on which acts �i). The angle between the direction of
loading and the plane on which loading acts �i is de�ned loading angle (�), and
it may vary between 90� (perpendicular) to 0� (parallel). Kammerer (2002)
observes that even in the case of cyclic loading occurring perpendicular to the
static shear plane, signi�cant softening may occur for low values of �. This is
due to the fact that imposed cyclic shear stress perpendicular to a given plane
will generate complementary shear stresses acting on such a plane.

Figure 2.10: K� versus � for Fraser River sand for di�erent density states and
�0v of 100 kPa (Vaid et al., 2001).
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2.3 Liquefaction Susceptibility and E�ects

2.3.1 Geological Criteria

For a soil deposit to be susceptible to liquefaction a number of conditions
need to be satis�ed. The grain size distribution of lique�able soil is usually
fairly uniform and within certain limits, approximately ranging from Silt to
�ne Gravel. Tsuchida (1970) proposed two sets of boundary PSD (Particle
Size Distribution) curves, de�ning the limits for ‘potentially lique�able soil’
and ‘most lique�able soil’ (Figure 2.11). Moreover such soils must have been
generated by a depositional process resulting in a loose state. On such a basis
Kramer (1996) suggests that 
uvial, colluvial and aeolian deposits are the most
likely to be susceptible to liquefaction. The deposit age may also provide a
validth criterion for distinguishing potentially lique�able soil. Deposits dating
back to Pleistocene age are likely not to be susceptible to liquefaction, however
even in Holocene soils susceptibility decreases with age, as older deposits are
likely to be more cemented. An essential condition for liquefaction to occur
is that soil must be saturated, therefore the water table (GWT) depth is a
key factor in determining the degree of susceptibility to liquefaction of a given
deposit. In this respect, seasonal variations of the phreatic level have to be
accounted for, since in most cases liquefaction is observed at sites where the
GWT is within a few metres of the ground surface.

The damaging nature of the phenomenon is increased by the fact that
areas geologically susceptible to liquefaction, like river 
oodplains and shore-
lines, are often densely populated. Man-made hydraulic earth �lls and tailing
piles are also very likely to be suceptible to liquefaction when placed without
adequate compaction (Kramer, 1996).

2.3.2 Triggering of Liquefaction (Simpli�ed Procedure)

After the devastating earthquakes of 1964 in Alaska and Japan (Niigata city)
Seed & Idriss (1971) developed a semi-empirical method for evaluating the
liquefaction resistance of soils. This method is known as the ‘simpli�ed proce-
dure’ and is based on the evaluation of two parameters: the earthquake induced
Cyclic Shear Stress Ratio (CSR) and the soil’s Cyclic Resistance Ratio (CRR).
The ratio of these two parameters represents a factor of safety against the trig-
gering of liquefaction (FSL = CRR=CSR). The CSR is estimated using the
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Figure 2.11: Particle size criteria for liquefaction suceptibility (Tsuchida,
1970).

equation proposed by Seed and Idriss (1971):

CSR = 0:65 �
�max
�0v

(2.3)

CSR = 0:65 �
�v
�0v
�
amax
g
� rd (2.4)

where �max is the maximum shear stress induced by the earthquake motion,
amax the peak horizontal acceleration measured at ground surface (on rock out-
crop), g the acceleration of gravity, �v and �0v are the total and e�ective vertical
overburden stresses and rd the stress reduction factor. The factor 0.65 repre-
sents the reference stress level; it was �rst introduced by Seed & Idriss (1967)
in order to average the peak CSR induced by an earthquake motion to a ref-
erence value representative of the most signi�cant cycles (Idriss & Boulanger,
2010). Eq 2.3 is to be used in the case where a careful site response analysis
has been performed and therefore �max at a given depth is known, while in
Eq. 2.4 �max is estimated from the peak ground acceleration. Seed & Idriss
(1971) evaluated the variation of the stress reduction factor (rd) with depth
based on the ratio of the cyclic stress generated in a 
exible soil column over
that generated in a rigid soil column by a given ground motion. The average
curve proposed by Seed & Idriss was intended for all earthquake magnitudes
and was veri�ed only for depths of up to 12 m (Youd et al., 2001). An improved
procedure for the evaluation of rd, which accounts for the e�ect of earthquake
magnitude, has been proposed by Idriss (1999) (Figure 2.12). Since the �rst
version of the simpli�ed procedure was presented in 1971 many improvements
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Figure 2.12: Stress reduction coe�cient curves (Idriss & Boulanger, 2010).

have been proposed, often in the form of correction factors accounting for the
e�ect of speci�c variables which had been overlooked in the original procedure.
The main correction factors developed over the years concern the e�ect of �nes
content, earthquake magnitude, high con�ning stress and static shear on the
cyclic resistance of soils. Such correction factors are applied to a reference
CRR value corresponding to a M=7.5 earthquake, con�ning stress of 1 atm,
no static shear stress and clean sands:

CRRM;�0
v

= CRRM=7:5;�0
v =1atm �MSF �K� �K� (2.5)

where MSF is the magnitude scaling factor, K� the overburden correction
factor and K� the static shear correction factor. The latter two have been
described in section 2.2.3, while the MSF and the additional correction needed
in the case of sands containing �ne materials, will be discussed in the following
section.

The CRR is de�ned as the CSR value above which liquefaction is trig-
gered in a given soil deposit, therefore it de�nes the soils resistance against
liquefaction. The evaluation of CRR is usually based on �eld tests such as SPT
(Standard Penetration Test), CPT (Cone Penetration Test) and V s (Shear
wave velocity) measurements; for each of these methods various charts have

23



been developed over the years which correlate the test characteristic parameter
to the CRR. Due to the widespread use of SPT tests in engineering practice,
the SPT based correlation is the most used among those cited. For clean sands
CRR is given by (Figure 2.13):

CRRM=7:5;�0
v =1atm = exp

h(N1)60

14:1
+

� (N1)60

126

� 2
�

� (N1)60

23:6

� 3

+
� (N1)60

25:4

� 4
� 2:8

i
(2.6)

(N1)60 = CN � CE � CR � CB � CS �Nm (2.7)

where CN is an overburden correction factor, CE = ERm/60%, ERm is the
measured value of the delivered energy as a percentage of the theoretical free-
fall hammer energy, CR is a rod correction factor to account for energy ratios
being smaller with shorter rod lengths, CB is a correction factor for nonstan-
dard borehole diameters, CS is a correction factor for using split spoons with
room for liners but with the liners absent, and Nm is the measured SPT blow
count (Idriss & Boulanger, 2010). A limitation to this approach is that the
SPT blowcount is usually measured after the earthquake and may therefore
be a�ected by an increase of the soil’s relative density during post-liquefaction
re-consoildation. This potential limitation will be further discussed in Chapter
3 by comparing pre and post-earthquake SPT blowcount pro�les available for
few of the �eld cases discussed.

2.3.2.1 Magnitude Scaling Factor

The Magnitude Scaling Factor was �rst proposed by Seed & Idriss (1982).
Earthquake moment magnitude (M) is a measure of the energy released during
seismic events. A direct proportionality usually exists between earthquake
magnitude and its duration, shorter motions tending to be weaker (i.e. small
number of signi�cant cycles) and longer ones stronger. The values of the MSF
were obtained by experimental evaluation of the CRR of cohesionless soil for
di�erent numbers of uniform load cycles (which can be related to M). The
MSF factor is multiplied to the reference CRRM=7:5 in order to scale it upward
or downward depending on the actual earthquake magnitude. Several curves
have been proposed relating MSF to M , Idriss & Boulanger (2004, 2008, 2010)
recommend the relationship proposed by Idriss (1999) (Figure 2.14). With
respect to the original values proposed by Seed & Idriss (1982), this relationship
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Figure 2.13: SPT blowcount-CRR correlation (Idriss & Boulanger, 2010).

results in slightly higher MSF values for M lower than the reference value,
while for M lower than 5.25 the MSF values are bounded to 1.8. The use
of this relationship is considered adequate as more conservative with respect
to those proposed by Ambraseys (1988) and Arango (1996), and because the
upper bound introduced for low values of M accounts for the e�ect of a single
peak of strong shaking in the CSR time history.

2.3.2.2 Fines Content

Seed et al. (1985) �rst studied the in
uence of �nes content (FC) on the
liquefaction resistance of sandy soils, concluding that increasing �nes content
results in an increase in CRR. In order to quantify the e�ect of FC on CRR
Idriss & Boulanger (2004, 2008) developed an empirical correction parameter
(equivalent clean sand adjustment, �(N1)60) based on the available liquefac-
tion case histories. �(N1)60 is a function only of FC (Figure 2.15) and is given
by:

�(N1)60 = exp
�

1:63 +
9:7

FC + 0:01
�

� 15:7
FC + 0:01

� 2�
(2.8)

(N1)60;cs = (N1)60 + �(N1)60 (2.9)
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Figure 2.14: Magnitude Scaling Factor curves (Idriss & Boulanger, 2004).

The corrected SPT blow count (N1)60;cs is then entered in Eq 2.6 in order to
obtain the CRRM=7:5;�0

v =1atm accounting for the presence of �nes.
These results are in contrast with those from Troncoso (1990). Results from

a series of cyclic triaxial tests on sand samples with silt content ranging from 0
to 30% showed CRR to decrease with increasing �ne content. Ishihara (1993)
addresses these con
icting �ndings by observing that the in
uence of FC on
CRR greatly depends on the nature of the material itself. In particular the
material plasticity index (PI) plays a key role in their e�ect; high plasticity
�nes confer a certain amount of cohesion to sandy soils, making them less
susceptible to liquefaction. On the contrary, the presence of non-plastic (or
low-plasticity) �nes will tend to give faster EPP build-up, as their presence
causes a reduction of the overall hydraulic conductivity of the soil reducing
the potential for cyclic drop in excess pore pressure occurring at each change
in direction of the shear stress (Troncoso, 1990). A typical example of non-
plastic �ne material is mine tailings. Despite often being classi�ed as silts, their
susceptibility to liquefaction is well known as a consequence of the several cases
of 
ow failures in tailings deposits during earthquakes observed in the past.
Being the result of ore extraction from rock they maintain the properties of
the origin material, such as hardness and mineral composition, with dry faces
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Figure 2.15: E�ect of �nes content on �(N1)60 (Idriss & Boulanger, 2004).

showing no adhesion between particles. Therefore, despite their small particle
size, their behaviour can be considered similar to that of clean sands, with a
high susceptibility to liquefaction.

So far, soils whose �ne fraction does not exceed 30% have been consid-
ered, in this condition the load can be assumed to be carried by the larger
particles (sand), which then constitute the soil skeleton. For higher percent-
ages of �nes content, the load carrying matrix becomes the �ne fraction itself,
with the transition occurring at di�erent percentages depending on the spe-
ci�c soil composition (Guo and Prakash, 1999). Several researchers have tried
to establish a relation between CSR and the PI of Silts and Silts-Clay mix-
tures. Guo and Prakash (1999) found that for low values of plasticity index
the CSR decreases with increasing PI (i.e. with decreasing permeability due
to higher clay content). However for higher PI values the e�ect of cohesion
prevails on the e�ect of the reduction in permeability generating higher CSR,
increasing with PI (Figure 2.16). These results were con�rmed by Boulanger
and Idriss (2006) who introduced the distinction between ‘sand-like’ behaviour,
for �ne grained soils with PI<7, and ‘clay like’ behaviour for �ne grained soil
with PI>7. The cyclic strength of sand-like soils can be estimated within
the framework of the SPT and CPT based correlations used for sands, while
speci�c procedures must be used for clay-like soils (Figure 2.17).
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Figure 2.16: CSR-PI relation for Silty-Clay mixtures (CSR normalized to ini-
tial void ratio e0= 0.74) (Guo & Prakash, 1999).

Figure 2.17: Schematic illustration of the transition between ’sand-like’ and
’clay-like’ behaviour for �ne grained soils (Boulanger & Idriss, 2006).
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2.3.3 Liquefaction E�ects

2.3.3.1 Sand Boils in Layered Soils

Geologic depositional processes often result in a certain amount of strati�ca-
tion in the soil pro�le, layers constituted of di�erent material can usually be
identi�ed in borehole analysis or excavation faces. In sandy deposits a common
feature is that of thin silt layers or clay lenses continuous in the horizontal di-
rection. The e�ects of seismic liquefaction in strati�ed soil deposits containing
layers of low permeability materials have been investigated by several authors
(e.g. �Ozener et al., 2009; Kokusho, 2003; Fiegel & Kutter, 1994). The pres-
ence of such layers, when overlying lique�ed sands, signi�cantly a�ects the
post-liquefaction EPP dissipation pattern. Kokusho (2003) performed a se-
ries of shaking table tests aiming to identify the mechanism controlling EPP
dissipation in strati�ed soils in a number of layer con�gurations. In particu-
lar the case where a thin silt seam lies in between two loose saturated sand
layers and that of strati�ed sand deposits with layers having di�erent densi-
ties were investigated. Results from these tests show that when the di�erence
in permeability between two adjacent layers is large, following liquefcation of
the deeper layer, as the lique�ed soil reconsolidates water may accumulate at
the layer interface forming a stable water �lm. The duration of such a water
�lm may vary signi�cantly depending on the capping layer hydraulic conduc-
tivity (k). Even in the case where the di�erence in k between two adjacent
layers was not enough to cause an accumulation of pore 
uid, turbulence at
the layer interface was observed, generating void redistribution (i.e. high void
ratio zones). In the case of sloping ground void redistribution or water �lm
generation at the layers interface may favour the generation of slip surfaces,
triggering slope failures even in gently sloping ground (Malvik et al., 2002).
Water �lm generation was also observed in centrifuge tests performed by Fiegel
& Kutter (1994). The authors observe that following water �lm generation,
a high induced hydraulic gradient exists between the layer interface and the
ground surface. Under such a gradient, the thinner zones of the capping silt
layer eventually failed, while thicker and heavier parts squeezed the pore 
uid
laterally toward the failures. The 
uid is pushed out of the cracks at high
velocity causing erosion of both layers and resulting in the generation of boils
of eroded mixture on the surface (Figure 2.18). The generation of sand boils
has been investigated thoroughly in a series of centrifuge tests performed by
Brennan (2003); his �ndings con�rm the e�cacy of gravel drains in preventing
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Figure 2.18: Mechanism of liquefaction in capped sands: (a) Initial pro�le; (b)
Shaking and Liquefaction; (c) Bulging; (d) Rupture (Fiegel and Kutter, 1994).

boils when a thin capping layer of low permeability material is present.
The presence of a horizontal low permeability layer causes a delay in the sur-
face settlement of a lique�ed deposit, Yoshida (2000) and Brennan (2003)
distinguish three di�erent phases in the post liquefaction settlement process
(Figure 2.19): the �rst phase consists in the formation of the water �lm as
the sand reconsolidates; during the second phase the pressure in the lower
sand deposit stays constant while the water �lm dissipates through the low
permeability layer; �nally the third phase starts when the water �lm has been
completely dissipated and consists in the �nal reconsolidation of the sand layer
under the weight of the upper layer(s). Whether a super�cial non-lique�able
layer would fail or not under sub-soil liquefaction induced gradients entirely
depends on its shear strength, which increases with thickness and cohesion.
Ishihara (1985), based on a limited number of �eld case histories, provides a
simple chart for the estimation of the minimum thickness of the super�cial
non-lique�able required to prevent surface evidence of liquefaction in the sub-
soil (e.g. sand boils). Such a chart is only valid for level ground conditions
(Figure 2.20).
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Figure 2.19: Post-liquefaction settlement of capped soil deposits: a) Water �lm
formation; b) Water �lm dissipation; c) Sand layer re-consolidation (Brennan,
2003).

Figure 2.20: Chart for the prediction of ground manifestation of liquefaction
(Ishihara, 1985).
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2.3.3.2 Settlement of Ground Surface

Florin & Ivanov (1961) observed that following liquefaction of a soil deposit the
soil particles undergo a process of re-consolidation, starting at the bottom of
the deposit and progressing toward the ground surface. This process results in
an overall densi�cation of the deposit and consequent settlement of the ground
surface. The magnitude and duration of such settlements respectively depend
on the amount of EPP generated during shaking and on the time required for
their complete dissipation. Moreover, soils in a loose state will undergo greater
volumetric deformations with respect to denser ones.

Tokimatsu & Seed (1987) developed a simple procedure to evaluate the
earthquake induced volumetric strain (�), based on the CSR and the (N1)60

(Figure 2.21a). Kramer (1996) observes that the authors consider in the cal-
culations the reference CSRM=7:5 value, thus for earthquakes of di�erent M
the CRR has to be corrected using the MSF correction factor described in
the previous section. An alternative method for the estimation of the post-
liquefaction � of a sand deposit is described in Ishihara & Yoshimine (1992).
Here � is estimated based on DR and either the FSL or the maximum induced
shear strain (
max) (Figure 2.21b).

Figure 2.21: Chart for the estimation of the post-liquefaction � of saturated
sands: a) Tokimatsu & Seed (1987); b) Ishihara & Yoshimine (1992).
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Figure 2.22: Failure mechanisms for shallow foundations on lique�ed ground
(Dashti, 2009).

2.3.3.3 Settlement of Structures

As a consequence of sub-soil liquefaction, a structure built on shallow founda-
tions resting on a level ground deposit may su�er signi�cant settlement. Such
settlements usually exceed the soil deposit post-liquefaction volumetric defor-
mations (�) observed in the free-�eld. The di�erence between free-�eld and
structure settlement is referred at as ‘deviatoric component’ of the settlement
(Sdev) as opposed to the ‘volumetric component’ of the settlement (Svol), rep-
resented by (�). Sdev may be the result of di�erent types of failure mechanisms,
such as partial footing bearing capacity failure, footing punching settlement
(Figure 2.22a) and/or seismically induced ratcheting of the footing into the
soil as a consequence of SSI (Figure 2.22b). The behaviour of shallow founda-
tions resting on lique�ed ground will be thoroughly reviewed in the following
Section.

2.4 Behaviour of Shallow Foundations on Liq-
ue�ed Soil

2.4.1 Field Observations

The sinking and tilting of buildings with shallow foundations on lique�ed
ground during earthquakes is a major source of damage, as the structures
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which su�er it often become unserviceable. Despite the undoubted relevance
of this phenomenon, data on the liquefaction induced settlement of shallow
foundations are scarce. Most of the data usually collected at liquefaction sites
consists of measurement of the building settlement and tilt, however these mea-
surements do not provide any information on the failure mechanism generating
the observed deformations. Information on the stratigraphy and composition
of the foundation soil are essential in order to carry out a thorough analysis of
the phenomenon. In particular the extent of liquefaction needs to be assessed;
this is usually estimated through the ‘simpli�ed procedure’ described in Sec-
tion 2.3.2, on the basis of SPT (or CPT) results performed in proximity to the
failed structure. The depth of liquefaction (DL) is obtained as the sum of all
the portions of the soil pro�le having a FSL lower than 1. However, because
of the high cost of site investigations this is rarely the case. Moreover site
investigations are often performed after the earthquake has happened, while
pre-liquefaction measurements are preferred since they are not a�ected by soil
densi�cation induced by cyclic loading. Liquefaction induced damage to struc-
tures resting on shallow foundations were strongly brought to the attention of
the scienti�c community following the 1964 Niigata earthquake, during which
approximately 340 buildings were damaged by this phenomenon. Based on the
analysis of the behaviour of 35 case histories from this earthquake, Yoshimi
and Tokimatsu (1977) �rst suggested the in
uence of building width (de�ned
as the minor of the plan dimensions, B) on the average post-liquefaction settle-
ment (Sav). It is not clear how these settlement measurement were obtained,
in particular it is believed that the measurements were made relative to the
surrounding ground which has itself su�ered volumetric settlement. In this
case Sav is given entirely by the deviatoric component of the foundation settle-
ment. The authors observe that wider buildings su�ered smaller settlements
with respect to thinner ones. The surveyed buildings ranged between 2 and
5 stories, and some of them had a basement 
oor. All of them were built on
shallow foundations, some reinforced with short wooden piles whose length
however did not extend in any case to the whole lique�ed layer. The presence
of such piles and basements did not seem to have a�ected the settlement of
such buildings. Yoshimi and Tokimatsu (1977) also observe that normaliz-
ing both settlement and building width by DL returns a better trend in the
Sav �B chart. Such normalization is intended to account for the Svol compo-
nent due to post-liquefaction re-consolidation, which is directly proportional
to DL. These observations were further veri�ed by data presented in Adachi
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Figure 2.23: Normalized settlement against normalized footing width for rein-
forced concrete building having shallow foundations.

et al. (1992) and Acacio et al. (2001), concerning the analysis of liquefaction
induced buildings settlement in the city of Dagupan (Philippines) during the
Luzon earthquake (1990). Figure 2.23 shows the relationship between nor-
malized settlement (Sav=DL) and normalized building width (B=DL) for the
reviewed case histories, together with the boundary curves proposed by Liu &
Dobry (1997).

Acacio et al. (2001) note that in presence of a thick unlique�ed surface
layer, very small or no building damage was observed; in particular no settle-
ment was observed where such a layer had a thickness over 3 m. Tokimatsu
et al. (1994) further observes that in the most a�ected area the surface layer
is constituted, to depths ranging from 5 to 10 m, by sandy soils characterized
by SPT blow counts lower than 30. On the contrary, una�ected areas present
a clay or dense sand surface layer. In the speci�c case of Dagupan City large
settlement and tilting were found to be a direct consequence of liquefaction
induced footing bearing failure, and were concentrated in the banks of active
and recently abandoned rivers or man-made �lls. The building tilt observed
in the analyzed case histories, is decreases with increasing B and increases for
increasing Sav (Figure 2.24). Field observations suggest that building settle-
ment may be in
uenced by the presence of other structures in the proximity.
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Figure 2.24: Tilting of buildings during the Niigata and Luzon earthquakes: a)
Building tilt against footing width; b) Building tilt against footing settlement.

In the analyzed case histories, stand-alone buildings were seen to su�er higher
settlement with respect to those sorrounded by heavy structures. Founda-
tion type also in
uences the damage severity to the superstructure; buildings
founded on individual footings were seen to su�er di�erential settlement result-
ing in structural damage, while buildings founded on raft foundations tended
to sink or settle as a whole, without the occurrence of any signi�cant structual
damage (Liu and Dobry, 1997).

Widespread liquefaction induced building settlement and tilting occurred
in the city of Adapazri (Turkey) following the 1999 Kocaeli earthquake. Sancio
et al. (2004) report that the observed foundation failures were due to lique-
faction of relatively thin layers of silty-sands, originating a particular failure
mechanism consisting in the horizontal migration of the soil directly under-
neath the footing toward the free-�eld (Figure 2.25a). The authors suggest
that the SSI due to inertial loading of structures greatly a�ected their be-
haviour; in this regard buildings having higher H=B ratios su�ered bigger tilt
and were more likely to develop full bearing capacity failures (Figure 2.25b).
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Figure 2.25: Mechanisms driving building settlement in Adapazari during the
1999 Kocaeli earthquake (Sancio et al., 2004).

2.4.2 Experimental Observations

2.4.2.1 Footing Seismic Loading

The magnitude of the horizontal acceleration transmitted to the footing greatly
depends on the amount of softening the soil undergoes during shaking. If full
liquefaction occurs in the soil right underneath a footing, the base motion may
be signi�cantly attenuated resulting in reduced seismic loading of the footing
itself. This is usually the case for footings resting on loose saturated sands.
In denser soils, cyclic loading usually results in ‘cyclic mobility’, with the soil
reaching ‘phase transformation’ at each cycle. The dilation induced strain
hardening observed in this condition may result in signi�cant transient ampli-
�cation of the vertical shear wave propagation, causing acceleration spikes at
the ground surface (Elgamal et al., 2005). This aspect is of great importance
when evaluating the use of dynamic compaction of the foundation soil as lique-
faction countermeasure. Despite this technique being e�ective in reducing the
liquefaction induced footing settlement (Coelho, 2007), �eld and experimental
observations showed that it may result in an overall ampli�cation of the foot-
ing seismic loading. Liu & Dobry (1997) performed a series of centrifuge tests
aimed at quantifying this e�ect by varying the depth of the improved zone
(compacted to DR � 90%). They observed that the input peak acceleration
may be ampli�ed by a factor of up to 2 when the improved zone extends to
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Figure 2.26: E�ect of compaction on seismic waves propagation: a) Footing
accelerations for di�erent depth of compaction; b) Ampli�cation factors (Liu
& Dobry, 1997).

the bedrock (in this case at a depth of � 3�B) (Figure 2.26). Similar results
were obtained from a series of shaking table tests by Ghalandarzadeh & Khaki
Khatibi (2003).

2.4.2.2 Excess Pore Pressure Generation Underneath the Footing

A common observation in experiments concerning the behaviour of shallow
foundations resting on lique�ed ground, is that the soil right underneath the
foundation is less likely to liquefy during cyclic loading. In the presence of a
footing, the liquefaction susceptibility of the foundation soils is reduced with
respect to free-�eld conditions (Yoshimi & Tokimatsu, 1977; Lambe & Whit-
man, 1982; Liu & Dobry, 1997; Ghosh, 2003; Coelho, 2007; Dashti, 2009)
(Figure 2.27). Such a reduction is believed to depend on two main factors;
�rst, the additional con�nement caused by the presence of the footing results
in a reduction of the observed ru, as the EPP required to cause initial lique-
faction is higher. Second, the additional shear stresses due to the foundation
may trigger dilation in the soil, with the consequent generation of negative
excess pore water pressures, acting toward further reducing the ru measured
under the footing. The non-uniform stress distribution underneath the footing
results in non-uniform excess pore pressure generation and subsequent 
ow of
pore 
uid driven by the resulting pressure gradients generating between dif-
ferent zones of the foundation soil. Depending on their direction these pore
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Figure 2.27: EPP distribution under footing: a) Free-�eld, mid-shaking; b)
Under footing, mid-shaking; c) Free-�eld, end of shaking; d) Under footing,
end of shaking (Liu & Dobry, 1997).


uid 
ows may concur in reducing the e�ective stress in given areas of the
foundation soil, resulting in further soil softening.

Liu & Dobry (1997) observed that if the soil and pore 
uid used in the
model match those in the prototype, and the model is scaled to meet the dy-
namic requirement (i.e. tprototype = N � tmodel), the soil in the model will behave
as a material N times more permeable than in prototype conditions. Using
water as model pore 
uid therefore changes the EPP generation and dissipa-
tion regime. Liu & Dobry investigated the e�ect of soil model permeability in a
series of three centrifuge tests performed with di�erent pore 
uid of increasing
viscosity (�) in order to model a reduction in the e�ective soil permeability
without altering the PSD. They observe that increasing � results in higher
transient EPP during shaking and in a slower post-shaking EPP dissipation
(Figure 2.28). By delaying the dissipation of EPP beneath the foundation,
the use of increased viscosity pore 
uid causes a redistribution of the footing
settlement pattern, increasing the percentage of observed post-shaking settle-
ment. In this respect, in order to enhance the reliability of centrifuge tests, it
appears of great importance to carefully scale the model soil permeability in
order to match the prototype conditions.

A further series of centrifuge tests was performed by Liu and Dobry
(1992) to investigate the behaviour of a circular footing resting on a super�cial
layer of Silty-clay overlying a medium density sand deposit. Despite ru values
measured in the lique�able layer underneath the footing being of the order of
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Figure 2.28: In
uence of soil model permeability on EPP generation (a) and
dissipation (b).

40%, EPP measurements showed that the shaking was strong enough to cause
full liquefaction in the free-�eld. The authors point out that maximum ru in the
free �eld was maintained far longer than the time necessary for the lique�ed
sand layer to completely re-consolidate, suggesting that a stable water �lm
formed in the free-�eld at the interface with the clay layer. Figure 2.29 shows
a probable pattern of such a water interlayer based on EPP measurements.

2.4.2.3 Footing Settlement

Despite earthquake induced cyclic loading of sands being commonly considered
to occur in fully undrained conditions, experimental observations show that
local pore 
uid migration may occur during shaking if non-homogeneous EPP
are generated (Liu & Dobry, 1997; Ghosh, 2003; Coelho, 2007; Dashti, 2009).
Volumetric strains due to pore 
uid redistribution must therefore be accounted
for in evaluating the overall settlement. As observed in Section 2.3.3.3 the liq-
uefaction induced settlement can be divided in two components: volumetric
and deviatoric. According to Dashti (2009) the volumetric component is the
result of four di�erent mechanisms: localized drainage, post-liquefaction par-
ticle sedimentation, EPP dissipation and volumetric expansion resulting from
the reduction in e�ective stress. Denser sands are less susceptible to volumet-
ric deformation, however an overlying structure may experience an ampli�ed
propagation of seismic waves which may increase the magnitude of the devia-
toric deformation component.

Figure 2.30 compares the settlements observed in a number of indepen-
dent centrifuge test series with those recorded in the �eld during the Niigata
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Figure 2.29: Maximum free-�eld (a) and under-footing (b) EPP in layered soil
model; probable pattern of water interlayer underneath a footing (c) (Liu &
Dobry, 1992).

and Luzon earthquakes. The experimental results show poor agreement with
the �eld measurements, with most of the data points falling out of the bound-
aries proposed by Liu & Dobry (1997). However the scatter in the experimental
results may be due to the di�erent conditions at which they were performed,
in particular these tests were performed over a wide range of amax and DR.
Data from Coelho (2007), Ghosh (2003) and Lambe & Whitman (1982) all
fall below the lower boundary curve, however the input motions used in these
tests present smaller amax with respect to the rest of the experimental case
histories. Moreover, they are all sinusoidal motions of �xed amplitude, which
introduces a further discrepancy with �eld events. It is not unreasonable to
believe that for higher amax values the settlement observed in these tests would
fall within the �eld data boundaries. Figure 2.30 clearly shows the limitations
of the normalized settlement approach. Normalizing the observed settlements
by DL takes into account the volumetric component of the settlement, which is
directly proportional to the depth of liquefaction, but does not account for the
deviatoric deformations induced by the footings, which do not depend linearly
on DL. It is interesting to notice that the footing settlements observed in tests
where DL was relatively small with respect to B (Dashti (2009) T3-30 and
T3-50, DL=3m, B=6 and 12 m) all fall above the upper boundary curve. On
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Figure 2.30: Shallow foundation settlements observed in several centrifuge
tests under varying conditions.

the contrary S observed in models with deep lique�able layers (Coelho (2007)
and Hausler (2002)) fall below the lower boundary curve. These observations
all concur in raising doubts on the validity of the ‘normalized settlement’ ap-
proach, while supporting the hypothesis that the observed liquefaction induced
footing settlements do not increase linearly with DL.

Investigating the e�ect of liquefaction in sloping soil deposits, Fiegel &
Kutter (1994) found that, unlike in uniform sand deposits where lateral defor-
mations are usually distributed evenly throughout the whole depth, in presence
of a low permeability capping layer deformations concentrates at the layers in-
terface. A similar pattern has been observed by Dashti. (2009), however in this
case the forces driving lateral deformation were the foundation induced shear
stress rather than the static initial shear stress due to sloping ground. Figure

Figure 2.31: Observed soil deformations underneath footing (a) in test T3-30
and (b) T3-50 Silt (Dashti, 2009).
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2.31 shows an excavated section of the foundation soil after liquefaction, the
deformed shape of the coloured sand columns clearly show a concentration of
lateral strain at the sand-silt interface in the capped layer. This behaviour can
be explained considering void redistribution in the upper portion of the sand
layer, while in the uniform loose sand model the soil deforms over the entire
depth. It is clear that the soil deposit strati�cation can signi�cantly in
uence
the �nal settlement by giving di�erent failure mechanisms.

Based on EPP measurement from underneath the footing model, Ghosh
(2003) postulated that a bulb of non-lique�ed soil may persist underneath
the footing during liquefaction of the soil deposit. The footing and the non-
lique�ed zone of foundation soil would settle as a whole into the lique�ed soil
until �nding an equilibrium or until a �rmer layer is met. A similar mechanism
was hypothesized by Kawasaki et al. (1998) (Figure 2.32).

Figure 2.32: Suggested settlement mechanism of an isolated footing for a power
transmission tower (Kawasaki, 1998; after Yasuda & Berril, 2000): a) forma-
tion of a bulb of non-lique�ed soil underneath the footing; b) Settlement of the
footing; c) End of settlement caused by a regain in strength in the lique�ed
soil; d) End of settlement after the bulb reaches a �rmer layer.

2.4.2.4 Ground Motion Characteristics

Dashti (2009) observed that, despite a similar regime of excess pore pressure
generation in the foundation soil, footing settlement of signi�cantly di�erent
magnitude were obtained from the same model subjected to di�erent type
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of ground motions. Based on these results, Dashti (2009) suggests that the
settlement of shallow foundations resting on lique�able soil, rather than to the
extent of strength loss in the soil, may likely be more closely related to the
characteristics of the earthquake motion. The use of Arias Intensity is proposed
for the characterization of ground motions, this parameter was �rstly proposed
by Arias (1970) and is de�ned as:

Ia(T ) =
�

2 � g
�
Z T

0
a2(t) � dt (2.10)

over the time period 0 to T, where a represents the measured acceleration
value in g units. As observed by Dashti (2009), Ia is to be preferred to PGA or
PGV to characterize an earthquake motion as, being a function of the motion
intensity, frequency content and duration, it takes into account potentially
important characteristics of that motion. The rate of change of Ia with time
(Shaking Intensity Rate, SIR) may be taken as a measure of the earthquake
energy build-up, and is conventionally de�ned as:

SIR =
Ia;5�75

Da;5�75
(2.11)

where Ia;5�75 and Da;5�75 represent respectively the variation in Arias intensity
from 5% to 75% of its total value and the corresponding time duration (also
named ‘signi�cant duration’). Several de�nitions of signi�cant duration have
been used to date, however Da;5�75 is believed to better capture the most
signi�cant part of a typical earthquake motion (Kempton & Stewart, 2006).
Based on the results from a series of dynamic centrifuge tests, Dashti (2009)
suggests a correlation between relative density, rate of footing settlement and
ground motion SIR (Figure 2.33). However, despite it is reasonable to assume
that a proportionality exists between the rate of footing settlement and the
earthquake shaking intensity rate, the postulated correlation between relative
density and footing settlement rate is not very clear and based on a limited
number of data points.

2.5 Closing remarks

A review of the literature on the fundamentals of soil liquefaction has been
presented in this chapter, with particular attention paid to the case of shallow
foundations resting on lique�ed deposits. Both �eld and experimental obser-
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Figure 2.33: Proposed relationship between ground motion SIR and footing
settlement for di�erent relative densities (Dashti, 2009).

vations concerning the settlement of footings resting on lique�ed soil, concur
to de�ne the complexity of this phenomenon. Several variables have been rec-
ognized to in
uence the magnitude of such settlements, resulting in signi�cant
di�culties in the evaluation of the e�ects of each single variable. Previous re-
search lead to the reasonable conclusion that foundation size and soil relative
density are inversely proportional to the observed footing settlement. How-
ever the e�ects of other key variables, such as the depth of liquefaction, peak
ground acceleration and foundation bearing pressure, are currently not clearly
understood and further research is needed on this topic.

In current engineering practice, the estimation of the liquefaction induced
settlement of shallow foundation is often based on the methods proposed by
Tokimatsu & Seed (1987) and Ishihara & Yoshimine (1992), which return an
estimate of the post-liquefaction volumetric deformation for free-�eld condi-
tions,which are mainly due to soil re-consolidation during post-shaking EPP
dissipation. Although, it is widely accepted that structures resting on lique�ed
soil su�er greater settlements with respect to the ground surface, suggesting
that such settlements may be subdivided in two main components: a volumet-
ric type of deformation (as observed in the free-�eld) and a deviatoric type of
deformation, resulting by the softening of the foundation soil and consequent
footing failure. Despite �eld observations showing that the deviatoric compo-
nent of footing settlement may in many cases prevail over the volumetric one,
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these types of deformations are entirely over-looked by the described methods
for the estimation of post-liquefaction deformations. The method proposed by
Liu & Dobry (1997) relates settlement to the footing dimensions and to the
depth of liquefaction, based on a limited number of �eld case histories. Ex-
perimental results show that, despite accounting for deviatoric deformations,
this method is over-simplistic and does not capture the general behaviour of
footings on lique�ed ground.

Considering the described short-comings of the current engineering prac-
tice concerning with the liquefaction induced settlement of structures, this
thesis aims to enhance the scienti�c basis for the design of shallow foundations
on lique�able soil by:

� Investigating the e�ect of footing bearing pressure (q) on the �nal ob-
served settlement.

� Improving the understanding of the postulated failure mechanisms, with
respect to the observed depth of liquefaction (DL).

� Better characterizing the EPP generation underneath the footing during
earthquake shaking, and the induced transient 
ows.

� Investigating the e�ects of di�erent types of low permeability capping
layers on the magnitude and duration of the footing settlement.
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Chapter 3

Maule Earthquake Case Study

3.1 Introduction

Earthquake induced soil liquefaction continues to pose problems for structures
on shallow foundations. One particular problem is the excessive settlement
that such structures undergo as a consequence of earthquake shaking (Fig-
ure 3.1). For design and insurance purposes it is therefore necessary to be able
to estimate the magnitude of these settlements. Current procedures relate
the potential settlement to foundation size and lique�able depth. However,
the in
uence of foundation bearing pressure is also a signi�cant factor. In
particular, experimental results have indicated that large bearing pressures
may inhibit liquefaction underneath a shallow foundation, resulting in lower
induced settlement. By collecting new data from 23 buildings that su�ered set-
tlement and tilting as a consequence of soil liquefaction during the February
27th 2010 Maule earthquake in Chile, the existing method of estimating lique-
faction induced settlement is reassessed and shown to require bearing pressure
information. Based on both the new and previously available data, a maxi-
mum potential settlement based on both foundation area and bearing pressure
is proposed.

3.2 Maule Earthquake Case

The 8.8 moment magnitude (Mw) Maule earthquake hit Chile on February
27th 2010 at 6.34 am (UTC time). The hypocentre was at a depth of 30.1
km and was located o�shore the coastal town of Cobquecura, around 100 km
north of the city of Concepci�on, at latitude 36.29 �S and longitude 73.239
�W (Barrientos, 2008). The earthquake a�ected a very wide area because of

47



Figure 3.1: Liquefaction induced house settlement due to February 27th 2010
Maule earthquake, San Pedro de la Paz, Concepci�on, Chile.

the considerable length of the seismogenic fault, which was estimated to be
around 500 km along the Paci�c Coast and 100 km wide. Despite signi�cant
earthquake induced ground failures over the entire a�ected area, the occur-
rence of soil liquefaction was relatively limited considering the high magnitude
of the Maule earthquake. The seasonal variation of the water table, which
reaches its minimum during the summer, may have contributed in reducing
the liquefaction risk in many areas.

The city of Concepci�on and its surroundings were among the locations
mostly a�ected by liquefaction. This can be ascribed to the geological setting
of this area characterized by the presence of the B��o B��o River delta which
has formed wide lowlands along the Paci�c coast by depositing Quaternary
soils. The B��o B��o River, one of the longest and largest of the country, has
been continuously depositing basaltic sand carried from the Andes around the
mouth area since before the retreat of the sea. The B��o B��o sand is in general
clean (i.e. without �nes content and uniformly distributed) although it can be
found mixed with silts deposited by the Andali�en River or with soils resulting
from weathered rocks. These soil deposits, when saturated and loose, present
a high potential of liquefaction. Soil liquefaction risk has been observed to be
higher in proximity of the many water bodies, such as swamps and lagoons,
characterizing the most recent deposits in the area (Figure 3.2). Further details
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Figure 3.2: Liquefaction susceptibility map of the city of Concepci�on (Chilean
Geological and Mining Service).

of the event may be found in Verdugo et al. (2010) and Villalobos et al. (2010).

3.2.1 Investigation of Damaged Buildings

Several cases of liquefaction induced ground failures were observed in the Con-
cepci�on area ranging from lateral spreading of sloping ground and bridge abut-
ments to building settlement and tilting and uplift of buried structures (e.g.
sewage tanks and manholes). This work is concerned with the behaviour of
shallow foundations on lique�ed ground for level ground conditions, therefore
only the cases meeting this description were considered. Four sites were se-
lected (Figure 3.2) for a total of 23 surveyed buildings. Table 3.1 summarizes
foundation width (B), building number of storeys (F ), measured foundation
settlement (S) and tilt angle, lower and upper bound estimates of the thick-
ness of the lique�ed soil layer (DL) and foundation bearing pressure (q) for all
of the buildings investigated. All of the surveyed buildings have no basement,
resulting in a maximum footing embedment of 1 m. Furthermore they all con-
sist of isolated buildings with no adjacent structures that may in
uence their
behaviour.

Local construction companies and surveyors provided data regarding set-
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Figure 3.3: Gradation curves of soil sampled at the analyzed sites compared
with those from the Niigata and Dagupan cases.

tlement and tilting of buildings as well as ground exploration data consisting
of SPT pro�les, USCS soil classi�cation and sieve analysis for the analyzed
sites. The soil type at the analyzed sites ranges from clean B��o B��o sand to
sandy-silts having �nes content (i.e. passing the n�200 sieve) of up to 90 %.
B��o B��o sand is a well graded sand with particle size ranging from 2 to 0.1
mm, its compression line gradient (�) is 0.0152 when compressed in oedomet-
ric conditions from an initial loose state (DR = 40 %) over con�ning stresses
ranging from 0.1 to 1 MPa. The �nes sampled have low plasticity and classify
in the USCS classi�cation as ML (i.e. inorganic silts and very �ne sands) (Fig-
ure 3.3). Although having a lower potential for post-liquefaction volumetric
deformation with respect to clean loose sands, this type of material has been
recognized to be highly susceptible to liquefaction. It is worthwhile to note
that most of the ground exploration data collected are pre-earthquake. This is
very important especially for the estimation of the soil’s relative density which
may have since increased signi�cantly due to ground motion induced densi-
�cation. Since lateral variability of soil pro�les may be relevant, only cases
where SPT had been performed in immediate proximity to the building were
considered. SPT values may vary signi�cantly depending on the procedure
used, therefore it has been veri�ed that SPTs included in the analysis were
performed complying with the standard weight of the falling mass (63.5 kg),
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falling height (760 mm) and verticality. No energy measurements were avail-
able, therefore the standard 60 % energy level has been assumed for energy
correction. ASTM D 6066 was used to correct SPT values to the standardized
values.

The liquefaction potential of the foundation soil was evaluated by means
of the simpli�ed procedure proposed in Youd et al. (2001). This method
has evolved through the years and has become standard practice. It consists
in the calculation of a factor of safety against soil liquefaction (FSL= Cyclic
Resistance Ratio (CRR)/Cyclic Stress Ratio (CSR)) based on the ground
motion magnitude, peak acceleration and SPT blow-count. A modi�ed pro-
cedure described in Idriss & Boulanger (2008) has also been used to evaluate
the foundation soil liquefaction potential, and the results of the two proce-
dures compared. Despite being both based on empirical data, the Idriss &
Boulanger (2008) formulation di�ers from the one suggested in Youd et al.
(2001) in the way it accounts for relevant variables, such as earthquake mag-
nitude and overburden stress correction among others. The factor of safety
against liquefaction (FSL) has been calculated separately following both for-
mulations. It is observed that, for the analyzed cases, the Idriss & Boulanger
(2008) procedure generally results in slightly lower estimates of the depth of
liquefaction with respect to the Youd et al. (2001) approach. In those cases
where a minimum and a maximum value of DL resulted from the analysis,
their average value (D�L) was considered in order to compare the data to the
existing case history database.

Two di�erent values of peak ground acceleration (amax) have been used
in the analysis, depending on the geographical location of the sites. For sites
located in the Concepci�on City centre area (building n�1-6, Table 3.1) an
amax of 0.39 g have been used, according to the recordings of the Universidad
de Chile’s accelerographic network (Boroschek et al., 2010). The rest of the
analyzed sites are located in the town of San Pedro de la Paz, across the river
B��o B��o (Figure 3.2).

According to recordings found in Barrientos (2010), the amax in this area
was 0.63 g in the N-S component of the motion. A sensitivity analysis to
evaluate the in
uence of amax on the estimation of the lique�ed soil thickness
has been performed for peak ground acceleration values ranging from 0.3 g to
0.6 g. For the case histories investigated, calculated DL increased by up to
40 % when amax was allowed to increase to 0.6 g. However, there is no linear
proportionality between these two parameters, as the variation of DL with
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n� Site F B (m) S (m) T ilt ( � ) DL;min DL;max D �
L

q
(kPa)

1 Portal del Centro 5 13 0.196 0.837 1.6 4.9 3.25 92

2 Portal del Centro 5 13 0.098 0.42 4.5 4.5 4.5 92

3 Portal del Centro 5 13 0.021 0.09 7.2 8.4 7.8 92

4 Portal del Centro 5 13 0.098 0.42 7.2 8.4 7.8 92

5 Portal del Centro 5 13 0.178 0.76 5 6 5.5 92

6 Los Presidentes 8 11.43 0.154 0.77 7 10 8.5 70

7 Los Acacios 12 15.1 0.077 0.29 4 8.7 6.35 100

21 Los Coig•ues 2 5.34 0.22 n.m. 3 3 3 35

22 Los Coig•ues 2 7 0.14 n.m. 3 3 3 35

23 Los Coig•ues 2 7 0.09 n.m. 2.5 2.5 2.5 35

24 Los Coig•ues 2 7 0.07 n.m. 1.5 1.5 1.5 35

26 Los Coig•ues 2 7 0.04 n.m. 0.6 5.1 2.85 35

27 Los Coig•ues 2 7 0.15 n.m. 6 6 6 35

28 Los Coig•ues 2 7 0.1 n.m. 4.8 4.8 4.8 35

29 Los Coig•ues 2 5.34 0.07 n.m. 2.3 2.3 2.3 35

56 Los Coig•ues 2 7 0.02 n.m. 0.6 3.9 2.25 35

57 Los Coig•ues 2 5.34 0.09 n.m. 0.7 3.5 2.1 35

58 Los Coig•ues 2 5.34 0.02 n.m. 4 4.5 4.25 35

60 Los Coig•ues 2 5.34 0.02 n.m. 0.8 3 1.9 35

61 Los Coig•ues 2 5.34 0.04 n.m. 0.8 1.2 1 35

62 Los Coig•ues 2 5.34 0.08 n.m. 1.5 1.8 1.65 35

49 Los Coig•ues 2 7 0.08 n.m. 0.7 5.6 3.15 35

52 Los Coig•ues 2 7 0.03 n.m. 1.2 5 3.1 35

Table 3.1: Surveyed buildings characteristics and settlement measurements
(n.m. = not measured).
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Figure 3.4: Penetration resistances and calculated FSL for building n�6.

increasing amax depends entirely on site-speci�c soil conditions. As a result
in some of the analyzed cases no appreciable change in DL was observed for
the proposed amax range. In the following sections the speci�c cases of the
four sites analyzed are discussed in greater detail, providing the basis of the
estimated DL values.

3.2.1.1 \Los Presidentes" Building

Building n�6 (Table 3.1) is part of the residential estate \Los Presidentes" lo-
cated in Hualp�en, just out of Concepci�on City centre, consisting of four high-
rise buildings of recent construction. The post earthquake damage su�ered by
this structure were uneven foundation settlement, reaching maximum values
in excess of 15 cm, and a consequent tilting of approximately 1�. Figure 3.4
displays the SPT penetration resistances measured at this location before the
construction of the building. The ground water table level reported was mea-
sured during the summer season; therefore it can be considered a reasonable
estimation of the level at the time of the earthquake. According to the building
design plan, ground improvement by dynamic compaction to a depth of 4 m
was requested prior foundation construction, however, it is uncertain whether
or not this improvement was actually performed. Following the earthquake,
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Figure 3.5: Penetration resistances and calculated FSL for building n�7.

traces left by sand ejecta were observed on the outside walls of the build-
ing. Although the soil in this area should have been compacted to an extent
preventing liquefaction, these observations are a clear sign that the soil right
underneath the foundation lique�ed. The penetration resistances recorded in
this area are low, resulting in a potentially lique�able soil deposit extending
up to a depth of 11 m (this may extend further but no data is available for
greater depths). As a result of these considerations, a minimum value of DL

is obtained by assuming that the improved region did not liquefy, whereas the
maximum DL value extends from the GWT to a depth of 11 m.

3.2.1.2 \Los Acacios" Building

The \Los Acacios" residential estate is located in the neighborhood of Bayona,
which is part of the San Pedro de la Paz council (Figure 3.2). This area was
originally a swamp and has been recently reclaimed to allow the construction of
residential buildings in response to council expansion. The analyzed building
(building n�7, Table 3.1) is a recently built 12 story residential building, the
construction of which was completed in 2006. Figure 3.5 shows the location
and results of three SPTs performed in proximity to the building, together
with the calculated FSL. In this speci�c case data from two di�erent SPT
campaigns are available, one carried out before the Maule earthquake (Empro,
2004) and one afterwards (Terrasonda, 2010). No substantial di�erences are
observed between the penetration resistances measured in the two campaigns,
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Figure 3.6: Penetration resistances and calculated FSL for buildings n�2 and
n�5.

suggesting that no relevant densi�cation occurred following the earthquake.
Building n�7 is located in San Pedro de la Paz so an amax of 0.63 g has been
entered in the calculation. It is worthwhile to note that signi�cant variation in
the water table elevation was recorded, as the measurements were performed
in di�erent seasons. The most recent value was recorded less than two months
after the Maule earthquake, therefore it is considered to be the most reliable.
As shown in Figure 3.5, the minimum value of DL for this speci�c case has been
chosen on the basis of FSL values calculated in accordance with the Idriss &
Boulanger (2008) procedure for SPT S1, while the maximum DL value relates
to the FSL calculated using the Youd et al. (2001) procedure for SPT S2 and
S3.

3.2.1.3 \Portal del Centro" Estate

Buildings n�1-5 are part of the \Portal del Centro" residential estate located
in the suburb of Concepci�on. The basis for the estimation of the DL values for
these buildings is presented in Figure 3.6. Although the penetration resistances
recorded di�er signi�cantly between the two cases, in both sites the Youd et al.
(2001) procedure and the Idriss & Boulanger (2008) procedure return similar
results. For what concerns building n�2 (SPT S3) the estimated lique�ed
depth extends from 1 m (GWT reading 01/2006) to 5.5 m; from this depth on
a marked increase of the penetration resistances is observed. The FSL pro�le
from SPT S2 (building n�5, Figure 3.6) shows an opposite pattern, consisting
of an upper portion of non-lique�able soil up to a depth of approximately 7
m, while deeper soil presents lower penetration resistances resulting in FSL
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Figure 3.7: Plan view of the \Los Coig�ues" estate.

values lower than unity. A total DL ranging between a minimum of 5 m to a
maximum of 6 m has been estimated for this speci�c case. SPT S2 extends
up to a depth of 14 m, according to the Idriss & Boulanger (2008) procedure,
at this depth the soil is lique�able; this suggests that if a deeper investigation
had been performed, higher values of DL may have been found.

3.2.1.4 \Los Coig�ues" Estate

The Los Coig�ues housing estate is located in the San Pedro del Valle area at the
south-east limit of the San Pedro de la Paz council (Figure 3.2; Figure 3.7). It
consists of 73 detached two storey houses of recent construction, and is located
at the edge of the San Pedro de la Paz wetlands. The site is within close
distance to the ‘Colegio Concepci�on’ seismographic station which recorded a
peak acceleration during the earthquake of 0.6 g in direction N-S, therefore the
latter value has been used for the evaluation of the CSR at the site. Widespread
liquefaction manifestation was observed at this site, such as sand ejecta inside
and outside the houses and eyewitness reports of substantial eruption of ground
water after the end of shaking resulting in the generation of sandboils. The
damage was concentrated in the south-east part of the estate (Figure 3.7, right
side), where the water table is higher due to the close proximity of the ‘Laguna
Grande’ lagoon. The average water table depth measured in the damaged area
is of 1.2 m (measured few weeks after the earthquake, 23/03/2010). Three
deep (up to 8 m) and several shallow (up to 4 m) SPT were carried out at
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the site following the Maule earthquake. On the basis of these data the FSL
of the foundation soil was estimated. Figure 3.8 shows the spatial variation
of the calculated FSL below building n�21 to building n�29 (Cross-section
A), Figure 3.9 below building n�56 to building n�62 (Cross-section B) and
Figure 3.10 below building n�49 and 52 (Cross-section C). The shallower
SPT do not allow a precise estimate of the DL at some of the locations as
no information is provided for deeper soil. In these cases a minimum and
maximum DL value have been estimated based on the information provided
by nearby deeper soundings (e.g. building n�49 and 52, cross-section C). This
may result, in some of the cases, in big variations between the minimum and
maximum DL values proposed for this site. According to the geotechnical
report commissioned from the contractor prior to the construction (Empro,
2010), ground improvement was requested by substituting the original soil with
a �ll of B��o B��o sand compacted to a DR of 75 %, having a minimum thickness
of 2 m from foundation plan. Such an improved soil layer can be clearly be
identi�ed in both cross-section B and cross-section C, while it appears not be
present in cross-section A. This may be due to the fact that the buildings along
cross-section A were built in an antecedent construction phase.

3.2.2 Updated Case History Database

In Figure 3.11 the normalized settlement (S/DL) is plotted against normal-
ized building width (B/DL) for all of the analyzed cases and the results are
compared with the case history shown in Figure 2.23. Among the Niigata case
histories there are a few cases of buildings that su�ered tilting in excess of
20�, these have not been included in the analysis since in these cases a unique
settlement value for comparison can not be easily identi�ed. The Maule data
show higher values of B/DL ratio with respect to the Niigata and Dagupan
cases, this is due to the smaller depths of lique�ed soil observed in the Con-
cepci�on area for similar building typology. Maule data points clearly do not �t
within the Liu and Dobry (1997) framework. This is in accordance with the
observations of Dashti et al. (2010), who pointed out the inadequacy of such
a chart in the case of relatively thin lique�ed layers.

3.3 In
uence of Foundation Bearing Pressure

Following liquefaction of a soil deposit, the ground surface su�ers a certain
amount of settlement due to post shaking reconsolidation of the soil particles
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Figure 3.8: Cross-section A: calculated factor of safety against liquefaction.
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Figure 3.9: Cross-section B: calculated factor of safety against liquefaction.
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Figure 3.10: Cross-section C: calculated factor of safety against liquefaction.
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Figure 3.11: Normalized settlement against normalized building width for the
Maule case.

during excess pore pressure dissipation. It is reasonable to suggest that the
presence of a very light structure with shallow foundation resting on such
ground would not in
uence this behaviour signi�cantly. Intuitively, it may
be expected that increasing the weight of such a structure whilst keeping its
dimensions unaltered (i.e. increasing its bearing pressure) would cause an
increase in the observed settlement, as the driving force is increased. However,
many independent centrifuge tests on the behaviour of shallow foundations
showed that the increased stress �eld underneath a heavy foundation, due
to its bearing pressure, results in a reduction of the maximum excess pore
pressure ratio (ru) observed during shaking, with respect to free-�eld conditions
(Whitman and Lambe, 1982; Liu and Dobry, 1997; Ghosh, 2004; Dashti et al.,
2010). Such observations can be ascribed to increased cyclic resistance of the
foundation soil when subjected to footing induced con�ning and shear stresses
.

Unfortunately it is not straightforward to verify these �ndings on the
basis of �eld data as, in absence of the original design calculations, building
bearing pressure can only be estimated. In order to best verify this relationship
within the available case history data, the building number of stories (F ) has
been used as an indicator of its bearing pressure (Figure 3.12). This is justi-
�ed by the reasonable assumption of a direct proportionality between these two
parameters for buildings having the same foundation type and certain struc-
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Figure 3.12: Normalized settlement against building number of stories.

tural class. Despite the limited number of case histories available, especially
at the right-end of the chart (i.e. high bearing pressure), Figure 3.12 suggests
a postulated increase in maximum settlement as structure size increases, as
well as the subsequent decrease in settlement which larger structures appear
to experience. The maximum S/DL ratios are observed for buildings having
four stories.

Based on the surveyed buildings’ design plans, a �rst approximation of
their foundation bearing pressure has been calculated (Table 3.1) by estimating
their weight (a reinforced concrete density of 25 kN/m3 has been considered,
according to the Chilean code of construction). Averaging the calculated bear-
ing pressure values with respect to the building number of stories returns a
value of 15 kPa per 
oor for the Chilean buildings. Acacio et al. (2001) provide
an estimate of building bearing pressure for the Dagupan City cases, resulting
in an average of 21 kPa per 
oor. The latter value has been used to get an
estimate of the bearing pressures of the Adachi et al. (1992) database, since
both studies refer to the same area, and of the Yoshimi & Tokimatsu (1977)
database (Niigata City, Japan).

The estimated bearing pressure values were plotted against normalized
settlement (Figure 3.13), obtaining a similar trend to what is observed in Fig-
ure 3.12, again showing the settlement to be maximum for an intermediate
bearing pressure. The rearrangement of the Maule earthquake data points
from Figure 3.12 to Figure 3.13 is due to the fact that the �rst does not ac-
count for the type of foundation, but is only based on the assumption that
higher buildings will exert greater stresses. For example, building n�7, being
the tallest of the Maule database (12 stories) may be expected to be the one
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Figure 3.13: Normalized settlement against building bearing pressure.

exerting the highest bearing pressure, however this building is founded on a
continuous raft which redistributes its weight over a larger area. Its bearing
pressure has been estimated to be approximately 100 kPa, very close to the 92
kPa of the 5 story buildings of the \Portal del Centro" estate (building n�1-5),
which are built on strip footings. For this reason the use of the building num-
ber of stories as a bearing pressure index should be considered with caution if
no information on the foundation type is available. If con�rmed, the postu-
lated bearing pressure dependence should be considered in the evaluation of
the maximum expected settlement of shallow foundations on lique�ed ground.
Not doing so may result in over-conservative foundation design when heavy
structures on potentially lique�able soils are considered.

3.4 In
uence of Foundation Width

The in
uence of foundation size in reducing the expected induced settlement
in lique�ed soil was �rst observed by Yoshimi and Tokimatsu (1977) in �eld
data collected following the 1964 Niigata earthquake. A consistent trend was
found by Yoshimi and Tokimatsu (1977), and later con�rmed by Liu & Dobry
(1997), for the normalized settlement to decrease as the normalized building
width increases. However, as pointed out by Dashti et al. (2010) and observed
in the �eld data collected in this study, the normalization of the settlement by
DL does not capture the behaviour of shallow foundations resting on relatively
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thin lique�ed soil layers.
Settlement data of buildings resting on thin lique�able soil layers (DL

= 3 m) from tests performed by Dashti et al (2010), as well as the �eld data
from the Maule earthquake case presented in this thesis (average depth of liq-
uefaction, D�L;av = 3.75 m), do not �t well within the boundaries proposed by
Liu & Dobry (1997), which are based on cases from the Niigata earthquake
(DL;av = 11.4 m) and the Luzon earthquake (DL;av = 8.7 m). The normal-
ized settlement data for cases with high B/DL ratio are signi�cantly higher
(Figure 3.11), suggesting that using this normalization may lead to unconser-
vative foundation design for B/DL ratios higher than 2. The normalization
of settlement by the depth of liquefaction is justi�ed by the hypothesis that a
direct proportionality exists between S and DL. However this proportionality
is only valid with respect to the post-liquefaction volumetric settlement due
to the re-consolidation of the soil deposit during excess pore pressure dissi-
pation (Ishihara and Yoshimine, 1992; Tokimatsu and Seed, 1987), and does
not necessarily apply to the ‘punch-through’ type of settlement which foot-
ings experience during liquefaction of the foundation soil. A thicker lique�able
soil layer will have a higher potential for volumetric settlement as well as for
generating failure surfaces such as punch-through or bearing capacity failures
beneath the foundation. However the e�ect of DL on the foundation failure
mechanism is not well understood and therefore is not accounted for. It is
anticipated that it might mean a distinction between ‘thin’ and ‘thick’ lique-
�able layers that is beyond the scope of this paper and the subject of further
work. Nevertheless the normalization of the observed settlement by DL is nec-
essary in order to compare the available case history data, since they present
a signi�cantly large range of lique�ed depths, ranging from 1 m to 20 m.

Figure 3.14 shows the relation between normalized settlement and foun-
dation width; a potential trend for the maximum normalized settlement to
reduce with increasing B is suggested. Despite the scarcity of data, especially
concerning the right end of the chart, it appears that if very large foundations
(B > 25 m) are to be considered, the expected normalized settlement will be
signi�cantly reduced with respect to smaller ones.
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Figure 3.14: Normalized settlement against building width.

3.5 Combined In
uence of Foundation Width
and Bearing Pressure.

Both foundation bearing pressure and size have been observed to possibly
in
uence the settlement of shallow foundations on lique�ed ground. In order to
combine the trends suggested in Figures 3.13 and 3.14, the available database
of �eld cases has been plotted in a three-dimensional plot, where the axes
represent respectively B, q and S/DL (Figure 3.15a). An upper boundary
curve representing the maximum observed S/DL is suggested based on the
interpolation of the maximum values of observed normalized settlement; the
interpolation was limited to the area with higher density of data points (i.e.
B = 0 to 20 m and q = 20 to 100 kPa).

Figure 3.15b shows a contour plot of such a curve for the selected region
in the B-q plane; an extension of the curve for the remaining region of the
plane is also proposed, however this is based on speculation as data points in
this region are scarce. A major limitation of this database is that soil condi-
tions and earthquake motion characteristics are taken into consideration only
for what concerns the triggering of liquefaction, assuming lique�ed soil to be-
have in the same way for FSL > 1 regardless of its �nes content and relative
density. However this assumption is necessary when dealing with �eld data
from several di�erent locations; due to the multitude of variables in
uencing
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Figure 3.15: (a) Case history data plotted in (B, q, S/DL) 3D space and
proposed surface interpolating maximum values of normalized settlement. (b)
Contour plot of maximum observed S/DL.
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liquefaction, it is challenging to isolate the e�ect of each of them. As the sug-
gested upper-bound curve represents the maximum values of S/DL observed
to date, the in
uence of lique�ed soil’s relative density and �nes content may
be hypothesized to be contained within these limits.

3.6 Concluding Remarks

A review of the �eld and experimental case history of the liquefaction induced
settlement of buildings with shallow foundations has been presented. The
analysis of 23 buildings that su�ered settlement and tilting as a consequences
of their foundation soil’s liquefaction during the February 27th 2010 Maule
earthquake in Chile has been compared with the existing case history database.
This has revealed shortcomings in the current methodology used to estimate
this type of settlement, which is considered in the chart proposed by Liu and
Dobry (1997). Using such a chart in engineering practice may result in a
signi�cant underestimation of the expected liquefaction induced settlement,
leading to unconservative foundation design when thin lique�able layers are
considered (e.g. DL < B) (Figure 3.11).

Although foundation induced con�nement is not currently taken in con-
sideration in the estimation of the potential liquefaction induced settlement of
a structure, the analysis of �eld data considered in this study suggests that
this factor may signi�cantly in
uence the structure’s behaviour. The analyzed
data show a reduction in the observed settlement for foundation bearing pres-
sures higher than 80 kPa (Figure 3.13). If con�rmed, this hypothesis would be
of importance as, if not accounted for, existing methods may result in signif-
icantly conservative foundation design for high pressure buildings. A typical
example would be the use of deep foundations in cases where the stresses in-
duced by a high bearing pressure shallow foundation could be enough to limit
the settlement below an acceptable level. Although no unique cause-e�ect re-
lationship between the investigated parameter can be identi�ed on the base of
the analyzed �eld data, the latter o�er valuable hints on how these parameters
a�ect the behaviour of shallow foundations on lique�ed ground. Experimen-
tal testing of scale models reproducing the behaviour of structures built on
shallow foundations resting on lique�ed ground, may allow a more precise un-
derstanding of the e�ects of the individual variables recognized to in
uence
this phenomenon. The series of centrifuge tests described in this study has
been designed in order to verify the trends suggested by the re-analysis of the
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liquefaction induced settlement case history. The results of these tests will be
discussed in Chapter 6; they include a parametric study of the e�ect of both
q and DL on the liquefaction induced settlement of rigid shallow foundations,
overcoming the intrinsic uncertainties of �eld data.
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Chapter 4

Methodology and Equipment

4.1 Centrifuge Modelling

It is well known that the mechanical behaviour of soil is strongly dependent
on stress level and stress history. In the physical modelling of geotechnical
problems, scale models of �eld prototypes are generally involved. The reliabil-
ity of such scale models may be undermined by the reduced stress level they
are subjected to, resulting in a substantially di�erent response to external per-
turbations with respect to prototype geotechnical structures. This particular
shortcoming of 1 �g testing of scale models may be overcome if the stresses at
corresponding points in the model and prototype are the same. This can be
achieved by spinning the scale model on a geotechnical centrifuge to increase
the gravitational �eld by a given factor N , so that the prototype stresses are
matched (Muir Wood, 2004). Moreover, centrifuge modelling o�ers several
further advantages, some of which are:

� Relatively low cost with respect to full scale testing (and safer in the
case of earthquake simulation).

� Repeatability of the experimental results.

� Direct observation of failure modes and basic mechanism of behaviour in
complex models.

� Possibility of collecting a large amount of data from each test.

However, testing a scale model under a N � g-�eld introduces a number of
technical challenges resulting from:

� Increased weight of model parts.
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� Time scale (duration of dynamic events need to be scaled by a factor of
1/N).

� Actuation system reproducing the desired prototype perturbation.

� Model instrumentation (e.g. dimension and resistance of transducers).

Although element testing has been widely used to investigate the mechanism
controlling soil liquefaction, this approach is not suitable to model more com-
plex scenarios such as the e�ects of liquefaction on structures founded on the
a�ected soil. Unlike element testing, geotechnical centrifuge models can re-
produce the localized dishomogeneous soil response due to the presence of a
model structure and the resulting interactions between di�erent part of the
model, such as pore pressure redistribution. Furthermore, as observed above,
the cyclic response of cohesion-less soils is signi�cantly stress dependent, and
it is therefore important to investigate their cyclic behaviour at a stress level
representative of �eld conditions. For all of these reasons centrifuge modelling
is thought to be the most appropriate methodology of investigation for this
speci�c project.

4.1.1 Principles and Scale E�ects

An object (i.e. scale geotechnical model) having mass m, spinning around
an axis on a circular orbit of constant radius (r) with an angular velocity
(!), experiences a constant centripetal acceleration of !2 � r. According to
Newton’s second law of motion, to generate such acceleration a force directed
toward the axis of rotation, having magnitude of m � !2 � r (i.e. F = m � a) is
required (Muir Wood, 2004). In centrifuge modelling such force is exerted by
the centrifuge itself. In order to achieve stress similarity between the model
and prototype, the centrifuge angular velocity ! must be increased until the
centripetal acceleration is equal to N � g, where N represents the model scale
factor. However, while the acceleration of Earth’s gravity can be considered
perpendicular to the level ground (over the distances involved in geotechnical
engineering problems), the acceleration �eld in the centrifuge model is radial
and varies linearly with depth in the model. The vertical stress at any depth
(z) in the centrifuge model can be calculated by Equation 4.1; this is known
as ‘radial distortion’:

�v;m =
Z z

0
� � !2 � (rt + z) � dz = � � !2 � z �

�
rt +

z
2

�
(4.1)
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Figure 4.1: Vertical stress distribution in centrifuge models (Taylor, 1995).

where � represents the soil density and rt the radius to the top of the model.
Figure 4.1 shows the typical vertical stress distribution in centrifuge models
resulting from the non-uniform pseudo-gravity �eld. In order to achieve a
given N at a distance r from the rotation axis, the centrifuge must be spun at
a speci�c rotational speed; thus the e�ective radius re at which the centripetal
acceleration matches the desired one must be chosen carefully, and usually
represents the distance between the rotation axis and a speci�c point located
within the top and the bottom of the soil model being tested. Taylor (1995)
demonstrated that this error can be minimized calculating the scale factor at
an re given by:

re = rt +
2 � hm

3
(4.2)

where hm represents the total model height. Moreover, if this condition is
satis�ed, the maximum under-stress and over-stress errors will be equal in
magnitude (Figure 4.1) and can be evaluated by:

errunder = errover =
hm

6 � re
(4.3)

In the series of centrifuge tests performed as part of this work, re was calculated
in order to yield the desired g-level at hm=2. This position was chosen in order
to match the prototype stress level at a value of depth more centered around
the range of variation of the top lique�able soil layers in the models. The same
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Parameter Scaling factor (Model/Prototype)

Length 1/N

Mass 1/N3

Time (di�usion)y 1/N2

Time (dynamic) 1/N

Velocity 1

Seepage velocityy N

Acceleration N

Gravity acceleration N

Force 1/N2

Stress 1

Strain 1

Energy 1/N3

Table 4.1: Scaling laws in centrifuge modelling for a centrifugal acceleration
of N � g. y Assuming the same 
uid is used in both model and prototype.

re was used in all the centrifuge tests performed, in order to keep constant the
introduced under and over-stress errors.

Figure 4.1 presents a summary of the principal scaling laws used in
geotechnical modelling. Provided the same material is used in the model and
prototype, the application of such scale factors ensures that a given �eld sit-
uation is replicated carefully. In case of dynamic tests (i.e. earthquake simu-
lation) a further problem derives from the generation of Coriolis forces, since
movements of the model at relatively high radial velocity (v) is superimposed
to the model rotation in the centrifuge. Coriolis accelerations are generated if
movement of the model occurs in the plane of rotation, their magnitude being
given by 2 � ! � v. In practice the e�ects of Coriolis forces are considered neg-
ligible if their ratio to the centrifugal acceleration does not exceed 10% (Muir
Wood, 2004). In centrifuge earthquake modelling, where the motion poten-
tially generating Coriolis forces is represented by the simulated base shaking,
this e�ect is prevented by mounting the model so that the direction of shaking
will be perpendicular to the centrifuge plane of rotation.

In Table 4.1 the scaling laws concerning seepage velocity (i.e. permeabil-
ity) and di�usion processes depend on the pore 
uid used in the model. If the
same soil and pore 
uid are used in both model and prototype, the seepage
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velocity in the model is N times higher as the drainage path is N times shorter
all the rest being the same. This results in a reduction of the duration of the
seepage process by a factor of N2. However this is not the case when mod-
elling dynamic events, such as earthquakes, where prototype time is scaled by
a factor of N :

tm =
r
xm
am

=

s
xp=N
ap �N

=
tp
N

(Dynamic) (4.4)

tm =
H2
m

cv;m
=

(Hp=N)2

cv;p
=

tp
N2 (Seepage) (4.5)

This discrepancy can be bene�cial depending on the intended type of mod-
elling, for example it allows reproduction in centrifuge models of long term
prototype consolidation processes in a relatively short time. However, in con-
ditions where dynamic events and seepage occur simultaneously (i.e. earth-
quake loading of saturated soils), the time-scaling con
ict must be corrected.
Equation 4.6 shows that this could be achieved by scaling the coe�cient of
consolidation (cv) by a factor of N . The coe�cient of consolidation depends
on the soil coe�cient of permeability (or hydraulic conductivity) k, its coe�-
cient of compressibility (mv) and on the pore 
uid unit weight (
f ). Since mv

is a property of the soil used, and 
f must be equal to that of the prototype
pore 
uid for stress consistency, the best way to do this is by altering the soil
permeability:

cv;m =
km

mv � 
f
=

kp=N
mv � 
f

= cv;p=N (4.6)

A reduction of the soil hydraulic conductivity can be achieved either re-
ducing the soil particle size or increasing the model pore 
uid kinematic viscos-
ity (�). Since modifying the particle size means having a di�erent material in
the model, this could lead to di�erent mechanical behaviour undermining the
reliability of the test, thus acting on the pore 
uid is preferred (Equation 4.7).
However, in order to match the prototype stresses, the density of the increased
viscosity pore 
uid (�f;m) must be similar to that of the prototype pore 
uid
(i.e. water).

km =
K � �f;m � g

�m
=
K � g
�m

=
K � g
�p=N

=
kp
N

(4.7)

therefore �m = �p �N (4.8)
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where K represents the soil intrinsic permeability.
All the tests described for this work were perfomed under a centrifugal accel-
eration of 50�g (i.e. N = 50).

4.1.2 University of Dundee Centrifuge

An Actidyn Systemes C67-2 geotechnical centrifuge was operational at the
University of Dundee Civil Engineering Department since 1996 (Figure 4.2).
In June 2011 the centrifuge was equipped with an Actidyn Systemes QS67-2
in-
ight earthquake simulator, becoming one of four facilities with earthquake
simulation capabilities under N � g �eld in Europe. It is a 3 m radius beam
type centrifuge, capable of maximum accelerations ranging between 100 and
130 g depending on the payload. Its basket or ‘gondola’ (after the traditional,

at-bottomed Venetian rowing boat) can accomodate a model with maximum
dimensions of 0.8�1�0.8 m (which reduce to 0.4�0.9�0.5 m for earthquake
simulation). Thanks to the relatively long beam the variation in the accelera-
tion �eld felt over the plan area of the basket is limited (see Section 4.1.1).

The self-aligning swinging basket is balanced by a set of fully- adjustable
counterweights positioned at the opposite end of the beam. Centrifuge bal-
ancing is essential for proper operation, and can be obtained by manually
adjusting the counterweights to the desired position depending on the model
weight (Mm). A spreadsheet has been developed to calculate the required
counterweight position based on the model mass, the position of its center of
mass and the desired g-level (N). The centrifuge is spun by two electrical
motors having a speed range of 340 to 1800 rpm, which transmit the motion
to the centrifuge spindle through a belt drive (with a 9:1 transmission ratio).
For safety reasons the centrifuge is enclosed in a reinforced concrete chamber;
this however results in aerodynamic pressure being generated inside the cham-
ber during spinning. The necessary forced air circulation required for proper
operation of the centrifuge is ensured by a circular opening on the chamber
ceiling and by an exhaust duct in the chamber 
oor (Figure 4.2). Table 4.2
summarizes the main speci�cations of the centrifuge.

4.1.3 QS67-2 Quake Simulator

Earthquake centrifuge modelling started in the late 1970s with the develop-
ment of explosive-based actuation systems (Zelikson et al., 1981) and the �rst
spring-actuated shaker (Morris, 1979). This latter device was a relatively in-
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Figure 4.2: University of Dundee C67-2 geotechnical centrifuge. (Courtesy of
Actidyn Systemes)
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Platform radius 3 m

Nominal radius 2.7 m

Max usuable height 1.5 m

Max payload 1500 kg

Centrifugal acceleration at max paylod 100 g

Payload at max centrifugal acceleration 850 kg

Max centrifugal acceleration 130 g

Centrifugal acceleration range 5 to 130 g

Boom rate 38 to 208 rpm

Max operational unbalance �40 kN

Table 4.2: C67-2 geotechnical centrifuge speci�cations.

expensive and robust mechanical shaker, exploiting a reaction mass connected
to a pre-stressed spring which was then released in-
ight. Since then sev-
eral type of mechanical actuators have been developed, each improving on the
level of control possible, such as the \bumpy road" actuator (Kutter, 1982)
and the SAM (Stored Angular Momentum) actuator (Madabhushi, 1998).
However, mechanical shakers produce single tone burst with limited reliability
and repeatability, and usually have reduced 
exibility in terms of frequencies,
amplitude, and duration of the motion. Fujii (1991) developed and tested
a electromagnetic actuator, but the size of the magnets required to achieve
satisfactory motions resulted in signi�cant limitation of the available payload
capacity. Because of this reason, this type of actuator is not suitable for use
on centrifuges with a limited payload capacity.

Hydraulic actuation of centrifuge mounted earthquake simulator was suc-
cessfully adopted by Aboim et al. (1983) at the California Institute of Technol-
ogy. In order to use this technology during centrifuge operation, accumulators
mounted on the centrifuge basket were required to serve as the main hydraulic
power supply, bypassing the limitation to the hydraulic supply imposed by
the rotary joints usually employed in geotechnical centrifuges. With the de-
velopment of fast-acting servo-valves servo-hydraulic actuators have gradually
replaced mechanical ones to overcome their limitations. Servo-hydraulic actu-
ators are able to better reproduce multi-frequency motions, and therefore they
can, within their technical limits, replicate a given historic earthquake motion.
Shakers with di�erent numbers of degrees of freedom have been developed,
ranging from mono-directional shakers to three-dimensional shakers including
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Max payload moving mass 400 kg

Payload at full shaker acceleration 300 kg

Centrifugal acceleration range 10 to 80 g

Maximum shaking force 150 kN

Peak table displacement 2.5 mm

Peak table velocity 0.75 m/s

Frequency response 40 to 400 Hz

Peak full load acceleration 40 g

Peak acceleration with no paylod 60 g

Table 4.3: QS67-2 earthquake simulator speci�cations.

the vertical component of an earthquake motion.
The centrifuge mounted earthquake simulator at the University of Dundee

is an Actidyn Q67-2 mono-directional servo-hydraulic shaker (Figure 4.3a) with
a payload capacity of 400 kg, and capable of reproducing a scaled earthquake
motion containing frequencies within the window 40 to 400 Hz (0.4 to 4 Hz
prototype frequency at 100g or 0.8 to 8 Hz at 50 g). The QS67-2 is based
on the dynamic self-balancing technique developed by Actidyn to eliminate a
large portion of the undesired reaction forces and vibrations transmitted during
earthquake shaking to the centrifuge main body (Perdriat et al., 2002). Similar
centrifuge mounted earthquake simulators are in use at the Korea Advanced
Institute of Science and Technology (KAIST), QS72-2 bi-directional horizontal
shaker, at the Institut Fran�cais des Sciences et Technologies des Transport, de
l’Am�enagement et des R�eseaux (IFFSTAR, formerly LCPC), QS80-2 mono-
directional shaker, and at the Centre for Cold Ocean Resources Engineering
(C-CORE), QS67-2 mono-directional shaker. Table 4.3 summarizes the main
speci�cations of the earthquake shaker. In slip-tables (i.e. shaking tables op-
erating over an hydraulic bearing), the horizontal force applied to the model
tested generates a rocking moment acting in the vertical plane equal to the
applied force times the distance between the model centre of mass and the
table platform. This torque is then transmitted through the slip-table bearing
to the supporting body, which in centrifuge modelling is represented by the
centrifuge basket platform. This phenomenon may, especially for high shaking
frequencies, result in undesired rotational motion of the centrifuge basket in
addition to the imparted horizontal motion, undermining the accuracy of the
simulation. Furthermore the reaction forces induced by this additional mo-
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Figure 4.3: University of Dundee Actidyn QS67-2 earthquake simulator: a)
Shaker assembly; b) ‘dynamic balancing’ mechanism. (Courtesy of Actidyn
Systemes)

tion component in the centrifuge structural elements are applied orthogonally
to the centrifugal acceleration; unfortunately this corresponds to the weakest
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direction in terms of structure response. The range of frequencies at which
these disturbances occur is likely to include one or more centrifuge mechanical
resonances, endangering its structural integrity. In the QS67-2 earthquake sim-
ulator, these problems are minimized by a system termed ‘dynamic balancing’,
which consists in the reciprocal actuation of both model and a counterweight
having similar mass (Mcw). The model and the counter weight sit over two in-
dependent hydrostatic bearings stacked one over the other, and are subjected
to equal and opposite horizontal motions (Figure 4.3b). The parasitic vibra-
tion transmitted to the centrifuge arm during shaking of the model, becomes
null when the rocking moment generated by the model equals the magnitude
of that generated by the counter weight in the opposite direction:

Fcw � dcw = Fm � dm (4.9)

where Fcw and Fm are the horizontal forces applied respectively to the coun-
terweight and to the model, and dcw and dm the distances between the coun-
terweight and model centres of mass and the table. The QS is designed to
operate as many times as desired during the same centrifuge ‘spin’, this is pos-
sible thanks to an external hydraulic supply system (Figure 4.4). Pressurized

Figure 4.4: QS hydraulic supply scheme. (Courtesy of Actidyn systemes)
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Number of channels 64

Max sampling frequency 3 MHz

Max supply voltage �15 V

Max output voltage �10 V

Programmable gains �10, �100, �1000

A/D resolution 12-bit

Table 4.4: Centrifuge DAQ system main speci�cations.

oil is supplied from an external reservoir through an hydraulic rotary joint to
a set of local accumulators located on the centrifuge basket. The presence of
local accumulators minimizes the piping length to the actuators avoiding un-
desired pressure drops under high 
ow rate and pressures. This system feeds
pressurized 
uid to both the hydrostatic bearings and the actuation system
through two separate supply lines respectively rated for 150 and 300 bar. A
secondary reservoir is located on the bottom of the gondola to collect the 
uid
before returning it to the main reservoir through an additional low pressure
return line. While the QS system is operational, a signi�cant amount of 
uid
is continuously shifted to and from the centrifuge basket a�ecting the cen-
trifuge balancing. This 
uctuation needs to be accounted for in the balancing
calculation so that the resulting cyclic unbalance during spinning falls within
the allowed limits (� 40 kN). The shifted mass of oil was such as to cause

uctuation in unbalance � 20 kN during tests performed at 50 g for this work.

4.1.4 Data Acquisition

During centrifuge tests the instruments’ signals were logged by means of an
on-board DAQ (Data Acquisition System). The instruments are plugged into
two junction boxes, which feed them with the necessary supply voltage and
collect their output readings (Figure 4.5). Signals are then sent to a signal
conditioning unit, where they can be �ltered or ampli�ed if necessary, and then
logged to the on-board PC. The logging is performed by means of four Adlink
NuDAQ 2204 high frequency data acquisition boards. Table 4.4 summarizes
the main features of the DAQ system used.

The two junction boxes were originally mounted on the side of the gon-
dola, therefore relatively close to the model. However, following the recent
centrifuge upgrade to QS capability, they had to be moved since the space on
the new gondola was limited due to the presence of hydraulic piping necessary
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for the operation of the shaking-table. The criteria followed to decide a new
position for the junction boxes was that of minimizing the distance between
them and the model, and resulted in them being installed on top of the cen-
trifuge arm, at the centre of the fork supporting the gondola. It is important to
position the junction boxes so that the instrument connectors are aligned with
the centrifugal acceleration, in a way that they are forced in positon during
centrifuge spinning. This was achieved by installing a steel L-bracket on top
of the centrifuge arm and mounting the junction boxes on the vertical plate so
that they face the centrifuge axis (Figure 4.6).

The data acquisition process is controlled by a LabV iew routine specif-
ically developed for the intended tests. LabV iew ‘runs’ on the on-board PC
which in turn is controlled remotely from the centrifuge control room. Two
main blocks can be identi�ed in the data acquisition routine: a high sampling
frequency (fs) block (during shaking data acquisition) and a low fs block (post-
shaking data acquisition). The two blocks are run in sequence automatically,
although while the �rst block has a �xed duration speci�ed by the operator
(depending on the simulated earthquake duration), the second block loops un-
til manually stopped (so that post-shaking observation of the model can be
performed for as long as desired). The data from the two acquisition blocks
are then automatically saved in a text �le. The LabV iew routine requires the
following inputs to be speci�ed by the operator:

� During shaking sampling frequency.

� Post-shaking sampling frequency.

� Earthquake duration (model scale = prototype scale/N).

� Sampled channels ID.

� Instrument calibration factors.

TheDAQ was initially designed to be triggered by a dedicated accelerom-
eter placed on the base table, so that the data acquisition routine would start
as soon as the table begins to move. However, this was not possible due to
unaccounted table adjustment movements for centering purposes, occurring
during centrifuge spinning, that resulted in undesired DAQ triggering. In or-
der to overcome this problem, the routine was modi�ed by introducing manual
DAQ triggering controlled by the operator. This modi�cation proved succesful,
although it currently requires two operators to simultaneously �re the earth-
quake motion and start the data acquisition. To avoid data loss due to poor
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Figure 4.5: Centrifuge DAQ system scheme.
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Figure 4.6: Location of transducer junction boxes on centrifuge arm.

synchronization and/or time lag between the start command and the actual
table movement, a longer high-fs duration was usually speci�ed in the DAQ
routine (6 seconds for a 2 seconds duration scaled motion).
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4.2 Model Preparation

4.2.1 Materials

The soil models tested in this study were constituted of HST95 Congleton
sand. This sand was used to form both the base layers, where it was placed
with a DR of 80 %, and the lique�able layers with a DR ranging between 30 to
40 %. Where a capping low permeability layer was required this was consti-
tuted of Oakamoor HPF5, a crushed silica sandy-silt also named ‘rock 
our’.
Figure 4.7 shows the grading curves of these two materials; it is worthwhile to
stress that, despite its high �nes content, HPF5 falls within the boundaries for
potentially lique�able soils identi�ed by Tsuchida (1970). RedHill 110 sand
is used in the models to create vertical columns to serve as markers (thanks
to the marked color contrast with HST95 sand) for the investigation of soil
deformation patterns underneath the footings.

Figure 4.7: Particle size distribution of the soils used in the centrifuge models.

4.2.1.1 HST95 Congleton Sand

HST95 sand is a speci�c fraction of the sand extracted at Bent farm, Congleton,
Cheshire. It classi�es as a �ne grained sand (Figure 4.7) and its mineralogical
composition consists at 94% of quartz. Lauder (2010) analyzed the sand parti-
cle shape by scanning the material with an electron microscope. He found the
material roundness index (R) to be 0.53, which classi�es as ‘rounded’ particle
shape. The mechanical behaviour of the material was investigated through a
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Figure 4.8: Results of direct shear box testing of HST95 Congleton sand.

series of direct shearbox tests. Ten shearbox tests were performed on sam-
ples prepared at two target relative densities representative of loose and dense
states, respectively DR=10% and DR=90%. Based on the results of these tests
the critical (�crit) and peak (�peak) friction angles have been estimated to be
respectively 33� and 46�, for con�ning stresses ranging from 20 to 100 kPa
(Figure 4.8). Slightly higher friction angle values were observed for the same
material subjected to lower con�ning stresses (Lauder, 2010) (Figure 4.8c).
Table 4.5 summarizes the properties of HST95 Congleton sand measured in
this study compared to those found in Lauder (2010).

4.2.1.2 Oakamoor HPF5 Crushed Silica Rock Flour

Oakamoor HPF5 is classi�ed as a sandy silt. It is the result of arti�cial crushing
of quarry production waste, resulting in a material that maintains the property
of the original material, such as mineralogy and hardness. The crushing process
originates silt sized particles with marked angularity, resulting in high frictional
resistance. Table 4.6 summarizes the properties of Oakamoor HPF5.
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Property Measured Lauder
(2010)

Je�rey
(2012)

D10 (mm) 0.07 0.1 -

D30 (mm) 0.1 0.12 -

D60 (mm) 0.146 0.14 -

Cu 1.96 1.4 -

Gs 2.63 2.63 -


d;min (kN/m3) 14.34 14.59 -


d;max (kN/m3) 17.60 17.58 -

emax 0.795 0.769 -

emin 0.463 0.467 -

�crit (�) 33 32 33

�peak(�)z 46 44 45

k (m/s) - 1.23�10�4y -

- 8.62�10�5z -

M�0
v =10kPa (MPa) - 4.3y-8.1z -

M�0
v =101kPa (MPa) - 20y-42z -

Table 4.5: Main properties of HST95 Congleton sand; y indicates a property
evaluated at a loose state; z indicates a property evaluated at a dense state

4.2.2 Pluviation Technique

It is widely accepted that the soil fabric generated in sand during its deposition
may signi�cantly a�ect its undrained cyclic behaviour. This e�ect varies with
the level of shear strain the soil is subjected to, being maximum for small
strains and negligible if the soil reaches steady state. For intermediate strain
level, the soil’s fabric dependency may result in signi�cantly di�erent QSS for
samples having the same initial void ratio (Ishihara, 1993). These observations
need to be accounted for when predicting natural soil behaviour on the basis
of laboratory reconstituted samples. In particular reconstituted samples tend
to underestimate the cyclic resistance of natural sand (Coelho, 2007).

Among the di�erent techniques mostly used for sample preparation, air
pluviation, a particular form of dry deposition used to prepare large samples,
guarantees the highest degree of uniformity and repeatability. Moreover this
technique allows a wide range of densities to be attained by controlling the
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Property Kelly
(2006)

Brown
(2010)

D10 (mm) 0.007 -

D50 (mm) 0.05 -

Gs 2.65 -


d;min (kN/m3) 12.8 -


d;max (kN/m3) 17.56 -

emax 1.014 -

emin 0.467 -

�crit (�) �36 -

�peak (�) 48 -

k (m/s)y 5�10�7 -

PL - 22.9

LL - 24.7

Table 4.6: Main properties of HPF5 crushed silica; y the permeability value
reported has been estimated through Hazen equation: k / D2

10.

sand’s pouring rate, depending on the device used for pluviation, and the
particle impact velocity (Vi), depending on the falling height (H) and on the
sand particle size. Because of aerodynamical resistance, a sand particle falling
through air eventually reaches an equilibrium at a constant speed of falling
known as ‘terminal velocity’ (Vt). If the minimum height of pluviation (i.e.
at the top of the soil model) is enough for a sand particle to reach Vt, the

uctuation of density throughout the sample is minimised resulting in a better
uniformity (Ueno, 1998). Terminal velocity depends on the soil particle char-
acteristics; idealizing soil particles as spherical bodies having diameter equal to
the soil D50 and assuming quadratic velocity dependence of air drag resistance,
Vt and Vi are given by:

Vt =
r

2 �m � g
C � �air � A

(4.10)

Vi = Vt �

s

1� exp
� �2 � g �H

V 2
t

�
(4.11)

where m and A are respectively the mass and the surface area of the idealized
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Figure 4.9: HST95 free-fall particle velocity as a function of falling height.

spherical particle, �air the density of air and C is the drag coe�cient (0.5
for spherical objects). Figure 4.9 shows an estimate of the particle free-fall
velocity for HST95 sand as a function of falling height. All of the soil models
in this study were prepared by dry deposition through air pluviation; two main
target densities had to be achieved in order to reproduce loose lique�able layers
(DR=30%) and denser layers with limited strain potential (DR=80%). Two
di�erent pluviation techniques were used to achieve the two target densities.
The denser layers were pluviated by means of a ‘slot pluviator’ 540 mm wide,
which allowed a sand ‘curtain’ to fall the full width of the model container
enhancing sample uniformity across the model (Lauder, 2010) (Figure 4.10b).
The slot pluviator was mounted on wheels running on two tracks parallel to the
model container longitudinal direction, and was swept back and forth over the
container length during pluviation until the desired model height was reached.
The sweeping rate also in
uences the sample density; faster sweeping rates
are preferred in order to keep the pouring rate for a given location, however if
sand is dropped too fast over too large an area, then local wind currents are
generated resulting in non-uniform loose density zones (Ueno, 1998). The guide
tracks were mounted at a height of 1.90 m from the ground surface, resulting in
a minimum falling height of 1.20 m (measured from the bottom of the pluviator
to the top of the soil model). According to the estimate reported in Figure 4.9,
this falling height allows the sand particle to impact the soil model surface at
nearly terminal velocity throughout the entire depth of the model, ensuring
minimum 
uctuation of density in the vertical plane. The desired density was
achieved adjusting the pouring rate by varying the slot width, this can be
easily done by sliding the bottom plates up or down the inclined sides of the
pluviator. Figure 4.10a shows the range of densities that can be achieved using
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Figure 4.10: Pluviation of dense sand layers: a) Correlation between slot size
and DR; b) Pluviator .

this device as a function of the slot size. A di�erent technique had to be used to
achieve loose sand layers, since the slot pluviator proved incapable of attaining
DR lower than 50% for the model sand. A metal mesh having circular openings
of 2 mm diameter spaced of 4 mm, was placed on top of the model container,
e�ectively reducing the falling height to values ranging from 360 to 60 mm
(measured respectively from the bottom to the top of the soil model). A high
pouring volume rate was used in order to ensure the sand 
ow was controlled
by the mesh openings. This technique proved successful as it allowed a very
loose sand layer to be obtained, however a certain variability of DR with depth
was observed (Figure 4.11). Instruments were placed in the model during
pluviation at pre-determined positions. Dry spaghetti placed perpendicular
to the model base was used to provide a reference for the positioning of the
instruments during pluviation. The heights at which instruments had to be
positioned were marked on the spaghetti before placing them in the desired
position in the model, so that when the soil model surface reached such marks
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Figure 4.11: Pluviation of loose sand layers: correlation between particle falling
height (H) and DR.

pluviation was stopped to allow the positioning operation. Vertical columns
of Redhill 110 sand were also placed in some models in order to allow visual
observation of the deformations (this sand is of a brighter colour with respect
to HST95 sand) in the foundation soil following model excavation. These were
obtained by pluviating Redhill 110 sand through a funnel into plastic straws
placed vertically at the desired positions, the straws were then pulled out after
completion of the soil model pluviation (Figure 4.12). The amount of sand
used to build the columns was not enough to a�ect the overall soil behaviour
(column radius = 2 mm), therefore no mechanical characterization of this
material was undertaken. If material having a coarser grain size is used to
create these vertical marker columns, the columns may act as vertical drains,
resulting in faster dissipation of the shaking induced excess pore pressure.
However, this is not the case since RedHill 110 sand has a very similar gradation
curve with respect to HST95 (Figure 4.7) and therefore similar permeability.

4.2.3 Low Permeability Layer Preparation

A layer of Oakamoor HPF5 crushed silica rock 
our was placed on top of the
soil deposit in Tests BD3 and BD4, in order to provide a low permeability
crust. A di�erence of two to three orders of magnitude exists between the
permeability of this material, herein referred as ‘Silt’, and that of medium
dense HST95 sand (Table 4.5 and 4.6). In Test BD3 the silt layer was placed
in an over-consolidated state, while it was normally consolidated in Test BD4.
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Figure 4.12: Technique used to position the instruments during soil model
pluviation.

In both cases the dry HPF5 was initially mixed with water until reaching
a water content of approximately 100%, the slurry was then poured on top
of the level, loose, saturated sand layer. This technique allows the modeller
to obtain a layer of uniform material over the entire plan model area. The
HPF5 slurry was initially allowed to consolidate under its own self weight for
a few hours. Two di�erent procedures were then followed in the preparation
of the two models. In model BD4, a moderate uniform surcharge (q = 1.83
kPa) was applied to the silt layer for 48 hours to slightly increase its strength,
just enough to avoid static failure under the self-weight of the footing models.
Despite the application of this surcharge, the silt layer may still be de�ned as
normally consolidated during centrifuge testing at 50 g. This is because the
average total vertical stress in the silt at this gravity level is higher then the
surcharge itself (OCR = 1). The undrained shear strength of the material was
measured by means of a laboratory vane on several samples consolidated under
the same surcharge. An average value of 10 kPa (at earth gravity) resulted
from these measurements (Table 4.7).

In model BD3 a sur�cial silt layer characterized by similar thickness (e.g.
10 mm at model scale) but higher shear strength was required. The easier way
to achieve this condition would be to consolidate the layer under a higher
surcharge. In centrifuge modelling this is usually achieved by centrifuging the
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model at an adequate g-level (N), in order to reduce the surcharge required
to get the desired level of consolidation by a factor of N and speed up the
consolidation process by a factor of N2. However, in test BD3 the silt layer
to be consolidated sits on top of a thick layer of loose saturated sand (Figure
6.28a) which may su�er excessive disturbances during the described process.
For this reason an alternative procedure had to be developed. The matric
suction of a layer of dry sand was exploited to draw 
uid out of the silt layer
(rather then ‘squeezing’ 
uid out as in conventional consolidation). After the
silt slurry had undergone complete sedimentation, a 20 mm thick layer of
dry Redhill 110 sand was poured onto the silt layer. The sand layer was left
in place long enough to allow the migration of pore 
uid by capillary rise
toward the overlying sand, until the surface of the sand layer looked ‘wet’.
At this point the sand layer was carefully scraped o� and the footing models
positioned directly onto the silt layer. Finally a 10 mm layer of moist Redhill
110 sand was placed on top of the silt layer to provide the required footing
embedment. Figure 4.13 shows the described procedure. The obtained silt

Figure 4.13: Technique used for the preparation of OC Silt layers: a) Silt slurry
after being poured in a large tray; b) Redhill 110 dry sand progressively poured
on top of the silt layer; c) Completed dry sand layer and d) Consolidated silt
layer after scraping o� the wet sand.
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layer was considerably stronger than that of model BD4. A limitation of this
technique is that it can be used only for the preparation of relatively thin
layers of consolidated soil, as the suction exerted by the dry sand layer quickly
reduces in magnitude with depth. Moreover, the degree of overconsolidation
of the material is unknown. Further testing of the material to determine this
parameter was not carried out as beyond the scope of this study. Because of
the limitation on the thickness of the samples, in order to test the strength
of the material, 10 mm thick layers of consolidated silt (to be consistent with
that included in centrifuge model BD3) were initially prepared in large trays.
Several discs were then cut from the trays by means of a 150 mm diameter
steel sampler, until a sample of approximately 120 mm in height was achieved
(enough to accomodate the smaller laboratory vane and satisfy the required
clearance from both the bottom and top of the sample) stacking the 10 mm
thick discs. The undrained shear strength of these samples was then measured
with a laboratory vane (Table 4.7), obtaining an average value of � 50 kPa.

Centrifuge
Test

Undrained Shear Strength, cu
(kPa)

BD3 45, 56, 62, 40, 48, 50, 52, 44

BD4 11, 10, 8, 11, 9, 13

Table 4.7: Undrained shear strength of HPF5 Oakamoor crushed silica.

4.2.4 Pore Fluid

Silicon oil and water-Glycerine mixtures have been used as pore 
uids in pre-
vious dynamic centrifuge experiments (Liu & Dobry, 1997; Ghosh, 2003; Bren-
nan, 2003), however these chemicals had some drawbacks regarding the practi-
cality of their use, their cost and disposal. Stewart et al. (1998) �rst suggested
the use of a solution of Hydroxypropyl methylcellulose (HPMC) in water as
pore 
uid. HPMC is a water-soluble polymer derived from cellulose, therefore
it is fully organic and easily accessible since it is widely used in a number of
industrial processes including thickening and binding of water based solutions.
Stewart et al. (1998) proposed a correlation between � (measured at 20�) and
concentration in weight of HPMC, given by:

v20 = 6:92 � C2:54 (4.12)
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Figure 4.14: Viscosity of Grade F Methocel HPMC as a function of concen-
tration.

This correlation has been veri�ed by direct viscosity measurement in a num-
ber of samples of water solutions with HPMC concentration ranging from 0
to 4.5%, resulting in a satisfactorily match for the range of viscosity usually
adopted in dynamic centrifuge modelling (Figure 4.14). Stewart et al. (1998)
also investigated the stability of � for HPMC solutions at varying temperature,
concluding that signi�cant changes in viscosity occur for varying temeprature
which are in line with those observed in pure water. Since the centrifuge tests
are performed at controlled room temperature, these variations are not ac-
counted for in model preparation. Relatively small concentrations of product
are required to achieve the desired range of viscosity, therefore the overall den-
sity of the solution does not vary signi�cantly. Due to the long time required
for model saturation (36 to 48 hours), a small amount of a biocide substance
should be mixed to the solution in order to prevent microbial degradation of
the solution over time; a quantity of 1% in weight is suggested in Stewart et
al. (1998). For this study Dettol was used for this purpose at approximately
1 % concentration in weight (i.e. � 250 ml each model).

4.2.5 Model Saturation Process

Following pluviation, the model was saturated with the HPMC solution. Sat-
uration was obtained by feeding the pore 
uid through 5 inlets in the base of
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the model container, which lead to a grid of channels machined in the base
plate of model container (see Chapter 5). The function of these channels is
that of distributing the pore 
uid homogeneously at the bottom of the soil
model, so that the saturation process is more likely to occur with a uniform

ow front, rising toward the model surface as the pore 
uid is fed through the
bottom inlets.

In order to obtain full saturation of the soil model, a 
uid pressure gra-
dient must exist between the top and the bottom of the soil model, however
the magnitude of such gradient must be kept within a certain level in order to
avoid piping of the soil model. Initially the saturation process was intended to
be carried out under vacuum, by applying di�erent negative pressures to the
top of the soil model and the pore 
uid reservoir. This technique is preferable
because the 
uid is less likely to contain trapped air bubbles that may decrease
the degree of saturation (Sr) of the soil model if not removed. Moreover the
speed of saturation can be easily adjusted by varying the vacuum level in the

uid reservoir by means of a vacuum regulator.

However, in the speci�c case of this study, the ‘vacuum’ technique proved
unsuccessful as localized disturbances of the soil model occured during satura-
tion. This was due to the presence of a latex membrane placed on the internal
walls of the model container in order to provide sealing. Under the application
of vacuum, the membrane, that was weakly glued to the container internal
walls, got sucked inward locally disturbing the soil model to an unacceptable
degree. To overcome this problem the pressure gradient required for the sat-
uration of the soil models was generated by gravity (Figure 4.15). Vacuum
pressure was initially applied to a sealed perspex tank connected to the mix-
ing tank (where the HPMC solution is mixed) drawing the required amount of
pore 
uid into the perspex tank. The tank was then connected to the bottom
of the model container, ensuring the ball-valve on the line was shut. Vacuum
was applied to the tank until no air bubbles could be seen by visual inspec-
tion, and only at this point released. At this stage, the saturation process
could start by opening the ball valve in a controlled manner, until a satisfac-
torily 
ow rate was achieved. The amount of 
uid required to saturate a 300
mm deep soil model was approximately 25 litres depending on the soil void
ratio. The 
ow rate used ranged between 0.52 to 0.69 litres/hour, resulting in
model saturation times between 36 to 48 hours.

The Sr achieved in the models by means of this technique was not mea-
sured following the saturation process, therefore Sr may have been somewhat
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Figure 4.15: Saturation system adopted for the centrifuge tests series.

lower than unity in the tested models. The presence of trapped air bubbles
in the soil model is undesirable for modelling purposes, as due to their high
compressibility they may result in a slower excess pore pressure build up dur-
ing earthquake shaking. However, it is believed that the adopted speed of
saturation was slow enough to minimize the presence of trapped air bubbles
in the models.

4.2.6 Footing models

The structure models included in the series of centrifuge tests performed rep-
resent buildings with reinforced concrete raft foundations. In order to min-
imise the e�ect of the signi�cant SSI phenomenona which may occur during
earthquakes as a consequence of the induced over-turning moments for ‘tall’
structures, the H/B ratio of the models was kept to a minimum. The design
philosophy followed was that of minimising the structure height by assuming
its mass to be concentrated in the raft foundation, resulting in solid blocks
of square plan area with no super structure. Using materials having di�erent
densities to build the model structures, it was possible to represent structures
having the same dimensions but di�erent weight (i.e. di�erent q). Each of
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the centrifuge models tested included multiple footing models, ranging from 3
to 4 depending on the test. In order to minimise interaction e�ects between
the di�erent footing models, a minimum spacing of 2�B between them was
ensured. Table 4.8 reports the main features of the foundation models used in
this study. Despite the mechanical properties of the material listed in Table 4.8
di�ering from those of concrete (E � 25 GPa; G � 2.2 GPa), they can all be
assumed to behave in a rigid way for the range of stresses they are subjected
to during the tests.

Footing A Footing B Footing C Footing D

Material Aluminium Steel� Steel Lead

� (kg/m3) 2668 5322 7761 11240

q (kPa) 30 60 90 130

Mass (ton) 24.2 48.3 70.4 102

B (m) 2.75 2.75 2.75 2.75

H (m) 1.2 1.2 1.2 1.2

E (GPa) 69 - 200 15

G (GPa) 26 - 70 8

Table 4.8: Characteristics of footing models (prototype dimensions). � indi-
cates the material was machined by drilling blind holes on the top surface
in order to reduce its weight; mechanical properties of the materials reported
from www:matbase:com.
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4.3 Instrumentation

The centrifuge models tested were instrumented with a number of transducers
in order to document their behaviour during shaking. Three main categories
of transducers were used: pore pressure transducers (PPT), MEMS accelerom-
eters and linear variable di�erential transformers (LVDT). Table 4.9 lists the
speci�c type of instrument used:

Transducer Manufac-
turer

Physical
variable

Supply
voltage (V)

Cable
length (m)

PDCR81 Druck Fluid
pressure 5 5

ADXL78 Analog
Device

Accelera-
tion 5 3.5

LDC1000A RDP
Group

Displace-
ment 5-18 2 (3)�

Table 4.9: Type of transducers used in the centrifuge tests. � indicates the
cable length had to be modi�ed to the value between brackets.

4.3.1 PDCR81 Miniature Pressure Transducers

Druck PDCR81 miniature pressure transducers were used in this study to mea-
sure pore pressure in the soil models tested. These speci�c instruments are
available for a number of di�erent pressure ranges, with sensitivity decreasing
as the operating pressure range increases. For this reason it is advisable, when
designing a centrifuge model, to carefully estimate the maximum operating
pressure expected during testing, so that the most appropriate measurement
range can be chosen, maximising the instrument sensitivity. Assuming a max-
imum soil model depth of 300 mm (Hmax) and a conservative lique�ed soil unit
weight (
LS) of 20 kN/m3, the maximum pore pressure expected in the models
subjected to a centrifugal acceleration of 50 g, is given by:

umax = Hmax � 
LS �N = 0:3 � 20 � 50 = 300kPa = 3bar (4.13)

According to this estimate, pore pressure transducers having a 0 to 3 bar mea-
surement range were chosen in this study. The sensing element of this type of
instrument consists of an integrated silicon strain gauge mounted on the inner
surface of a diaphragm which deforms proportionally to the 
uid pressure act-
ing on the outer surface. An atmospheric pressure reference is guaranteed on
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the inner side of the diaphragm through the PTFE sleeving housing the instru-
ment wiring. The sensing diaphragm is usually protected by a 1.8 mm thick
ceramic porous disc (Figure 4.16). PDCR81 are designed to measure pres-
sure in all types of 
uid chemically compatible with the materials constituting
the instrument body itself (i.e. silicon, titanium, stainless-steel and ceramic),
and with epoxy adhesive. The HPMC solution used in the tests proved to be
fully compatible with the transducer, however some concern existed over the
response of the instrument to high frequency variations of pressure, because
of the high viscosity of the 
uid. A 1-g trial test was designed to investigate
the response of the instrument in a soil model saturated with a 50 cSt HPMC
solution. A PDCR81 transducer was saturated with the same solution in a
vacuum chamber for 48 hours, to ensure air was removed from the porous
stone (for water saturation 24 hours are recommended). The transducer was
then placed at the centre of a loose HST95 sand deposit, formed by wet de-
position in a perspex cell 120 � 250 mm, at a depth of 100 mm from the soil
surface. The cell was then securely mounted on a sieve shaker which imparts
a cyclic horizontal base motion having a main frequency of approximately 16
Hz and reaching acceleration peaks of 4 g. Figure 4.17 shows the EPP and
base acceleration readings during the test. The recorded transient EPP are in
phase with with the cyclic accelerations, however the high frequency compo-
nents of the base motion is not in re
ected in the EPP 
uctuation, suggesting
that the instrument is ‘�ltering out’ those components. This is ascribed to
the low permeability of the porous ceramic disc which impede high frequency
pressure waves from reaching the sensing element. Because of the high fre-
quency content of the scaled earthquake motions used (i.e. 50�400 Hz), high
frequency transient EPP are expected in the centrifuge tests. For this reason
it was decided to modify the PDCR81 transducers by removing the ceramic
porous disc. In order to guarantee the protection of the sensing element, a
wire mesh having openings of 64 �m was placed over the instrument open
face (Figure 4.16b). The pore pressure transducers (PPTs) were calibrated
in a modi�ed triaxial cell, which allowed the transducers (4 at a time) to be
introduced into the cell through a rubber plug guaranteeing the sealing of
the cell. Cell pressure could then be varied by means of a traditional pressure
controller used in triaxial tests while monitoring the instrument response (Fig-
ure 4.18b). Figure 4.18a shows the calibration curves of each instrument over a
pressure range considered representative of the centrifuge tests designed. The
slope of the calibration curve is similar for all instruments, while the zero o�-
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Figure 4.16: Druck PDCR81 miniature pressure transducer: a) Instrument
cross-section (after Taylor, 1995); b) Modi�ed PDCR81 used in this study.

Figure 4.17: Instrument response to high-frequency pore pressure variations:
a) 1�g testing of PDCR81 transducer equipped with ceramic porous stone; b)
Recording of a modi�ed PDCR81 transducer during centrifuge testing.
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Figure 4.18: PDCR81 pressure transducers calibration: a) Correlation between
cell pressure and instruments output voltage; b) Calibration cell.

set changes signi�cantly (maximum variation within �10 mV according to the
manufacturer) and has to be accounted for in absolute pressure measurements.
However, only excess pore pressure (di�erential value between hydrostatic pore
pressure and pore pressure during cyclic loading) will be monitored in the cen-
trifuge test, thus accurate absolute pressure readings are not required for this
speci�c application.

4.3.2 ADXL78 MEMS Accelerometers

Micro-Electro-Mechanical Systems, or MEMS, is a technology de�ned as minia-
turized mechanical and electro-mechanical elements that are made using the
techniques of microfabrication used in the integrated circuit industry. Physical
dimensions of MEMS devices can vary from below 1 �m to several millime-
ters. The ADXL78 is the fourth-generation surface micromachined iMEMS
accelerometer from Analog Devices with enhanced performance and lower cost
(Figure 4.19). It is a single-axis accelerometer with signal conditioned volt-
age outputs that are on a single monolithic integrated circuit. This product
measures acceleration with a full-scale range of �70 g. It can measure both
dynamic acceleration and static acceleration (gravity). The sensing element
of this device consists of several di�erential capacitor unit cells. Each cell is
composed of �xed plates attached to the instrument body and movable plates
attached to a moving frame. Displacement of the frame changes the di�erential
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Figure 4.19: ADXL78 accelerometer: a) Instruments dimensions; b) Instru-
ment glued on base PVC disk and waterproo�ng coating; c) Wired instrument.

capacitance, which is measured by the on-chip circuitry. The output signal is
conditioned by means of a built-in 400 Hz 2-pole Bessel �lter which smooths
out high-frequency response. These devices are widely used in the automotive
industry, speci�cally for use in front and side impact airbag applications, thus
they are designed to be stable over vibrations and temperature ranges found in
such applications (Analog Devices, 2010). A simple calibration procedure has
been followed, each instrument was aligned with the earth gravity �eld (i.e.
perpendicular to the ground surface, +1g) and its output voltage recorded, the
same operation was then repeated after rotating the instrument through 180�

in the vertical plane (i.e. opposite direction,-1g) and its sensitivity calculated
by:

Sensitivity (V=g) =
V oltage[+1g]� V oltage[�1g]

2
(4.14)

In order to improve the coupling with the soil, a PVC disk has been glued
to the top surface of the instrument in order to increase its contact area. More-
over, the ADXL78 is not waterproof; thus to be used in saturated soil, it needs
to be coated with a material impervious to the pore 
uid used. Waterproo�ng
has been ensured by dipping the instrument in Plastidip, a multi-purpose air
dried liquid rubber coating (Figure 4.19b). Stringer et al. (2010) compared
the performance of the ADXL78 with respect to conventional piezo-electric
(PE) accelerometers when placed in loose sand, concluding that if good soil-
instrument coupling is ensured MEMS accelerometers provide more accurate
acceleration readings. Moreover, the ADXL78 was found to produce a more
realistic integrated velocity trace with respect to traditional PE accelerome-
ters. The authors also observed that a slight phase lag existed between the two
types of accelerometers, with the signal of the ADXL78 slightly delayed with
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respect of that of the PE accelerometers. This di�erence is ascribed to the
‘mass on a spring’ system constituting the MEMS accelerometer sensing ele-
ment. The equivalent global density of the ADXL78 is of 3370 kg/m3 (Stringer
et al., 2010) therefore they would sink into lique�ed ground if simply placed
into the soil. To avoid this tendency, the overall density of the instrument
and the additional base PVC disc (�global) must be similar to the density of
lique�ed soil (�LS). This was achieved by varying the radius (r) of the base
PVC disc to obtain a neutral buoyancy:

MMEMS = 0:1685 g

VMEMS = 5 � 10�8 m3

�LS � 2000 kg/m3

�PV C � 1400 kg/m3

� = 1 mm

9
>>>>>>>>=

>>>>>>>>;

Parameters

r =

s
MMEMS � �LS � VMEMS

� � � � (�LS � �PV C)
= 9:05 mm (4.15)

where MMEMS and VMEMS are respectively the mass and the volume of the
instrument, �PV C the density of PVC and � the base disc thickness.

4.3.3 LDC1000A Di�erential Transformers

Linear Variable Di�erential Transformers (LVDT) were used in the tests to
measure the vertical displacement of the footings during and after earthquake
shaking. The LDC1000A type from RDP group was chosen for this study.
This instrument is a spring return type LVDT, thus the measuring rod is con-
stantly pushed in contact with the moving object, exerting on it a force of 2 N
at its mid-run. This characteristic allows the instrument to accurately measure
both downward and upward footing vertical movements. The measuring range
of the LDC1000A is 50 mm which, for this speci�c application, corresponds to
a prototype footing settlement of 2.5 m for a g-level of 50. The instruments
were placed in the centre of each footing model, aligned with the vertical axis
of the footing, thus in case of tilting of the footing their measurement repre-
sents its average settlement. The instruments used in the tests were calibrated
using a micrometer and their calibration factor calculated (Figure 4.20).
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Figure 4.20: LDC1000A displacement transducer calibration.

4.4 Centrifuge Models Layout

All of the centrifuge models tested in this work consisted of four footing models
(see Section 3.2.6) resting on a level layered soil deposit 300 mm deep. The
typical con�guration of the layers in the soil deposits consisted of: a crust layer
(only present in some of the models), a lique�able layer of loose saturated sand
(L1) and an underlying deposit of dense saturated sand (L2). The relative
thickness of these deposits was varied in each test, keeping the overall soil
model depth constant throughout the entire testing campaign. The test series
has been devided into three main groups:

� Group 1 - Consists of models with no crust layer, with the footing rest-
ing directly on lique�able sand. The model ground water table was kept
above the ground surface to ensure full saturation of the deposit. The
thickness of the lique�able layer (L1) was varied throughout this group
of tests in order to investigate its in
uence on the observed footing set-
tlement.

� Group 2 - Consists of three models having a sur�cial crust of material
with lower susceptibility (or none) to liquefaction. Rock
our (Oakamoor
HPF5 crushed silica) was used to create such crustal layers. Crusts
having di�erent strength were tested. Test BD6 is also included in this
group; in this case the crustal layer is represented by a 4 m thick deposit
of dense sand.
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� Group 3 - Consists of two additional tests investigating the e�ect of
relative density on the footing settlement. Test BD8 (DL = 8.25 m) was
taken as a benchmark and the relative density of the lique�able layer
(L1) varied.

The tests of group 3 were performed by a post-graduate student under my
direct supervision, as part of its Master of Science (MSc) dissertation (Fran-
cis, 2012). Table 4.10 summarizes the characteristics of each centrifuge model
tested. The order of the footings was chosen in order to minimize the inter-
action between the stress distributions which they induce in the soil model
(Figure 4.21a). The footings were embedded in the soil model by 10 mm (rep-
resenting a footing embedment of 0.5 m at prototype scale). The footings were
not positioned along the model longitudinal axis but o�set from it in order to
maximise inter-footing distances (Figure 4.21b). Figure 4.22 shows images of
some of the models, at di�erent stages of the testing process.

Crust L1 L2

Test ID Hc
(m)

cu
(kPa)

DL
(m)

DR
(%)

DNL
(m)

DR
(%)

Group 1 BD1 - - 8.25 40 6.25 80

BD2 - - 1.85 40 12.65 80

BD5 - - 4 40 10.5 80

BD7y - - 1 40 13.5 80

- - 6 40 8.5 80

- - 10 40 4.5 80

BD8 - - 8.25 40 6.25 80

Group 2 BD3 0.5 50 8.25 40 5.75 80

BD4 0.5 10 8.25 40 5.75 80

BD6 4 0 4 40 10:5z 80

Group 3 MF1 - - 8.25 50 6.25 80

MF2 - - - - 14.5 80

Table 4.10: Characteristics of the centrifuge models tested. y the layout of Test
BD7 di�ered from the other, the container was divided in 3 compartments, each
hosting a di�erent soil pro�le. z represents the sum of a sur�cial layer of 4 m
of dense sand plus 6.5 m at the bottom of the soil pro�le.
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Figure 4.21: Centrifuge model layout: a) Variation in total vertical stress
induced by the footing models at 50�g; b) Plan footing disposition.

Figure 4.22: Centrifuge models: a) Model MF2 before saturation; b) Model
MF2 after testing; c) Model BD3 mounted on the QS67-2 earthquake simulator
prior to testing.
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Chapter 5

ESB Container Design

5.1 Model Boundary Conditions

Physical models in geotechnical engineering often consist of simpli�ed scale
versions of �eld prototype structures. Because a certain degree of simpli�ca-
tion is usually necessary in the modelling process the ability of the modeller
lies in understanding which aspects need to replicated scrupulously in order
to carefully reproduce the protoype behaviour, and which do not. Particular
attention is usually required towards factors such as materials used, stresses
applied and boundary conditions. In earthquake modelling the boundary re-
quirement to be satis�ed by the model container are of particular importance
since they must be veri�ed in both ‘static’ (i.e. pre-earthquake) and ‘dynamic’
(i.e. during shaking) conditions. In the �eld for prototypes usually considered
in earthquake geotechnical modelling, the lateral extent of the soil deposit on
which the structure is located is considerably greater than the modelled struc-
ture dimension. This is not the case in scale models where the lateral extent of
the soil model is limited by the presence of the container end walls, introducing
an element of dissimilarity with prototype conditions. A thorough review of
the main disturbances to the soil model introduced by the model container
in geotechnical earthquake modelling is found in Zeng & Scho�eld (1996) and
Brennan (2003). The design philosophy of the model container to be used in
this study was based on the mitigation of those boundary e�ects considered
most critical for the typology of test undertaken. These are:

� Bulging of the container side walls during centrifuge swing-up (Figure
5.1a). Under a N � g gravity �eld the horizontal stresses in the soil
model are increased by a factor of N . If the container side walls do not
provide su�cient lateral sti�ness excessive bulging may occur, resulting
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in an alteration of the initial stress-distribution in the soil model. In
particular, for lateral bulging exceeding � 0.1 % of the total soil column
height, the lateral earth pressure conditions may change from at-rest to
active (Ueno, 1998).

� ‘Silo’ e�ect as a result of container wall friction (Figure 5.1b). During
swing-up, friction between the soil model and the container walls may
result in part of the vertical load being carried by the container walls,
reducing the vertical stresses ‘felt’ in deeper portions of the soil model.
This phenomenon also acts toward the modi�cation of the initial (i.e.
pre-swing-up) stress distribution, a�ecting the response of the soil.

� Shear stress transmission between soil model and container (Figure 5.1c).
The boundary e�ects relating to shear stress transmission between the
model container and soil are di�erent depending on the direction con-
sidered. Under unidirectional shaking, such as the one imparted by the
Q67-2 earthquake simulator, undesired shear stresses are generated along
the container walls parallel to the shaking direction (�xy). This parasitic
e�ect is avoided if the container moves exactly as the soil. The horizontal
base motion generates propagates vertically through the soil model gen-
erating shear stresses in the soil acting on the x-z plane (�xz), in order to
maintain moment equilibrium a soil element must be subjected to com-
plementary shear stresses (�zx) (Brennan, 2003). If the end walls (i.e.
perpendicular to shaking direction) are not able to sustain these com-
plementary stresses the overall stress �eld is distorted, and signi�cant
rocking of the soil may take place (Zeng & Scho�eld, 1996). As ob-
served by Teymur and Madabhushi (2003), contradictory requirements
arise that the boundary walls should be smooth under static loading
and rough during dynamic loading. Finally, enough friction must exist
between the base of the container and the soil model for the shaking
induced shear stresses to be transmitted to the soil.

� Strain dissimilarity between container and soil model (Figure 5.1d). In
an homogeneous soil layer of in�nite lateral extent the deformation in-
duced by base shaking at a given depth is equal across the entire layer. In
a model test this is not veri�ed because of the presence of the container
end walls which restrict the soil deformation. Moreover, the interaction
between the soil and the end walls may generate parasitic P-waves to be
transmitted to the soil (Zeng & Scho�eld, 1996).
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In order to mitigate the boundary e�ects listed above the ideal model container
needs to be sti� enough not to bulge excessively under the working g-�eld,
although at the same time it needs to deform accordingly to the soil during
base shaking. Moreover the friction of its end walls must be high enough
to sustain the cyclic induced complementary shear stresses, while the walls
parallel to the shaking direction should be friction-less, not to generate any
unwanted shear stress if relative movement between the soil and the container
takes place. ‘Silo’ e�ect depends on the container dimensions and on the soil-
wall friction characteristics, therefore the container should be as big as possible;
this depends on the technical limitations of the shaking table to be used, in
terms of both model dimensions and payload.

Several typologies of model containers have been developed and tested
to date, however no ‘ideal’ solution has been found and often the satisfaction
of one boundary condition comes at the expense of a di�erent boundary e�ect
being generated. All of the adopted solutions involve either 
exible or ab-
sorbing boundaries, in order to mitigate the interaction between the soil and
the container during shaking. The idea of placing a softer absorbing material
at the end wall of the container in order to mitigate the re
ection of incident
waves, was �rst introduced at the University of Cambridge. A material used as
pipe-sealant known with the commercial name of ‘Duxseal’, was used for this
purpose. Campbell et al. (1991) concluded that ‘Duxseal’ e�ectively absorbed

Figure 5.1: Boundary conditions in dynamic centrifuge modelling.
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the incident waves over 100 Hz, while its e�ciency decreased for waves charac-
terized by lower frequencies. Permanent lateral deformations during swing-up
were also shown to be a major shortcoming of this material (Brennan, 2003).
The �rst attempt to reproduce a 
exible model container was carried out
by Whitman et al. (1981) at MIT, who developed a ‘stacked ring’ appara-
tus consisting of te
on-coated, low friction aluminium rings stacked together.
Its circular shape was ideal in reducing the static bulging during centrifuge
swing-up. However, this approach had several shortcomings such as the lack
of control over lateral sti�ness, strain concentration at the ring interfaces and
the incapacity to sustain complementary shear stresses due to its smooth inner
surface (as reported in Zeng & Scho�eld, 1996).

In order to study soil liquefaction during earthquakes, the concept of
a ‘laminar container’ consisting of light stacked rectangular frames sitting on
bearings located between the frames providing minimum lateral sti�ness. This
type of container is ideal in reproducing the large strains occurring in fully liq-
ue�ed soil. Equivalent Shear Beam (ESB) containers are based on a similar
concept, however in this case the ‘zero’ friction bearings are substituted by
rubber interlayers having a �nite sti�ness, and the frames present higher mass
resulting in signi�cant inertial behaviour under base shaking (Brennan, 2003).
This type of container is to be preferred for testing of dry sands or saturated
soil for small earthquakes, or when the triggering of liquefaction is to be in-
vestigated, while it may be to sti� to correctly model the dynamic behaviour
of softer soil (i.e. soft clays). This is because the correct functioning of the
ESB container relies on the soil and container having similar sti�ness (Bren-
nan, 2003). This type of container has been extensively used and tested for
di�erent soil types; detailed information may be found in Zeng & Scho�eld
(1996), Wilson (1997), Steedman et al. (2000), Lee et al. (2013) and Brennan
(2003). Brennan et al. (2006) compared the dynamic behaviour of laminar
and ESB containers, concluding that the laminar container does not impose
new vibration modes on the model soil, while the ESB container may atten-
uate the soil modes due to its own dynamic vibration if this is di�erent from
that of the soil. This e�ect is more pronounced near the container end walls
and may need additional performance veri�cation if the material tested di�ers
from that for which the container is designed.
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5.2 Container Design

The ESB concept was chosen for this study. Although a laminar container pro-
vides optimal boundary conditions for fully lique�ed soil, its response in the
pre-liquefaction phase is non-realistic and may a�ect the triggering of liquefac-
tion in the soil model, introducing a dissimilarity from prototype conditions.
The main advantage in the use of laminar containers is represented by their
ability to reproduce the large lateral deformations occurring in lique�ed soil.
This feature is of major importance in lateral spreading ground (i.e. liquefac-
tion of mildly sloping ground) where signi�cant cumulative displacement may
be generated during shaking. However all the models tested in this study con-
sist of shallow foundations resting on level soil deposits and thus no cumulative
lateral displacement is expected as a consequence of earthquake shaking. The
laminar concept also presents other technical disadvantages, such as the need
of periodical maintainance to ensure the correct functioning of the bearings
and the need of lateral constraint to avoid excessive deformation (Brennan,
2003). Based on these considerations an ESB container was preferred to a
laminar one. The container was designed to match the dynamic behaviour of
a design soil model constituted of loose saturated sand prior to the generation
of earthquake induced excess pore pressure, that would result in softening of
the soil and thus in a change of its dynamic behaviour. Full liquefaction of
the loose saturated sand during testing is anticipated. After liquefaction has
occurred the dynamic response of the ESB box to base shaking would di�er
from that of the soil, resulting in interaction between the two. However the dis-
turbance arising from this phenomenon is believed to be localized to the area
of the model adjacent to the end walls, since the transmission of the parasitic
re
ected waves resulting from soil-container interaction would be signi�cantly
reduced due to the low sti�ness of lique�ed soil.

Zeng & Scho�eld (1996) suggest the use of rough ‘shear sheets’ securely
�xed to the container base in correspondence of the end walls in order to
sustain the complementary shear stresses generated in the soil mass by base
shaking. However, this would cause distortion of the stress �eld in the soil
during centrifuge swing-up, for this reason the use of shear sheets was not
adopted. It is controversial whether or not the use of shear sheets in ESB
container is bene�cial for the mitigation of boundary e�ects.
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5.2.1 Design Philosophy

The ESB container design methodology followed consisted of three phases:

� De�nition of the design soil model and design earthquake parameters.

� Estimation of the soil model deformation caused by the design earth-
quake and soil dynamic vibration chracteristics.

� Iterative process for the de�nition of the ESB container parameters re-
sulting in a satisfactory match between container and design soil model
behaviour when subjected to the design earthquake.

5.2.1.1 Soil Model

As mentioned above the e�ectiveness of ESB containers in mitigating boundary
e�ects depends on the soil model properties. Therefore such parameters need to
be evaluated carefully in the design stage (Brennan, 2003). The �rst parameter
to be de�ned is the depth of the soil model. This was chosen to be 300 mm,
representing a 15 m deep prototype soil deposit under a centrifugal acceleration
of 50 g. A deeper soil model could have been accommodated on the QS67-
2 earthquake simulator, however this was not deemed necessary as �eld and
experimental evidence suggests that at greater depth full liquefaction is likely
to be impeded (Steedman & Sharp, 2001). The earthquake motion selected
for the centrifuge test was the E-W component of the 2010 Maule earthquake
recorded at the San Pedro de la Paz station. This speci�c motion was chosen
for consistency with �eld data collected in the city of Concepci�on following the
Maule earthquake, which are discussed in detail in Chapter 3. The peak ground
acceleration recorded at this station was 0.4 g, thus the same value has been
used in the design of the ESB container. Since HST95 Congleton sand was
used in the centrifuge models tested in this study, the mechanical properties
chosen for the design soil are those of this speci�c sand. Detailed discussion
about the mechanical characterization of HST95 Congleton sand is found in
Section 3.2.1. Since loose saturated lique�able sand layers were to be studied, a
soil relative density of 30 % was chosen for the ESB container design. Table 5.1
summarizes the design soil parameters considered. Knowing the horizontal
acceleration coe�cient (kh) the earthquake induced shear stresses induced in
the soil model by the vertical propagation of the base motion, can be calculated
as a function of the acting vertical stress. The maximum shear stress acting
on a horizontal plane (�max) and the small strain shear modulus (Gmax) may
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Earthquake parameters

G-level, N 50

Hor. Acceleration coe�cient, kh 0.4

Soil parameters

Void ratio, e 0.696

Speci�c gravity, Gs 2.63

Relative density, DR (%) 30

Saturated soil density, �sat(kg/m3) 1969

Friction angle, �crit (�) 33

Soil depth, H(m) 0.3

Earth pressure coe�cient, K0 0.46

Hyperbolic model parameters

cy (kN1=2/m) 3230

az -0.15

bz 0.16

Table 5.1: Properties of the ideal soil column used in the ESB container de-
sign. (y) value for SI units; (z) hyperbolic coe�cients suggested by Hardin &
Drnevich (1972) for clean dry sand.

also be obtained from the equations proposed by Hardin & Drnevich (1972) as
a function of depth (z):

� = kh � �v (5.1)

�max =
r h

0:5 � (1 +K0) � �0v � sin�
i 2
�

h
0:5 � (1 +K0) � �0v

i 2
(5.2)

Gmax = c �
(2:973� e)2

1 + e
� (�p0)0:5 (5.3)

The shear strain induced in the soil model by the design earthquake can be
estimated as a function of these three quantities using the modi�ed hyperbolic
model proposed by Hardin and Drnevich (1972). The soil column de
ection
at any point in the soil model can then be calculated as the integral of the
shear strain between the base, which is assumed to be �xed (i.e. no relative
movement occurring between the soil model and the base of the container),
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and the desired depth (z):
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(5.4)

�(z) =
Z H

z

(z) � dz (5.5)

The de
ected soil pro�le obtained for a base acceleration of 0.4 g is plotted in
Figure 5.2. For an ideal design, beside matching the lateral deformation of the
model soil column, the ESB container should also match its natural frequency
(fn;s). The natural frequency of a soil column can be estimated using an energy
method as suggested by Zeng & Scho�eld (1996). This is achieved by calculat-
ing the maximum kinetic energy of a soil column per unit area (Ke;max) and
the maximum potential energy (Pe;max), these can then be equated respectively
to the kinetic energy and potential energy of an equivalent SDOF system to
determine the equivalent sti�ness and mass, from which natural frequency is
calculated:
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Z H
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For a 300 mm deep saturated sand deposit characterized by the soil properties
listed in Table 5.1, the resulting natural frequency is 84 Hz. The natural
frequency of the corresponding dry HST95 sand deposit (DR = 30%) is 110
Hz.

In Equations 4.6 and 4.7 the quantity (� �
)max represents the product of
� and 
 at the maximum amplitude of oscillation, and must not be confused
with �max � 
. As observed by Brennan (2003), as the dynamic behaviour of
the ESB container is de�ned entirely by its design parameters, the container is
not able to replicate changes in soil behaviour induced by cyclic loading, such
as the drop in soil natural frequency with EPP generation in saturated sands.
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Figure 5.2: ESB container maximum end wall de
ection induced by the design
earthquake.

5.2.1.2 Container Model

The dynamic behaviour of the ESB container is de�ned by the lateral sti�ness
of the rubber layers (Ki) and by the mass of the aluminium frames (Mf ). The
lateral sti�ness of the rubber layers depends on the layer thickness (tr) and on
the shear modulus of the material (Gr). Protek general purpose rubber sheets
supplied by Polymax, were used as ‘rubber layers’. The shear modulus of this
material was calculated from stress-strain curves obtained by testing 60mm
metal-rubber-metal sandwiches in a conventional shear box. The variation of
Gr under the range of vertical con�ning stresses expected during centrifuge
testing was also evaluated (Figure 5.3). The parameters that could then be
varied to control the ESB container dynamic response, were the mass of the
aluminium frames, the thickness of the rubber layers and the number of degrees
of freedom (i.e. number of rubber layers). A trial and error iterative procedure
was adopted, consisting of calculating the de
ected pro�le of the container and
its modes of vibration when subjected to the design earthquake, for each set
of these variables until a satisfactorily match with the soil column dynamic
response was achieved. A con�guration with 6 aluminium rectangular frames
and 5 rubber inter-layers was chosen. The deformation of the container under
the shear stress distribution induced by the design horizontal base acceleration

115



was calculated as:

�v;i = 
d �N � zi
�xy;i = kh �N � �v;i

Gr;i = �v;i �m+Gr;0

9
>>=

>>;
�i =

iX

1

� �xy;i
Gr;i
� tr

�
(5.9)

Figure 5.2 shows the deformation induced in the ESB container by the design
earthquake superimposed onto that induced in the design soil column obtained
from Eq. 5.5. Treating the ESB container as a discrete multi-degree of free-
dom (MDOF) undamped system it was possible to analyse its free-vibration
response, by performing a modal anlysis. Each degree of freedom (i.e. moving
aluminium frame) was characterized by the frame mass (Mf ) and a lateral sti�-
ness value which was a function of the rubber shear modulus at the con�ning
stress acting on the corresponding rubber layer (Figure 5.3):

Ki =
Fh; i
�i

=
Gr;i � Aframe;xy

tr
(5.10)

Based on this information the structural matrix (SM) of the 5 DOF system was
derived (Eq 5.11), and the natural frequencies of the system (i.e. eigenvalues
of the SM) together with the corresponding mode shapes (i.e. eigenvectors of

Figure 5.3: Calculation of shear modulus of Polymax Protek rubber.
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Figure 5.4: ESB container modes of vibration and associated resonant frequen-
cies.

the SM) calculated (Figure 5.4).
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The QS67-2 earthquake simulator used in this study produces motions over a
frequency range between 40 and 400 Hz, for this reason the 3rd and 4th modes
of vibration of the ESB container are likely to remain unexcited during testing.
On the contrary the 1st mode occurs at a frequency of 99 Hz (i.e. � 2 Hz at
prototype scale) which is likely to be associated with high excitation energy
during earthquake shaking. This may result in signi�cant ampli�cation of the
base motion, although the soil model itself, having a similar natural frequency
(84 Hz), would also resonate when such frequency is excited, mitigating the
interaction between the container and the soil model during resonance. As the
damping of the system was considered to be zero the natural frequencies cal-
culated represent an upper bound. Table 5.2 summarizes the design parameter
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chosen for the ESB container.

Box parameters

Number of frames 6

Number of rubber layers (DOF) 5

Frame mass, Mf (kg) 7

Frame thickness, tf (mm) 50.1

Rubber thickness, tr (mm) 6

Rubber shear sti�ness, Gyr;0 (kPa) 1374

Small-strain shear sti�ness, Gyr;ss (kPa) 177

Con�ning stress coe�cient, mz 14.6

Table 5.2: Design parameters used for the evaluation of the ESB container
dynamic behaviour. (y) values estimated under zero con�ning stress condi-
tion. (z) represents the increase in shear sti�ness for 1 kPa increase of vertical
con�ning stress.

5.2.2 Construction and Layout

The ESB box is constituted of a stack of 6 solid aluminium frames mounted
on a rigid, 12 mm thick, aluminium base. The bottom frame is rigidly bolted
to the plate, accommodating a rubber O-ring that runs along an indenta-
tion carved in its bottom surface in order to provide sealing, while the �ve
top frames are glued to rubber interlayers positioned in between them (Fig-
ure 5.5). Before the gluing process the frame’s faces were roughened by means
of ‘sand-blasting’ and coated with 9252 Bostik primer to improve bonding.
For the same reason the pre-cut 6 mm thick rubber sheets were cleaned with
Acetone to remove any greasy residues. Bonding was achieved by means of
2402 Bostik contact adhesive mixed with 4% by weight of 9101 Bostik curing
agent. The bonding strength was tested in a shear box apparatus by shear-
ing to failure an aluminium-rubber-aluminium sandwich with a surface area
of 3600 mm2. Failure occurred along the glued interface as expected, at a lat-
eral load of 2.46 kN, corresponding to a shear stress of 682 kPa. Considering
the design parameters chosen, the expected maximum working shear stress is
approximately 100 kPa, thus the adhesive should be able to easily sustain it.
The frames were initially constituted of solid aluminium bars having a section
of 38.1�50.1 mm, resulting in an overall mass of approximately 12 kg. In
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order to reduce the mass of the aluminum frames to the design value required
(Table 5.2), hollow slots were cut on their outer sides, achieving a �nal mass
of approximately 7 kg. The empty ESB container has an overall weight of
approximately 70 kg; its internal area is 0.189 m2 and can accommodate a soil
model having a maximum volume of 0.0633 m3. Considering the container full
of a saturated sand with relative density of 100% (
sat = 22.1 kN/m3), which
represents an upper bound for the intended tests, the overall model weight
would be approximately 213 kg (143 kg + 70 kg). This value largely meets the
requirements regarding the maximum allowed payload on the shaking table,
which has a nominal value of 400 kg. Saturation of the model occurs from the
bottom of the soil model up; this is achieved by feeding the pore 
uid through
�ve inlets drilled in the base plate and directly connected to the bottom of
the soil model. A distribution grid consisting of 2 mm deep channels has been
machined into the base plate in order to evenly spread the pore 
uid over the
entire soil model base, so that saturation of the soil model would occur by
means of a homogeneous 
ow front parallel to the container base (Figure 5.5).
In order to avoid clogging of the inlets a �lter constituted of a permeable cloth
has to be placed on top of the distribution grid.

Following its assembly the container was �lled with water to verify the
continuity of the glued interfaces. Several leaks were observed at the rubber-
aluminium interfaces; although the magnitude of these leaks was extremely
modest under a 1�g gravitational �eld, they may have represented a problem
during centrifuge spinning within a 50�g gravitational �eld. The �rst attempt
to overcome this problem consisted in applying a coating of PlastiDip spray-
on rubber to the inner faces of the container walls. Unfortunately this proved
only partially succesful as the coating su�ered �ssuring in correspondence to
the rubber interlayers. In order to completely eliminate the leaks, a 0.33 mm
thick latex liner was glued to the inner walls and clamped between the bottom
aluminium frame and the base of the container.

5.3 Container Testing

The dynamic behaviour of the container at both 1�g and 50�g has been thor-
ougly investigated prior and during the intended series of tests.
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Figure 5.5: ESB container layout: a) Outline and dimensions; b) Base plate
detail.
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5.3.1 Impulse Test

The impulse excitation technique may be used to determine the resonant fre-
quency of an object. This technique consists of hitting the object with a
hammer and analysing the induced vibration. The container was tested in
the laboratory by �rmly clamping it to the ground and striking its base with
an hammer. Its vibration was monitored by means of 6 ADXL78 MEMS
accelerometers (see Section 3.3.2) mounted on each one of the 6 aluminum
frames. Figure 5.6 shows a typical recording of the propagation of the vi-
bration induced in the container by an horizontal hammer blow at its base.
The acceleration recordings show some ampli�cation taking place between the
the base and the top aluminium frame (frame 6), while a peak in the Fourier
transformation amplitude was observed for a frequency of approximately 80
Hz, indicating resonance. The phase information reported in Figure 5.6 sug-
gests this value represents the 1st mode (Figure 5.4), because all of the moving
frames oscillate in phase at this frequency. The observed natural frequency
of the container di�ers from the 99 Hz (for the 1st mode) calculated in the
design stage, this is due to the lower sti�ness of the rubber at 1�g with respect
to 50�g (as considered in the design) as a consequence of the lower con�ning
stress acting on the rubber interlayers (Figure 5.3).

5.3.2 Performance During Centrifuge Tests

The container performance during shaking under a 50�g �eld was also inves-
tigated. A preliminary centrifuge test (Test BD0) was carried out in order to
study the response of the container to di�erent types of input motions. Fur-
ther information about the container dynamics and its interaction with the soil
models contained within it were obtained during the test series (Tests BD5,
BD7, BD8 and MF1).

5.3.2.1 Dynamic Ampli�cation

Test BD0 consisted of a uniform deposit of loose dry HST95 sand (DR �
30%) with no instrumentation present in the soil. This was due to technical
problems with the testing equipment that were encountered at this stage of
the work. In particular, problems with the waterproo�ng of the ESB container
prevented its use with saturated soil. Moreover, the data acquisition system
had not yet been mounted on the centrifuge at this stage, and only a limited
number of channels for instrument logging were available through the in-built
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Figure 5.6: ESB container impulse test.

QS67-2 earthquake shaker data acquisition system. Despite these limitations,
the response of the container to a given input motion was investigated by
instrumenting the container with a PE (Piezo-Electric) accelerometer glued
on the second to-last frame from the top (frame 5). The response of the
container can be analyzed by comparing the readings of this instrument with
those of the in-built shaking table accelerometer (i.e. base motion). During
test BD0 the container was subjected to a series of di�erent input motions (
Figure 5.7):

� Sinusoidal frequency sweep from 40 to 200 Hz. This input motion consists
of a 1 second duration sinusoidal motion having an amplitude of 10 g and
frequency increasing steadily with time from 40 to 200 Hz. Two ramps of
0.2 s duration were added at the beginning and at the end of the motion,
with amplitude increasing from 0 to 10 g and vice-versa respectively, in
order to allow the QS67-2 earthquake simulator to correctly reproduce
the desired motion. Signi�cant ampli�cation of the base motion was
observed at the top frame for frequencies ranging between 80 and 200
Hz, a peak in the ampli�cation occurred in the frequency window 90-110
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Hz, corresponding to the container resonant frequency (Figure 5.7a).

� Loma Prieta earthquake, California (1989). The motion chosen was
recorded at the Redwood City station (USGS station 1002), in the di-
rection N 43�. This earthquake was chosen because its energy is concen-
trated in the low frequency range (i.e. 40-80 Hz at 50 g, corresponding
to 0.8-1.6 Hz at prototype scale). The container slightly ampli�ed the
dominant frequency component, while signi�cant ampli�cation was ob-
served for frequencies in the range between 100 and 150 Hz. A peak in
the response is observed at approximately 110 Hz (Figure 5.7b).

� Kobe earthquake, Japan (1999). The particular acceleration trace used
was that recorded at the Kakogawa station in the direction N 90�. The
energy of this motion is evenly distributed in the frequency range 40-250
Hz, corresponding to a prototype range of 0.8-5 Hz. The accelerations
recorded at frame 5 showed signi�cant ampli�cation of the base motion
for frequencies ranging between 90 and 180 Hz (Figure 5.7c). Also this
case the ampli�cation peak occurred at 110 Hz (Figure 5.7c).

� Irpinia earthquake, Italy (1980). The Irpinia earthquake, in particular
the trace recorded at the Brienza station in the direction N 00�, was cho-
sen because it is characterized by a dominant high frequency component
(230-260 Hz, corresponding to 4.6-5.2 Hz at prototype scale). Despite
this peculiar characteristic the observed dynamic behaviour of the con-
tainer does not di�er signi�cantly from the Kobe-Kakogawa and Loma
Prieta motions, with a peak in the response at approximately 120 Hz
and low ampli�cation in the high frequencies window (Figure 5.7d).

In all of the analyzed cases signi�cant ampli�cation of the base input motion
was observed. This is a typical behaviour of dry sand deposits. The peak
ampli�cation is observed at frequencies ranging between 110 and 120 Hz in the
input motions tested, slightly higher than the estimated resonant frequency of
the ESB container (i.e. 99 Hz), which was calculated considering the container
full of loose saturated sand. This is in line with the expected behaviour of a
dry sand deposit, which being sti�er than saturated sand is expected to have
a somewhat higher natural frequency.

The dynamics of the ESB container containing saturated sand was also
analyzed. In test BD8, consisting of a top 9 m deep deposit of loose saturated
sand resting on a 6 m deep base deposit of dense saturated sand, ADXL78
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Figure 5.7: ESB container response to di�erent input motions during centrifuge
test BD0: a) Sinusoidal frequency sweep from 40 to 200 Hz; b) Loma Prieta
earthquake, California (1989); c) Kobe earthquake, Japan (1999); d) Irpinia
earthquake, Italy (1980).
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MEMS accelerometers were placed on frame 2, 4 and 6 (top) to monitor the
vertical propagation of the input motion in the container. Figure 5.8 compares
the readings of these instruments and their Fourier transformations. Interest-
ingly the ampli�cation of the input motion is signi�cantly lower than that
observed for the dry sand model (test BD0), this is in accordance with the
behaviour of saturated sand which is not expected to amplify the base motion
as a consequence of its softening due to shaking induced excess pore pres-
sure build up. This observation represents a further indication that it is the
soil model driving the overall dynamic behaviour (as desired) rather than the
container.

The ESB container represents a linear time-invariant system, therefore
the transfer function between the input (base motion) and the output (motion
recorded at frame 6) of the system can be evaluated. Figure 5.9 shows the
transfer function of the ESB container together with the spectral coherence,
a statistic that indicates the degree of ‘causality’ between the input and the
output of the system. Due to the dense frequency content of the Maule earth-
quake motion within the frequency range controlled by the QS67-2 earthquake
simulator (40-400 Hz) the evaluated transfer function shows a high spectral
coherence in the frequency range of interest (40-300 Hz). The transfer func-
tion peaks at a frequency of 94 Hz resulting in an ampli�cation factor of �
3.5. This is in good agreement with the estimated resonant frequency of the
ESB container (i.e. 99 Hz), in correspondence of which high ampli�cation is
expected.

5.3.2.2 Soil-Container Interaction

The interaction between the ESB container and the soil model has also been
investigated in the series of centrifuge tests performed in this study. Both
horizontal and vertical accelerations at di�erent locations in the soil model
have been monitored in order to gain valuable insight on the movement of the
soil mass during shaking. Figure 5.10 compares the horizontal acceleration
measured at frame 6 and 4 with those measured at corresponding depths in
the soil model, both in proximity of the container end wall and in the central
portion of the soil model. As observed above the container tends to slightly
amplify the input motions when saturated sand models are tested (Figure 5.8),
however this behaviour is not re
ected by ACC12 and 11 located in the top
lique�able sand layer. The readings of these instruments show that once the
soil is softened by excess pore pressure generation the horizontal acceleration of
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Figure 5.8: ESB container dynamic response during testing (Test BD8).
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Figure 5.9: ESB container transfer function.

the container end walls is not transmitted to the soil mass anymore. Moreover
the two instruments show very similar readings, suggesting that the horizontal
accelerations ‘felt’ in the lique�able sand layer are homogeneous across the
container and that negligible boundary e�ects are introduced by the presence
of the container end walls for what concerns the transmission of horizontal
accelerations (Figure 5.10a). On the contrary the instruments located in the
sti�er dense sand layer (ACC5 and 6) measured horizontal accelerations in line
with those recorded at the corresponding container frame (ACC2). A slight
attenuation of the recorded acceleration with time is also observed in the dense
sand layer; this may be due to the generation of excess pore pressure, which
was also measured in the dense sand, even if to a lesser extent (Figure 5.10b).
The readings of the accelerometers located in the dense sand are in phase,
while a slight phase shift exist between the readings of the instruments located
in the loose lique�able sand.

As the use of rough shear sheets in correspondence of the container end
walls was not adopted in this study, vertical accelerations in the soil model were
also measured to quantify the amount of ‘rocking’ induced in the soil mass by
base shaking, as postulated in Zeng & Scho�eld (1996). Figure 5.11a shows
the vertical accelerations recorded at the surface of the soil model in proximity
of the container end walls; signi�cant vertical accelerations were measured at
these locations, the readings at the two sides of the container are of similar
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Figure 5.10: ESB container boundary e�ects: comparison of horizontal ac-
celeration measured in the soil model and those measured at the container
frames.
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Figure 5.11: ESB container boundary e�ects: vertical accelerations measured
at the surface of the soil model in proximity of the container end walls.
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magnitude and in anti-phase with each other (Figure 5.11). These observations
would suggest that signi�cant rocking of the soil mass occurs during shaking,
however further measurements showed this e�ect to be localized in proximity
of the end walls only.

In order to better understand this phenomenon vertical accelerations at
the surface of the soil model were measured in correspondence of the axis of the
container (ACC3) and mid-way between the centre and the end wall (ACC11)
(Figure 5.12a,c). Apart from an initial spike with amplitude of approximately
10 g, negligible vertical accelerations were recorded at the centre of the soil
model. Slightly higher cyclic vertical accelerations were measured by ACC11,
mid-way between the centre and the edge of the container, however these were
much smaller than the values recorded near the container end-wall. A clear
phase shift exists between the measurements of these instruments, which is
proportional to the distance from the container end wall. The top loose sand
layer was observed to liquefy within the �rst cycles of earthquake shaking; in
these conditions its shear sti�ness quickly degrades and the soil model looses
its capacity to rock as a rigid body. Rather than ‘rocking’ of the soil mass, the
measured vertical accelerations are believed to be caused by the propagation of
parasitic P-waves due to the impact of the soil mass against the container end
walls. This phenomenon causes a signi�cant disturbance to the soil adjacent
to the container walls, although the magnitude of such disturbance quickly de-
grades moving toward the centre of the container (Figure 5.12a). The variation
of the shaking induced vertical acceleration in the soil model with depth near
the container end walls has also been investigated; these were seen to decrease
with depth (Figure 5.12b).

5.3.3 In
uence of Boundary E�ects on Footing Behaviour

The dynamic behaviour of footing A and C (Figure 4.21) was analyzed care-
fully to identify possible disturbances due to their proximity to the container
end walls. Figure 5.13 compares the horizontal accelerations recorded during
shaking on footing C (edge of the soil model) and footing D (centre of the soil
model). The response of footing C does not seem to be signi�cantly a�ected
by the proximity of the container end walls. A few spikes of higher acceleration
were observed in the �rst 15 s of shaking in Test MF1 (DR = 50%), possibly due
to a more marked dilative behaviour caused by the higher soil relative density.
However, no large di�erences in the horizontal accelerations were observed be-
tween the centre and edge footings. Soil softening due to excess pore pressure
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Figure 5.12: ESB container boundary e�ects: Localized disturbance of soil
model in proximity of the container end walls.
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Figure 5.13: Comparison between the horizontal accelerations recorded on
footing D (centre of the container) and C (Near container edge), in both test
BD8 and MF1.

generation is believed to strongly mitigate boundary e�ects by reducing the
soil’s ability to transmit re
ected seismic waves toward the footing models.
This is in agreement with the acceleration measurements in the soil near the
ESB end walls (Figure 5.10). Despite inhibiting the transmission of parasitic
waves generated at the container boundaries, soil softening may also facilitate
rocking of the soil model in the vertical plane under horizontal base shaking.
This may also disturb the response of the footing models. The vertical os-
cillations of the footings were computed by subtracting the mean settlement
values, obtained by �ltering the LVDT readings, to the actual readings them-
selves. A low pass �lter with a cut-o� frequency of 15 Hz was used to �lter the
displacement readings, to ensure the shaking induced displacement component
was removed (Figure 5.14). Based on the analysis of these measurements it
was observed that higher vertical oscillations occurred for the footings located
near the sides of the container, possibily due to the amplitude of the soil model
rocking being higher toward the end walls with respect to the centre of the
container. Figure 5.15 shows the computed footing vertical oscillations during
one typical cycle of shaking, for tests of Group 1 and 2. Footing oscillation
may be assumed to be equal to the ground surface oscillation at that location.
At the time represented by the analyzed cycle of base shaking (� 22.5-23.5 s),
the soil has already been fully softened by the generation of EPP, resulting in
a 
uid-like ground surface oscillation. However these oscillations have modest
magnitude, with peaks of 0.6 mm at model scale compared to the outer footing
models. The response of the outer footings was not the same throughout the
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Figure 5.14: Oscillation in the LVDT readings due to shaking induced soil
model rocking.

test series, strongly depending on the soil pro�le characteristics. In particular
this e�ect was more critical in the case of footings resting directly on deep
deposits of saturated sand, and was a maximum at full liquefaction of the
deposit. The footing characteristics also appeared to a�ect their response to
the oscillation of the ground surface, with footing A (lightest) showing higher
oscillation with respect to footing C (heavier). This is believed to be due to
the e�ect of the footing induced stress distribution in the soil reducing the
degree of soil softening attained during shaking (see Chapter 6).

The standard deviation of the measured footing vertical oscillation from
the mean footing settlement value (Figure 5.14), was used in order to quantify
the severity of the ground surface oscillation in correspondence of each footing
model tested. This allowed the identi�cation of the footing models potentially
mostly disturbed by this phenomenon (Figure 5.16). As discussed in detail in
Chapter 6, when particularly high footing settlement was observed throughout
the test series which was not in line with the rest of the measurements, these
always corresponded to high standard deviation values of the footing vertical
oscillation. Although the analysis of the behaviour of such footings is still
instructive, these were not included in the identi�cation of the trends discussed
in this work, as direct comparison with the other cases may be in
uenced by
the described disturbance. Having designed, constructed and assessed the
performance of a suitable model container, this container is used to model
boundary conditions for the centrifuge tests described in Chapter 6. Before
these centrifuge tests can be de�ned, however, the collated �eld data must be
considered, as these inform the modelling question that shall be used in the
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Figure 5.15: Computed footing model vertical oscillation during a cycle of
strong shaking.
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experimental program.

Figure 5.16: Standard deviation of vertical footing settlement oscillation
around mean value.
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Chapter 6

Centrifuge Tests Results

In order to further investigate the trends identi�ed from the �eld investigation
in a controlled environment, a series of centrifuge tests have been performed.
The results of these tests are thoroughly discussed in the following sections.

6.1 Input Motion

As already mentioned in section 4.2.1, the input motion selected for the cen-
trifuge test series performed in this work was the E-W component of the 2010
Maule earthquake recorded at the \Colegio Concepci�on" station, in San Pedro
de la Paz (Concepci�on, Chile; Figure 6.1). This speci�c motion was chosen
for consistency with �eld data collected in the city of Concepci�on area follow-
ing the Maule earthquake. During this event relatively widespread liquefac-
tion induced damage was observed across the country, including settlement
and tilting of buildings resting on shallow foundations (see Chapter 3). A
second reason for the choice of the input motion was the earthquake magni-
tude. Since the intensity of base shaking was not a variable investigated in
this work, a strong earthquake motion capable of fully liquefying the layers
of loose saturated sand present in the soil models was preferred. Choosing
a particularly strong earthquake motion would in theory result in settlement
values that may be considered close to an upper boundary. The Maule earth-
quake (Mw=8.8) �gures among the ten strongest earthquake ever recorded and
therefore matches this second criterion. The QS67-2 earthquake simulator was
calibrated to reproduce the chosen input motion by testing a dummy model
having the same weight and weight distribution to those of an actual model.
The desired scaled motion was �red several times, to allow the device to ‘learn’
it, until a satisfactory match between the reference motion and that recorded
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Figure 6.1: Reference motion recorded at the \Colegio Concepci�on" station
(San Pedro de la Paz, Chile) during the 2010 Maule earthquake, and input
motions reproduced in the centrifuge tests performed.
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by the table accelerometer was achieved (normally within � 2 % RMS error).
The actuator drives of the calibrated motion were then saved and recalled for
each test. The earthquake simulator is controlled in the time domain, resulting
in a precise reproduction of the reference acceleration time history. Although
slight variations in amplitude occurred over the test series, these were within
a range of 15% from the reference level. Figure 6.2 shows the peak table ac-
celeration obtained in each test. However, because these variations are not
constant within a given motion, then PGA is not the best representative pa-
rameter to describe them. Arias intensity (Ia) was used to provide a measure
of the overall energy of the motion (see Section 2.4.2). Figure 6.2 shows the
computed SIR and Ia for the input motions of the test series. Despite the
motion fed to the earthquake simulator was the same in all the centrifuge test
performed, some di�erences in the Arias intensity time histories of the test
series are observed in Figure 6.2. This is mainly due to the mathematical
de�nition of Arias intensity, small di�erences in the amplitude of the recorded
acceleration are squared and accumulated along the time history. In a long
earthquake motion this may result in relatively large di�erences in the Arias
intensity of similar motions. Expecting these limitations, this shows that tests
are adequately comparable (Bertalot et al, 2012).

Figure 6.2: Variability of the input motion in the test series.

138



6.2 Shallow Foundations on Lique�able Sand

Test BD1, BD2, BD5, BD7 and BD8 will be analysed in this section (Group
1). These models all consisted of footings resting directly on a loose layer of
saturated sand of varying thickness. Figure 6.3 and 6.4 show the layout of the
centrifuge models tested and the positions of the instruments in each test.

Mis-timed triggering of the data acquisition system (see Section 3.1.4)
occurred in test BD1 (Figure 6.3a) resulting in insu�cient data collection dur-
ing shaking (10 Hz). For this reason acceleration and pore pressure measure-
ments are not available for this particular test, while settlement data, given
their slower rate of change, were una�ected by this fault. Test BD8 represents
a repetition of test BD1, although the instrument positioning was changed
based on the results of previous tests. The centrifuge model used in test BD7
presents a di�erent layout with respect to the rest of the test series. The ESB
container was divided in three compartments by placing two aluminium sheets
of 0.5 mm thickness at 1/3 and 2/3 of the container length, and lique�able
layers (DR = 40%) of di�erent thicknesses were pluviated in each compart-
ment (Figure 6.4a). The aim of this test was to investigate in greater detail
the e�ect of the lique�able layer thickness on the behaviour of footing C (q
= 90kPa). The thickness of the aluminium sheets was chosen so that they
were sti� enough to hold the soil in positions during model preparation but
at the same time behave in a 
exible manner during shaking, to avoid soil
disturbance.

6.2.1 Observed Settlement

Figure 6.5 shows the observed footing settlements in the analyzed tests. Both
total settlement, de�ned as the long term settlement after that the shaking in-
duced excess pore pressure in the foundation soil had been entirely dissipated,
and co-seismic settlement, de�ned as the settlement occurring during earth-
quake shaking, are shown. The observed e�ects of variables such as footing
bearing pressure, lique�able layer thickness and ground motion intensity, on
footing settlement are discussed in the following subsections.

6.2.1.1 E�ect of Footing Bearing Pressure

Dashti (2009) showed contrasting observations concerning the e�ect of foot-
ing bearing pressure on the liquefaction induced settlement. Heavier footings
were seen to settle more than lighter ones in some cases and less in others,
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Figure 6.3: Layout and transducers positions in tests (a) BD1 (DL = 8.25 m),
(b) BD2 (DL = 1.85 m) and (c) BD5 (DL = 4 m).
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Figure 6.4: Layout and transducers positions in tests (a) BD7 (DL = 10; 6; 1
m) and (b) BD8 (DL = 8.25 m).

Figure 6.5: Observed total and co-seismic settlement in Test BD1, BD2, BD5,
BD7 and BD8.

this may have been due to the di�erent characteristics of the superstructures
mounted on such footings (SDOF structures of di�erent height and mass).
These contrasting experimental observations may be due to the di�erent seis-
mic response of the structure tested (SDOF structures with di�erent centre of
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Figure 6.6: E�ect of footing bearing pressure on the liquefaction induced set-
tlement.

mass). In particular, it is believed that footings subjected to higher rocking
moments (i.e. ‘taller’ structures) may settle signi�cantly more, all other pa-
rameters being the same. Therefore the characteristics of the superstructure
must be accounted for when evaluating the e�ect of footing bearing pressure
on the liquefaction induced settlement. This e�ect was not a concern for the
tests described in this work, since the structure models used are identical low
heights and their mass is concentrated in the footing. This minimizes the
component of the settlement due to moment-induced soil-structure interaction
which on the contrary is believed to have in
uenced signi�cantly the results
presented by Dashti (2009).

Figure 6.6 shows the settlement of the model structures in the analyzed
tests, plotted against their bearing pressure. As already discussed in Section
4.3.3, footing A (q = 30 kPa) and C (q = 90 kPa), those located nearer to the
container walls, in some tests showed higher vertical oscillation during earth-
quake shaking as a result of boundary e�ects (Figure 5.16). The settlement of
these structures was not considered in the analysis since it may not compare
correctly with the rest of the settlement data.

Results showed that the settlement of footing C (q = 90 kPa) is indeed
greater than that of lighter footings, as had been expected based on the �eld
data. Also corresponding to the �eld observations was the counter intuitive
result that the heaviest footing (D; q = 130 kPa) experienced less settlement
than footing C. The same behaviour was observed in all models consisting of
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Figure 6.7: E�ect of DL on hypothetical failure mechanisms in lique�ed soil:
a) Large DL; b) Small DL..

relatively thick lique�able layers (DL = 6 to 8.25 m; B=DL = 0.46 to 0.33)
and also models consisting of relatively thin lique�able layers (DL = 1 to 1.85
m; B=DL = 2.75 to 1.47). In particular for thin lique�able layers, footing
D settled less than footing B (q = 60 kPa). As this trend con�rms the �eld
observations, the reasons for these results can be examined in more details
by considering the data from within the soil, in sections 6.2.2 below. Also in
Figure 6.6, the di�erence between total and co-seismic settlement were seen
to reduce with decreasing DL. The e�ect of DL on the footing settlement are
discussed in detail in the following section.

6.2.1.2 E�ect of Lique�ed Soil Layer Thickness

The liquefaction induced settlement of structures built on shallow founda-
tions is usually normalized by the estimated lique�ed soil depth (Liu & Dobry,
1997; Yoshimi & Tokimatsu, 1977) to allow comparison between di�erent cases.
This normalization is based on the assumption that a linear relationship ex-
ists between the foundation settlement and the lique�ed soil depth, as has
been demonstrated for free-�eld conditions. As discussed in Section 2.3.3 and
5.4, the foundation settlement will be the resultant of a ‘volumetric’ compo-
nent (anlogous to free-�eld settlement) and a ‘deviatoric’ component. It is
reasonable to assume that the latter component does not depend on DL in
lique�able deposits whose thickness is greater than the maximum depth of the
failure mechanism developing in the lique�ed soil right underneath the settling
footing. However, if there is a relatively shallow depth of liquefaction then the
value of DL might be expected to have a strong control over the failure mech-
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Figure 6.8: E�ect of lique�ed layer thickness on the induced footing settlement.

anism and hence settlements. According to this hypothesis, a threshold depth
may exist above which the deviatoric component of the settlement is indepen-
dent of DL (Figure 6.7). In order to explore this assumption both total and
co-seismic settlement of footing C observed in the centrifuge test series have
been plotted against the lique�ed soil depth in Figure 6.8. The measured set-
tlements increase with increasing DL in a non-linear manner, and no further
increase in settlement is observed for DL increasing from 6 to 8 m. According
to the hypotheses made, this would imply that the zone of foundation soil
where the deviatoric component of the footing settlement depends on DL ex-
tends up to a depth between 6 to 8 m, corresponding for the footing model
tested to � 2.5�B. However this relationship is based on a limited number of
experimental observations and needs to be investigated further.

The co-seismic footing settlements can be compared to the estimated de-
viatoric settlements, obtained by subtracting an estimation of the volumetric
strain of the lique�able layer (DR = 40%) from the total settlement. The
volumetric strians may be approximated by the Ishihara & Yoshimine (1992)
method (Figure 2.21) included above in Figure 6.8. The measured co-seismic
settlement values fall between the curves obtained based on a post-liquefaction
volumetric strain of 1 and 2 %, which are associated with shear strains rang-
ing from 2.5 to 4%. The Ishihara and Yoshimine (1992) method has been
developed for free-�eld lique�able deposits based on extensive cyclic triaxial
testing (see Section 2.3.3). Unfortunately, no reliable measurement of free-
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Figure 6.9: E�ect of lique�ed layer thickness on post-shaking footing settle-
ment.

�eld settlement was achieved during testing for direct comparison. Free-�eld
settlement measurement was attempted in the centrifuge tests by means of a
LVDT connected to both a 50 mm diameter PVC disc or an expanded foam
disc resting directly on the soil surface. The �rst method resulted in over-
estimation of the free-�eld settlement due to sinking of the plastic disc into
the liquefed soil, while the second method resulted in under-estimation due to
the foam disc 
oating on the expelled pore 
uid. To a �rst approximation,
the footing co-seismic settlement can be assumed to be due entirely to ‘devi-
atoric’ behaviour, while the post-shaking settlement can be assumed to result
entirely from ‘volumetric’ strain due to post-liquefaction soil re-consolidation.
This is not necessarily true as, especially for long duration earthquakes, soil
re-consolidation may begin during shaking. Based on this assumption the foot-
ing post-liquefaction settlement (i.e. total minus co-seismic) can be compared
with the expected volumetric strain from the Ishihara & Yoshimine method
(1992) (Figure 6.9). As expected the post-liquefaction settlement increases
linearly for increasing (DL), and corresponds to � 1-2 % estimated volumetric
strain. The estimated volumetric strains do not take into account the deep
layers of dense sand as they are expected to contribute negligibly to the total
deformation.

The shear strain in the soil model during shaking has been calculated
based on the displacements obtained by double integration of the acceleration
measurements of a vertical array of accelerometers. Typical maximum values
of shear strain for the models tested in this work were of 0.3 to 0.6 % (see
Section 6.4.3), which are in agreement with the values reported in Brennan et
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Figure 6.10: Shear strain evaluation: a) Di�erence between centrifuge (i.e.
�eld) and laboratory loading conditions; b) Linear shear strain approximation.

al. (2005) and Knappett & Madabhushi (2012) for dynamic centrifuge tests
on loose saturated sand. These values di�er signi�cantly from those associated
to the estimated volumetric strain according to Ishihara & Yoshimine (1992),
which are notably higher (i.e. 3-4 %). The proposed shear strain values were
obtained from cyclic triaxial testing of Toyura sand (Ishihara, 1993), according
to the relation 
 = 1:5 � �a (where �a is axial strain in triaxial conditions). It
is believed that this discrepancy is due to the di�erent loading conditions
encountered in undrained cyclic triaxial testing with respect to those acting
on the soil during dynamic centrifuge testing. In particular, the cyclic loading
(or strain) in element testing is imposed and set to be of equal magnitude at
each cycle, regardless of the degree of soil softening induced in the specimen,
resulting in high shear strain when the ru approaches unity. On the contrary,
in dynamic centrifuge testing the cyclic shear stresses acting on the soil are due
to the vertical propagation of the base input motion through the soil pro�le.
In this conditions soil softening due to the build-up of excess pore pressure
causes a drop in the shear stresses transmitted through the soil resulting in
lower shear strain (Figure 6.10a).

The shear strains computed from the acceleration readings are based on
the assumption that strain varies linearly with depth. This is an approximation
of the real deformations occurring in the soil and could also a�ect the calcu-
lated values. The displcement gradients in Figure 6.10b shows that strains
may locally be greater than the mean value determined using the �rst order
approximation �u=�z .
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6.2.1.3 E�ect of Footing Seismic Loading

In liquefaction susceptibility analysis CSR is normally used to quantify the
seismic demand at a speci�c site. This parameter is a function of the peak
ground acceleration expected (or measured) at the site and of the vertical stress
acting on the soil (Equation 2.3; 2.4). As already discussed in Section 2.4.2,
using PGA to quantify an earthquake motion intensity may be misleading as
motion characteristics such as duration and frequency content are not taken
into account. Dashti (2009) suggested the use of SIR as a measure of ground
motion intensity and proposed a correlation, based on centrifuge test results,
between the ground motion SIR and the settlement rate of structures built on
shallow foundations (Figure 2.33). However, this correlation does not apply to
the centrifuge test results from this work (Figure 6.11). This is believed to be
due to the fact that despite accounting for di�erent DR, important parameters
such as footing bearing pressure and lique�ed layer thickness are overlooked by
the proposed correlation. Figure 6.11 shows the comparison between the Arias
intensity time histories and footing settlement for this study; it was observed
that the rate of settlement of footings having di�erent bearing pressure varies
signi�cantly for the same base input motion. Signi�cant di�erences were also
observed between the settlement rate of footings resting on lique�able deposits
having di�erent thicknesses. The peak footing settlement rate (SR) observed in

Figure 6.11: Measured footing settlement compared with the input motion
Arias intensity time history: a) Test BD2; b) Test BD5; c) Test BD7 and d)
Test BD8.
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this work, calculated based on Figure 6.11 over the time interval 5 to 20 s, has
been observed to be directly proportional to the seismic demand on the footing,
represented by the Arias intensity of the acceleration time histories recorded
on the footing (Figure 6.12). Both the Arias intensity of the horizontal footing
acceleration time history (Ia;h) and that of the vertical footing acceleration time
history (Ia;v) show a good correlation with the peak footing settlement rate.
An even better trend is obtained using a ‘resultant’ Arias intensity measure,
given by:

Ia;res =
q
I2
a;h + I2

a;v (6.1)

Correlating the settlement rate to the footing accelerations rather than to
the outcrop ground motion, indirectly takes into account the composition of
the soil pro�le (and thus the DL) as well as the structure characteristics (in-
cluding bearing pressure). The lique�ed layer thickness in
uences the seismic
demand on the footing by determining the degree of attenuation of the base
motion, while the characteristics of the superstructure resting on the footing
(e.g. height, weight, etc.) control SSI. Figure 6.12 shows that footing settle-
ment is directly proportional to the seismic demand on the footing which may
be signi�cantly di�erent for the same input motion.

Figure 6.12: Correlation between the seismic demand on the footing and the
measured rate of footing settlement.
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6.2.1.4 Observed Failure Mechanism

Based on dynamic centrifuge test results, Ghosh (2003) and Kawasaki (1998)
hypothesized a failure mechanism for shallow foundations on lique�able soil
consisting in a non-lique�ed bulb of soil underneath the footing, extending up
to depth of approximately 2�B (Ghosh, 2003), punching through the lique�ed
soil. Observations from test BD8, where arrays of three vertical columns of
coloured sand were pluviated at each side of footing D and C (Figure 6.4b),
partially con�rm this hypothesis. Figure 6.13 shows a post-shaking excavated
section of model BD8 in correspondence of its longitudinal axis, the deformed
shape of the coloured sand columns suggests the soil failure mechanism causing
the settlement of the footings. Deformations in the coloured sand columns near
footing D (Figure 6.13a) are concentrated at the bottom of the loose lique�able
layer, and on both sides they indicate outward soil displacement from the
footing axis. The transition between undeformed and signi�cantly deformed
soil occurs in the case of footing D at a depth of approximately 2�B from the
foundation plan, in line with the ‘non-lique�ed’ bulb dimensions estimated by
Ghosh (2003). The failure mechanism observed in correspondence of footing C
(Figure 6.13b) appears more complex, as tilting of the footing occurred during
settlement. The shape of the upper portion of the coloured sand column near
the left edge of the footing shows a rigid rotation of an angle similar to the
footing tilt with respect to the horizontal. This suggests that the soil below the
left side of the footing behaved more rigidly with respect of deeper soil, where
the coloured sand columns exhibit marked bulging. Again the observations are
in agreement with the hypotheses of a non-lique�ed bulb of soil underneath the

Figure 6.13: Observed footing failure mechanism in Test BD8.
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footing. However the transition between undeformed and markedly deformed
soil occurs at a shallower depth with respect to footing D. This is possibly
due to the lower bearing pressure of footing C (90kPa) with respect to footing
D or those used in Ghosh (2003) (respectively 130 and 150 kPa), resulting in
a ‘smaller’ bulb of non-lique�ed soil because of the relatively smaller stresses
induced by the footing in the foundation soil.

Footing tilt in the centrifuge models analyzed in this section was back-
calculated from the post-shaking residual acceleration measured by the ac-
celerometers mounted on the footings. This was possible as the MEMS ac-
celerometers are able to measure both dynamic and static acceleration (i.e.
gravity). The capability of MEMS accelerometer of measuring tilt was assessed
prior to the centrifuge test campaign. The instruments proved very accurate
when used as clinometers, therefore the residual accelerometer readings have
been con�dently used to estimate footing tilt. The computed tilt angles are
in good agreement with the trend observed in �eld data case histories (see
Section 2.4.1) (Figure 6.14).

In order to further clarify the failure mechanisms developing underneath
footings resting on lique�ed soil a series of 1�g shaking table tests were car-
ried out as part of this work. The tests were performed in a rigid container
of dimensions 530 � 105 � 250 mm, simulating plain strain conditions, with
Perspex windows on the longitudinal sides to allow the observation of the soil
behaviour. Soil models were prepared following the same methodology used
for centrifuge models discussed in Section 3.2, and strip footing models having
dimensions 75 (B) � 105 mm were placed on the centre of the soil model sur-
face. Soil depths of 150 and 45 mm were tested. The container was mounted

Figure 6.14: Observed footing tilt against footing settlement.
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on a shaking table obtained from a modi�ed concrete cube vibrator provid-
ing the desired level of seismic excitation (Figure 6.15). The shaking table is
operated by an electrical motor bolted underneath the table which spins an
eccentric mass in the vertical plane. The table sits on 4 rubber isolators which
allow table movement under the forces generated by the spinning mass. This
result in a pseudo-sinusoidal horizontal motion superimposed onto a complex
vertical motion characterized by higher frequencies (Figure 6.16). PIV analysis
of a series of pictures taken during shaking with a Phantom v 5.1 high-speed
camera at 600 fps (frames � second) was attempted in order to analyze and
measure the soil deformation in the foundation soil. Unfortunately the irreg-
ularity of the vertical component of the table motion and the lack of a clear
texture in the soil used, resulted in unsatisfactory results as the software used
(GeoPIV8 ) was not able to keep track of the soil displacement over the entire
shaking duration (3 s of a sinusoidal motion having a frequency of 8.5 Hz).
However it was possible to obtain the total soil displacements (including the
container movement) at the very start of the settlement. These results have no
quantitative value, but they provide valuable qualitative insights on the geom-
etry of the failure mechanisms which occur underneath a footing in lique�ed
soil.

Figure 6.16 shows the qualitative results of two shaking table tests for
di�erent values of DL. In the case of a relatively thick lique�able layer (DL

= 2�B), the displacement vectors are orientated vertically in the area of soil
right underneath the footing, while tending to rotate toward the horizontal

Figure 6.15: 1�g shaking table testing: a) Test equipment and layout; b) pre-
pared model and c) schematic shaking table working principle.
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Figure 6.16: Footing failure mechanism from PIV analysis of 1�g shaking table
testing.

moving out of the footing and in depth. These observations are compatible
with the hypotheses of a bulb of sti�er ‘non-lique�ed’ soil underneath the foot-
ing, settling jointly with it and displacing laterally the surrounding soil. The
observed failure mechanism extends to the entire depth of the lique�able layer
(Figure 6.16a). On the contrary, in the case of a relatively thin lique�able layer
(DL = 0.6�B), the observed failure mechanism resembles a more conventional
Terzaghi type bearing capacity failure. In this case the soil directly under-
neath the footing is pushed laterally as the footing starts settling, and the
main direction of deformation is horizontal rather than vertical. As expected,
in both cases all the deformations occur in the lique�able layer (DR = 40%),
no visible deformations are observed in the underlaying dense sand layer.

6.2.2 Excess Pore Pressure Generation

The e�ective con�ning stress acting on the soil has been observed to in
u-
ence its potential for excess pore pressure (EPP) generation. As already men-
tioned in Section 2.2.3, Steedman et al. (2000) performed a series of centrifuge
tests investigating the cyclic behaviour of saturated sands under high con�n-
ing stress by testing deep level soil models with a uniform, freely draining,
surcharge. A reduction of the measured excess pore pressure ratio (ru) with
depth (i.e. with increasing �v) was observed. Similar conditions are present
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beneath a non-in�nite footing resting on a lique�able sand deposit. However,
in this case the con�ning e�ect exerted by the footing is localized to the soil
underneath it, generating a more complex stress distribution. Beside the hor-
izontal dis-homogeneity of con�ning stress, shallow foundations also generate
shear stresses in the foundation soil, which may in
uence its cyclic response.
In order to investigate the excess pore pressure generation in such conditions,
in three of the centrifuge tests involving footing models resting directly on liq-
ue�able sand (test BD8 - footing A,B; test BD7 - footing C; test BD5 - footing
D), the soil underneath one of the footing models were instrumented with an
array of pore pressure transducers (Figure 6.3; 6.4).

As instruments located at shallow depth underneath a footing are dis-
placed proportional to footing settlement during testing and excess pore pres-
sure requires reference to a measurement location, the pore pressure readings
have been corrected for instrument displacement. The position of the instru-
ments prior to and after liquefaction was carefully measured. Correction of the
excess pore pressure measurement (EPP) was then carried out by subtracting
the hydrostatic surplus due to the instrument being pushed deeper into the
foundation soil:

EPP (t) = EPP0(t)� (z � z0) � (Sav(t)=Sav;final) � 
w (6.2)

where EPP0 represents the uncorrected measurement, z and z0 the �nal and
initial instrument position respectively (below foundation plan), Sav(t) and
Sav;final the settlement at time t and the �nal settlement respectively, and 
w
the unit weight of water. It is noted that instruments did not displace laterally
during testing.

Figure 6.17 shows the instrument initial positions and the excess pore
pressure measurements during shaking from the centrifuge tests. It is ac-
knowledged that the thickness of lique�able layer was di�erent for di�erent
models. Whilst this is more likely to a�ect the long term pore pressure dis-
sipation rather than the short term pore pressure generation term, there may
still be variation between tests preventing direct comparison of quantitative
values. However, inspecting the distribution of pore pressures during shak-
ing in each case is still instructive. The excess pore pressure traces in Fig-
ure 6.17 show that, for the heavier footings, the lowest excess pore pressures
are recorded not directly underneath the centre of the footing, but below the
footing’s edge. Signi�cant positive excess pore pressures were initially gener-
ated beneath the central axis of footing D while small negative excess pore
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pressures were recorded below the footing edge and at a distance of B/2 out-
side the footing (Figure 6.17).Because of the pressure gradient generated as a
consequence of the dis-homogeneous excess pore pressure, cross-drainage oc-
curred during cyclic loading between di�erent areas of the foundation soil.
This behaviour represents a signi�cant di�erence between the physical model
and element testing, since the latter are usually performed in fully undrained
conditions. All of the excess pore pressures recorded show their maximum
absolute value after 15 to 20 s from the start of earthquake shaking; during
this time interval a maximum pressure di�erence of approximately 55 kPa ex-
ists between PPT5 (footing axis) and PPT7 (B/2 metres outside footing). As
a consequence of such a gradient, drainage occurs from the area below the
centre of the footing towards the soil below the footing edge, leading to an
equalization of excess pore pressure in the foundation soil (after 30 s for foot-
ing D in Figure 6.17a). Similar behaviour is observed underneath footing C,
however in this case the pressure gradients generated between the axis area
and the edge area are smaller. Negative excess pore pressures were recorded
only below the footing edge (PPT6), showing a less marked post-peak drainage
e�ect (Figure 6.17). For footing B, which is lighter, this e�ect seems to have
been suppressed and only small di�erences in measured excess pore pressures
are observed. In particular no negative excess pore pressure were observed

Figure 6.17: During shaking EPP measurements in the soil underneath footing
D, C and B.
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Figure 6.18: Cross-drainage pattern underneath the footings (test BD5; footing
D).

below the footing edge, resulting in a fairly homogeneous excess pore pressure
response across the foundation soil (Figure 6.17). This data therefore shows
that the main cause for limiting excess pore pressure generation is associated
with the soil beneath the edge of the footing. As this is where initial static
shear stresses are a maximum, and as, under certain conditions, static shear
stresses have previously been identi�ed with increased cyclic resistance, their
potential correlation with these results is examined further in the next section.

Based on the comparison between settlement, acceleration and pore pres-
sure time histories during shaking, four main phases can be identi�ed in the
co-seismic excess pore pressure variation in the foundation soil (Figure 6.18):

� Phase 1 - EPP starts building-up when the seismic cyclic loading in
the soil exceeds � 0.1 g. Signi�cant excess pore pressures are generated
underneath the axis of the footing, exceeding the vertical e�ective stress
in the free-�eld (� 12 kPa at z = 0.75 m from foundation plan). On
the contrary, zero or negative excess pore pressure are generated during
this phase in proximity of the footing edges, as a consequence of the
high static shear stresses induced by the footing. Footing settlement
starts as soon as EPP are generated in the foundation soil and reaches
its maximum rate during this phase.
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� Phase 2 - As a consequence of the inhomogeneous excess pore pressure
generation during Phase 1, a signi�cant pressure gradient is generated
in the soil between the axis and the edge of the footing as observed
above. Cross drainage toward the area underneath the footing edge and
possibly dilative behaviour in the foundation soil caused by the settling
footing, act to reduce the EPP under the centre of the footing. During
this phase the seismic loading on the soil is reduced because the softened
soil attenuates the vertically propagating shear waves. As a consequence
of both regain in sti�ness of the soil under the axis of the footing and
the reduced seismic loading, the rate of footing settlement reduces too.

� Phase 3 - A fairly constant EPP distribution exists in the foundation
soil, however a steady and relatively slow increase in the pore pressure
readings of the instruments located underneath the footing is observed.
This may be due to the vertical dissipation of excess pore pressure from
the underlaying deposit of dense sand. Footing settlement rate further
reduces during this phase reaching its �nal equilibrium.

� Phase 4 - This phase corresponds to the post-shaking behaviour. The
drainage toward the foundation soil observed in Phase 3 does not stop
at the end of shaking, but rather a slight increase in its rate is observed
possibly due to the ceasing of cyclic dilative response associated with the
co-seismic soil behaviour. Pore pressures in the free-�eld seem una�ected
from Phase 3. Footing settlement ceases with the end of shaking, however
further vertical footing displacement is to be expected on the longer term
due to the dissipation of excess pore pressure associated with the post-
liquefaction re-consolidation of sands (volumetric settlement).

6.2.2.1 E�ect of Static Shear Stress

The e�ect of static shear stress on the cyclic resistance to liquefaction has been
investigated by several authors since the late 1960s. Most of the experimental
work on this topic is based on soil element testing, in particular cyclic triaxial
testing. Lee & Seed (1967) �rst hypothesized that the presence of static shear
increases the soils cyclic resistance to liquefaction by performing a series of
cyclic triaxial tests on anisotropically consolidated samples. Subsequently,
Castro (1969, 1975) and Castro & Poulos (1977) veri�ed that the presence of
static shear may result in a reduction of the cyclic resistance of sand. These
apparently contradictory results were uni�ed in a more complex framework by

156



Vaid & Finn (1979) and Vaid & Chern (1983, 1985), who showed the e�ect
of static shear to be strongly dependent on the initial con�ning stress and
soil density. The results of these studies show that the initial state variables
considered (static shear, con�ning stress, relative density) control the cyclic
behaviour of saturated sands, and that their e�ects are mutually dependent.
The soil relative density in particular will determine the mechanism of strain
development, strain softening taking place in loose and strongly-contractive
soils and cyclic mobility (or limited strain liquefaction) in denser soils (Castro,
1975). Again, the threshold density between these two mechanisms, other than
on the soil type, depends on the con�ning stress and static shear acting on the
soil.

The addition of an initial shear stress in loose contractive materials would
therefore lower its resistance to liquefaction as it moves it closer to the failure
envelope. However if such initial shear stress (�i) is higher than the cyclic shear
stresses (�cyc) applied, than no stress reversal takes place in the soil, signi�-
cantly increasing its cyclic resistance (Vaid & Finn, 1979; Boulanger & Seed,
1995; Kammerer, 2002). In order to adapt the empirical liquefaction trigger-
ing curves used in current practice, which are based on level ground conditions
case histories, to sloping ground conditions (i.e. presence of static shear),
Seed (1983) �rst proposed a correction factor K� dependent on the static
shear. Over the years several sets of curves relating K� values to static shear
stress ratio (�=�i/�v) have been published (Seed & Harder (1990); Harder &
Boulanger (1997)). Similarly, an independent factor (K�) is used in current
practice to account for the in
uence of con�ning stress on the soil liquefaction
resistance. Based on the collective dependency of cyclic resistance on all initial
state variables, Vaid et al. (2001) question the use of independent factors in
order to account for con�ning stress and static shear. Results of a series of
cyclic triaxial tests on Fraser River sand presented by the authors, show that
the empirical method currently used underestimates the cyclic resistance, the
degree of conservatism being more dramatic for loose soils (Figure 2.10).

Despite signi�cant di�erences existing in the loading and boundary con-
ditions of an element test and those of an element of soil in a centrifuge model
(or in the �eld), an attempt is made to extend these �ndings to the soil be-
haviour observed in the performed centrifuge tests. As mentioned above, one
of the main di�erences in soil behaviour is that element tests are usually per-
formed in fully undrained conditions, while results show that partially-drained
conditions apply to centrifuge tests. Stress distribution in the two cases may
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also vary signi�cantly. In particular, in cyclic triaxial tests the soil is subjected
to di�erent admissible soil deformations and the total stress is kept constant,
while in centrifuge tests it may vary during cyclic loading.

The e�ect of static shear stresses on the cyclic response of the soil de-
pends on the ranges of state variables represented in the centrifuge tests (�0

v)
varying between approximately 30 and 160 kPa between foundation plan and
a depth equal to B metres below foundation plan; and DR = 40%. Accord-
ing to the K� values proposed by Seed & Harder (1990), the presence of the
footing induced static shear stress within these ranges of state variables should
result in a reduction of the foundation soils cyclic resistance (Figure 2.10). On
the contrary, in the centrifuge tests performed, reduced excess pore pressure
generation was observed in soil associated with high static shear stresses (i.e.
increased cyclic resistance). This is in accordance with the K� curves proposed
by Vaid et al.(2001) for relative density of 40 % and a similar con�ning stress.
Results from Vaid et al. (2001) may be considered more reliable as, unlike the
Seed and Harder (1990) formulation, they account for the combined e�ect of
con�ning stress and relative density.

In order to identify the initial distribution of static shear stress present
in the centrifuge model, the contours of � along a longitudinal section of the
model have been computed based on a FE simulation performed using the soft-
ware Plaxis2D. The built-in elastic-perfectly plastic Mohr-Coulomb material
model was used for this purpose. The mechanical parameters required by the
model are shown in Table 6.1. The elastic modulus (E0) and the shear modulus
(G0) of HST95 sand have been estimated from the oedometric modulus (M)
measured by Lauder (2010), at reference e�ective con�ning stress of 101kPa,
as:

E
0
=
M � (1� 2 � �) � (1 + �)

1� �
(6.3)

G
0
=
M � (1� 2 � �)

2 � (1� �)
(6.4)

The computed stress distribution describes the static case before earthquake
shaking, and is shown in Figure 6.19 (to the right of the axis of each footing
in the �gure). During shaking the soil-structure interaction may result in a
di�erent, time-dependent, distribution of such stresses, therefore the computed
stress distribution has to be considered only indicative. The typical shear stress
distribution induced by a shallow foundation consists of bulbs of high � soil
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Property HST95
(DR=40%)

HST95
(DR=80%)


d (kN/m3) 15.8 16.8


sat (kN/m3) 19.2 20.2

E0 (MPa) 14.86 31.20

G0 (MPa) 5.71 12.02

� 0.3 0.3

c0

ref (kPa) 0.1 0.1

�crit (�) 32 32

 (�) 0 10

k (m/day) 10.63 7.45

Table 6.1: Material properties required by the Mohr Coulomb model in Plaxis.

beneath the footing edges, the extension of such bulbs being proportional to
the foundation bearing pressure. Also plotted on Figure 6.19 (to the left of the
axis of each footing in the �gure) are contours of the peak excess pore pressure
before drainage, measured in the foundation soil below the footing A, B, C
and D respectively. Contours are obtained by interpolating beween data points
using a linear interpolation scheme. Comparison between excess pore pressures
and static shear stresses in Figure 6.19 shows that the observed reduction in
the generated excess pore pressure below the footing edge corresponds, as
suggested above, to areas characterized by high values of �. In particular, the
minimum excess pore pressure were recorded in portions of the foundation soil
characterized by � >0.4 (Figure 6.19). The heavier footing (footing D; q = 130
kPa) generates signi�cant shear stresses in a broad portion of the foundation
soil. The \bulb" of soil characterized by a value of � higher than 0.4 extends
to a depth of � B (footing width) and has a maximum width of � B/2
(Figure 6.19). Pore pressure measurements in correspondence to this area show
no generated excess pore pressures. On the contrary small negative peak excess
pore pressure have been recorded by PPT6 (footing edge) and PPT7 (near
footing), possibly due to dilation induced by the footing settlement. Similar
behaviour was observed for footing C. In this case, only records from PPT6
(footing edge) show near zero excess pore pressure, while signi�cant excess pore
pressure was measured by PPT7, in line with those recorded at the same depth
in correspondence of the footing axis (Figure 6.17). A possible explanation for
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Figure 6.19: Contours of peak EPP before drainage (left side) against contours
of footing induced static shear stress ratios (right side): (a) Footing D, q=130
kPa; (b) Footing C, q=90 kPa; (c) Footing B, q=60 kPa and (d) Footing A,
q=30 kPa.

these observations may be that the bulb of soil with � higher than 0.4 induced
by footing C is smaller; as a consequence the soil near PPT7 is subjected to
lower shear stresses, resulting in lower cyclic resistance (Figure 6.19). Excess
pore pressure generated at a depth of 0.75 m underneath footing B and A (q
= 60 and 30 kPa respectively) shows little or no horizontal variability from
the footing axis to a distance of B/2 from the footing edge (Figure 6.19).
In particular, the excess pore pressure generation pattern observed is similar
to what is observed in the free-�eld case (i.e. no structure present, �i = 0),
suggesting a reduced in
uence of the footing induced stresses for lower bearing
pressure. In all cases, the highest excess pore pressure values were recorded
beneath the footing axis, where the shear stresses are a minimum. Figure 6.20
and 6.21 show the spatial distribution of excess pore pressure in the foundation
as a function of time.

Despite full-liquefaction (i.e. ru = 100 %) being observed in the free-�eld
in all of the models tested, all the PPTs positioned in the soil below or in the
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Figure 6.20: Spatial distribution of EPP below heavy footing models at dif-
ferent times during shaking: (a) Footing D, q=130 kPa; (b) Footing C, q=90
kPa
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Figure 6.21: Spatial distribution of EPP below light footing models at di�erent
times during shaking: (a) Footing B, q=60 kPa; (b) Footing A, q=30 kPa
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Figure 6.22: � values at EPP measurement point against ru;max together
with data from bi-directional direct shear tests from Kammerer (2002) and
Boulanger (1991).

proximity of the footings recorded peak excess pore pressure ratios (ru;max =
EPPmax/�0v) signi�cantly lower than 100 %. This is plotted in Figure 6.22,
which shows the ru;max recorded beneath the footings against the estimated
initial shear stress ratio at the measurement location. Also in Figure 6.22, the
results from the centrifuge tests are compared to those from cyclic shear tests
performed by Kammerer (2002) and Boulanger (1991) for di�erent values of �.
For higher �, all three sets of data show a decrease of the recorded excess pore
pressure ratio for increasing initial static shear stress ratio. However a substan-
tial di�erence exists between centrifuge and cyclic shear data for low values
of initial static shear stress ratio, which is ascribed to the di�erent bound-
ary conditions. Theoretically, applying horizontal �xity and no-
ow boundary
conditions to the soil column below the footing, if liquefaction is triggered the
entire weight of the footing would be transferred to the pore 
uid, reaching
a state of full liquefaction.These idealized boundary conditions are unrepre-
sentative of this reality where signi�cant cross-drainage occurs during shaking
resulting in peak ru lower than unity. A threshold value of � exists, above
which excess pore pressure generation is impeded. Such a threshold value is
not unique but depends, other than soil type, on relative density and con�ning
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stress. For the range of con�ning stress and relative density considered in the
models tested, � values higher than � 0.4 showed zero or negative excess pore
pressure generation. Results from a series of cyclic bi-directional simple shear
tests performed by Kammerer (2002) on Monterey #0/30 sand show a sim-
ilar threshold value (Figure 6.22). Unlike observations from centrifuge tests,
results from simple shear tests show ru;max increasing linearly with decreasing
�, up to values of � 80 %. This di�erence may be ascribed to the fact that
the element tests were performed in fully undrained conditions, therefore no
cross-drainage occurred limiting the generation of excess pore pressure. These
observations suggest that in all of the analyzed cases, the foundation soil (i.e.
the portion of soil considered in Figure 6.19) underwent excess pore pressure
induced softening without reaching a condition of full-liquefaction. Moreover,
in the presence of signi�cant static shear stress, areas of non-softened (i.e. no
EPP generated) soil may initially exist below the edges of the footing during
earthquake shaking, even in the case where the motion is strong enough to
trigger liquefaction in the free-�eld.

6.2.3 Acceleration Propagation

The vertical propagation of the base input motion through the soil model pro-
�le was monitored by means of vertical arrays of MEMS accelerometers during
the centrifuge tests. Figure 6.23 shows the Fourier spectra of the accelerations
measured at di�erent depths in Test BD2 and BD5, compared to that of the
base input motion. In both tests the high frequency component of the input
motion (i.e. � 3.5 Hz) is drastically attenuated in the soil column, which acts
as a low-pass �lter. The low frequency component is less a�ected by such
attenuation. Almost no attenuation is observed in the soil close to the base of
the container (z = 15 m), while the degree of attenuation generally increases
moving toward the soil surface. Despite the soil pro�les of the two models
analyzed being very similar (Figure 6.3), the magnitude of the Fourier spectra
for Test BD5 were greater than those recorded in Test BD2 for all the instru-
ments. The di�erences in the input motions discussed in Section 6.1 are not
large enough to justify the observed behaviour. This may be explained by a
higher relative density of the dense sand layer in Test BD5 due to variability
in the preparation procedure. The presence of a denser sand pro�le may have
caused the higher magnitude of accelerations observed in the bottom soil layer
(from z = 4 m to z = 15 m) of Test BD5 (Figure 6.23). This hypothesis is in
line with the observed settlement in Test BD5, which are larger than expected
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Figure 6.23: Vertical propagation of base input motion in Test BD2 and BD5.

based on the comparison with the other tests. However, the di�erence between
the magnitude of accelerations recorded in the lique�able sand layer (from z =
0 m to z = 4 m) in Test BD2 and BD5 is less marked, which also supports the
hypothesis made. The horizontal accelerations measured on footing D in Test
BD5 show signi�cant SSI e�ect for frequencies around 1 and 3 Hz, possibly
due to the higher seismic loading.

Figure 6.24 shows the peak acceleration ratio between the accelerations
in the soil and the base motion, evaluated over intervals of 10 seconds. Atten-
uation starts to occur between 5 and 15 s in Test BD2 and between 15 and
25 s in Test BD5. Typical values of ampli�cation factors for the accelerations
measured on the footings are of the order 0.2 - 0.3. This means that following
shaking induced soil softening (causing attenuation of the accelerations in the
soil), only 20 - 30% of the accelerations that would be experienced on a rock
outcrop for the same motions are transmitted to the footings. The high nega-
tive ampli�cation factors observed for the instrument located on the footings
and at a depth of 2 metres in Test BD5 are due to residual static accelera-
tion recorded by the instruments as a consequence of footing tilting, and must
therefore be disregarded.
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Figure 6.24: Peak acceleration ratio with respect to the input motion in test
BD2 and BD5.

6.2.4 Dynamic Response of Footings

The analysis of the elastic response spectra of the accelerations recorded on
the footing in the di�erent tests, provides interesting insights on the response
of a hypothetical structure (SDOF) built on those footings. Figure 6.25 shows
the elastic response spectra of footing B and D computed from the measured
footing motion in Test BD2, BD5 and BD8, for a level of damping of 5%.
Shown in the �gure are the response spectra based on the base motion (i.e.
equivalent rock outcrop acceleration) and the design spectra recommended by
Eurocode 8 (EC8) for a soil type D (i.e. deposits of soft to medium cohesionless
soil) for comparison. EC8 spectra for soil type D are representative of the
footing response on dry loose sands (or saturated sands in case of no shaking
induced excess pore pressure generation). Lique�ed soil is a special ground
type in EC8 (type S2), for which it is not possible to draw a design spectrum.
Because of this reason the design spectrum in Figure 6.25 is to be considered
representative of the equivalent dry soil response. Moreover the depth of the
soil deposit in the models tested (15 m at prototype scale) is not necessary
representative of the soil depths considered to develop the EC8 design spectra.

166



Figure 6.25: Elastic response spectra of footing B and D.

Despite the signi�cant settlement and tilts su�ered by the footing mod-
els, the response spectra measured on the footing models are well within the
EC8 design spectra for loose dry sands. This shows that liquefaction of the
foundation soil may result in signi�cant structural damage even if the seismic
demand on the structure itself remains within the design values. The base
motion spectra (which is una�ected by soil non-linearity) shows high ampli�-
cation for a period of � 0.25 seconds, which exceeds by far the design spectra.
This corresponds to a frequency of � 4 Hz which is one of the two dominant
frequencies of the input motion used in this work (Figure 6.1; the other is �
1.35 Hz, corresponding to a T of 0.75 s). However, as observed in the previous
section, the higher frequency component of the input motion is ‘�ltered out’
by the soil column (Figure 6.23), resulting in relatively low values of spectral
acceleration (Sa) for all the footings analyzed. On the contrary, the peak val-
ues of spectral acceleration are obtained in correspondence of the interval 0.5 s
� T � 1 s (corresponding to 1 Hz � f � 2 Hz; Figure 6.23). In particular the
peak values of Sa for both footing B and D, are inversely proportional to the
thickness of the lique�able layer. This is due to the attenuation of the seismic
demand on the footing caused by the lique�ed soil. Footing D shows higher
values of spectral acceleration with respect to footing B. This is ascribed to
higher SSI of footing D (heavier) resulting from the inertia forces generated by
the accelerations transmitted to the footing. The spectral response of footing
D in Test BD5 shows higher values of Sa in correspondence of small periods
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(T � 0.3 s; f � 3.33 Hz). As discussed in the previous section, the anomalous
footing response in this test may be due to slightly di�erent soil conditions in
the model.

6.2.4.1 Soil-Structure Interaction (SSI)

As discussed in Section 3.2.6, one of the criteria followed in the design of
the footing models was that of minimising the SSI e�ects due to over-turning
moments in the structure during shaking. This was achieved by concentrating
the mass of the structure in the footing itself, without any superstructure.
However the footing models, having signi�cant mass, may be subjected to
signi�cant base shear during strong earthquake shaking due to the inertia
forces generated in the structure. Also, despite the low H/B ratio of the
footing models, they may still experience some rocking during shaking. It is
well acknowledged that SSI e�ects are directly proportional to the mass of the
structure and therefore would be more critical for what concerns the heavier
footing models (footing C and D).

The shaking induced displacements of footing C, both horizontal and
vertical, were computed by double integration of the recorded footing accel-
eration time traces. The combined analysis of these displacements returns
a more precise estimation of the overall footing displacement during shaking.
Figure 6.26 shows the footing displacement during a cycle of horizontal loading
at the beginning of the earthquake, computed displacements have been mag-
ni�ed by a factor of 10 in order to allow a clear identi�cation of the footing
displacement pattern. Despite being substantially in phase with each other,
as observed above, the vertical accelerations (and thus displacements) at the
two sides of the footing show a cyclic di�erence in magnitude. In particu-
lar, when the footing moves from left to right the vertical accelerations will
be higher on the right side of the footing and vice versa (Figure 6.26). As a
result the vertical footing displacements occur at a frequency approximately
double that of horizontal motion. As anticipated, this indicates the presence
of overturning moments generated by the horizontal component of the motion,
although, thanks to the characteristics of the structure, these accelerations are
of relatively small amplitude (� 0.08 g).

However, the time interval considered in the analysis corresponds to the
very beginning of earthquake shaking, where excess pore pressures are starting
to build-up (see Figure 6.27) and have not reached their maximum value yet,
therefore the proposed analysis can be considered a reasonable estimate of the
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actual soil behaviour in the analyzed time frame. The observations presented
in this section allow to quantify the in
uence of SSI on the overall footing
model behaviour in the centrifuge tests performed. As anticipated, because of
the low centre of mass of the footing models, seismic SSI resulting from the
shaking induced foundation rocking are minimal.
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Figure 6.26: Computed footing movement during one cycle of strong shaking
(footing C; Test BD7).
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Figure 6.27: Computed stress path of an element of soil in the free-�eld.
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6.3 Shallow Foundations on Lower Permeabil-
ity Crust

Test BD3, BD4 and BD6 will be analysed in this section (Group 2). In these
models a sur�cial crust of material with lower susceptibility (or none) to liq-
uefaction was added at the top of the soil pro�le. Rock
our (Oakamoor HPF5
crushed silica) was used to create such crustal layers in Test BD3 and BD4,
which di�er by the level of consolidation resulting in di�erent strength of the
layer. In particular, the HPF5 layer placed in model BD3 was strongly over-
consolidated, while that in model BD4 was normally consolidated (see Section
3.2.3). Test BD6 is also included in this group, although no �ne material was
used in this model and the crustal layer was here represented by a 4 m thick
deposit of dense saturated sand. Figure 6.28 shows the layout of the centrifuge
models tested and the positions of the instruments in each test.

6.3.1 Observed Settlement

Figure 6.29 shows the observed footing settlements in the analyzed tests. Both
total settlement, de�ned as the long term settlement after the shaking induced
excess pore pressure in the foundation soil had been entirely dissipated, and
co-seismic settlement, de�ned as the settlement occurring during earthquake
shaking, are shown. The sur�cial layers placed in model BD3 and BD6 were
strong enough to sustain some of the footing weight during sub-soil liquefac-
tion, resulting in a reduction of the observed settlements. On the contrary the
sur�cial layer placed in model BD4 was not able to provide a similar support
resulting in higher footing settlement. In particular, the heavier footing mod-
els (C and D) punched through the weak silt layer reaching �nal settlement
values similar to those observed in Test BD8 (same soil pro�le con�guration
but without any sur�cial layer).

The presence of a sur�cial layer of lower permeability delayed the post liq-
uefaction excess pore pressure dissipation, resulting in long term post-liquefaction
settlements (see Figure 2.19). Because of this the sampling of the instruments
had to be continued longer than the ‘uncapped’ tests of Group 1. Pore pressure
measurements were monitored after the end of shaking and data acquisition
was terminated once the pore pressure at all monitored location returned to
the pre-shaking values. The time (at prototype scale) needed for this condi-
tion to be satis�ed was 50 hours for Test BD3, 43.5 hours for Test BD4 and
1.7 hours for Test BD6. Excess pore pressure dissipation was faster in Test
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Figure 6.28: Layout and transducers positions in tests (a) BD3, (b) BD4 and
(c) BD6.

BD4 because the surface layer ruptured in many locations speeding up the
dissipation process, while in Test BD6 this was due to a modest di�erence in
permeability between the surface and the lique�able layer. Unlike the tests
of Group 1, reliable free-�eld settlement measurements were possible in the
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Figure 6.29: Observed total and co-seismic settlement in Test BD3, BD4, and
BD6.

tests of Group 2, because the presence of a stronger crust layer allowed the
PVC disc connected to the free-�eld LVDT to follow its deformations without
sinking into it. Figure 6.30 shows these measurements for each of the tests
of Group 2, during the �rst 4 hours from the beginning of earthquake shak-
ing. The free-�eld settlement time traces show a counter-intuitive behaviour,
as after an initial subsidence they indicate a ground surface uplift until the
end of shaking. The magnitude of such uplift is observed to be directly pro-
portional to the magnitude of footing settlement, suggesting that the two are
correlated. Given the ‘deviatoric’ nature of the footing co-seismic settlement,
soil is displaced outward by the sinking footing possibly causing the observed
heave of the ‘free-�eld’ ground surface. This indicates that, because of the
limited dimensions of the model container, real free-�eld behaviour could not
be observed in the performed centrifuge tests. However, an approximation of
the �nal free-�eld settlement due to soil re-consolidation may be obtained by
disregarding the observed co-seismic uplift. This returned a free-�eld settle-
ment of 0.113 m for Test BD3, 0.164 m for Test BD4 and 0.13 m for Test
BD6, respectively corresponding to a volumetric strain of 1.37 %, 1.99 % and
3.25 %. These estimates of volumetric strain were obtained assuming all volu-
metric deformations to occur in the lique�able layer (L1), although the higher
volumetric strain obtained for Test BD6 (DL = 4 m), with respect to those
observed in Test BD3 and BD4 (DL = 8.25 m), suggests that the dense sand
layers may have contributed signi�cantly to these deformations. The volumet-
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Figure 6.30: Free-�eld settlement measurements.

ric strains calculated accounting for the entire depth of the soil model were of
0.9 %, 1.13 % and 0.89 %. It is trivial to back calculate what percentage of the
free-�eld settlement is actually due to re-consolidation of the lique�able layer
and to what extent the dense sand layer contributed to the total observed
settlement. However, both these measurements as well as the di�erence in
total and co-seismic footing settlement in the tests of Group 2 (Figure 6.29),
indicate that dissipation of excess pore pressure in Test BD3 may not have
been fully completed at the time data sampling was stopped.

In the long-term (4 to 43.5 hours) further free-�eld settlement of 100 mm
for Test BD3 and 175 mm for Test BD4 were observed. On the contrary all
the footing displacement measurements during the same time interval showed
a slight uplift of the footing themselves. The magnitude of such uplift was
seen to be directly proportional to the footing bearing pressure in both tests
(Figure 6.31). The observed behaviour is believed to be due to pore pressure
redistribution in the soil beneath the footing causing structural uplift. How-
ever, the magnitude of these movements is very small and does not signi�cantly
in
uence the overall footing response.
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Figure 6.31: Observed post-shaking footing uplift in test BD3 and BD4.

6.3.1.1 E�ect of Footing Bearing Pressure

Settlement measurements from Group 2 show a similar trend to what was
observed in Group 1. Footing settlement was again seen to increase with
increasing footing bearing pressure up to bearing pressure values of 90 kPa,
and then decrease for higher bearing pressure (see Section 6.2.1), although the
magnitude of such settlements varies signi�cantly within this group of tests.
As observed above, the footing settlements measured in Test BD3 and BD6
are similar, because the sur�cial layers in these models were strong enough to
sustain some of the footing weight during sub-soil liquefaction. However, in
model BD6 the thickness of the lique�able layer was only half that of model
BD3 (Figure 6.32). The magnitude of the footing settlements observed in these
tests is in line with those of Test BD2, where there was no sur�cial crust but
the footing were resting on a lique�able layer approximately four times thinner
with respect to that of BD3 and 2 times that of BD6. Although, while in Test
BD2 the total settlement of footing D was lower than that of footing B, this
does not occur in the tests of Group 2. Results from Test BD4 show relatively
higher footing settlements with respect to the other tests in the group. In
particular, the heavier footings (C and D) settled the same amount observed
in Test BD8 (same DL but without any crust layer). This indicates that the
relatively weak crust layer of normally consolidated silt in Test BD4 did cause a
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Figure 6.32: E�ect of footing bearing pressure on the liquefaction induced
settlement in presence of a lower permeability surface layer.

reduction of the total settlement of the lighter footings (0.43 m against the 0.75
m measured in Test BD8 for footing B), while it did not in
uence signi�cantly
the settlement of the heavier footings (Figure 6.32).

6.3.1.2 Observed Failure Mechanism

Observations during the excavation of models DB3 and DB4 indicated that the
strength of the surface layer greatly in
uenced the footing failure mechanism
characteristics (Figure 6.33). In presence of a ‘stronger’ crust layer overlying
a lique�able sand layer (Test BD3; cu � 50 kPa) no appreciable relative move-
ment between the footing and the crust layer was observed. As a consequence
of earthquake induced softening of the underlying layer, the crust de
ected
under the weight of the footing without rupturing (Figure 6.33a). On the con-
trary, in the presence of a weaker surface layer (Test BD4; cu � 10 kPa) the
footings were observed to sink into the silt layer eventually punching through
it in the case of heavier footings (C and D). Post-shaking observation of the
model indicate that the portion of silt layer right underneath the footings was
eroded by ejecting sand and transported to surface (Figure 6.33b). Figure 6.34
shows the PIV analysis of a 1�g shaking table test of a footing resting on an
over-consolidated silt layer (prepared following the procedure described in Sec-
tion 3.2.3) overlying a deep deposit of lique�able sand (other details about this
test can be found in Section 6.2.1). The displacement vectors indicate a similar
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Figure 6.33: Observed footing failure mechanism: a) in presence of a 0.5 m
thick over-consolidated silt surface layer (Test BD3); b) in presence of a 0.5 m
thick normally-consolidated silt surface layer (Test BD4).

deformation pattern with respect to what was observed for a footing resting
directly on lique�able sand (Figure 6.16); moreover the deformation of the
sur�cial silt layer showed similar to that observed in the equivalent centrifuge
test (i.e. same soil pro�le) (Figure 6.33a). The soil column right underneath
the footing displaces vertically up to a distance of � 1.5� B, while the soil
outside the soil column is displaced laterally. This observation corroborates
the hypothesis proposed by Kawasaki (1998) and Ghosh (2003), of a bulb of
non-lique�ed soil forming underneath the footing and settling with it pushing
lique�ed soil aside (see Section 2.4.2). This mechanism also results in heave
of the ground surface in proximity of the footing, in agreement with free-�eld
settlement measurements from centrifuge tests (Figure 6.30). In the described
1�g experiment, heave of the ground surface is observed at distances of � 2/B
from the footing edge. In agreement with what was observed in the 1�g shak-
ing table tests described in Section 6.2.1, all deviatoric deformations occur in
the loose lique�able sand, no signi�cant displacement is observed in the deep
dense sand layer. Naesgaard et al. (1997) performed extensive numerical simu-
lations of the behaviour of structures resting on shallow foundations bearing on
a non-lique�able crust over lique�ed soil. This study considered strip footings
on level in�nite soil deposits, and sur�cial crust layers having undrained shear
strength (cu) lower than 75 kPa. A good correlation was found between the
computed footing settlement and a ‘degraded’ factor of safety against bearing
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Figure 6.34: Footing failure mechanism from PIV analysis of 1�g shaking table
testing, in presence of a OC silt surface layer.

failure (FSdeg) given by:

FSdeg =
(2 �H � cu + 5:14 � �res �B)

qs
(6.5)

where �res represents the residual shear strength of lique�ed soil, qs the footing
load per unit length and H the thickness of the crust layer. This factor of
safety was calculated for the isolated footing models in Test BD3, BD4 and
BD6. under the assumption that the equivalent strip footings would exert on
the soil a load per unit length equal to qs = (q � Afooting)=B (where q is the
footing bearing pressure, Afooting its area and B its width). The lique�ed soil’s
residual shear strength ratio (�res/�

0

v) was estimated to be 0.05 according to the
correlation proposed Olson & Stark (2003) for DR = 30 %. �res was evaluated
at a con�ning stress equal to 30 % of the footing bearing pressure, considered
representative of that acting normally to the shear surfaces developing in the
foundation soil during footing settlement. The undrained shear strength of the
crust layers are shown in Table 4.7. Figure 6.35 shows the comparison between
centrifuge and numerical results. This methodology proved able to capture the
behaviour of footings C and D in Test BD4, which showed evidence of a clear
bearing capacity type of failure (they punched through the crust layer).
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Figure 6.35: Correlation between proposed FS against footing bearing failure
(Naesgaard, 1998) footing settlement, both computed from numerical mod-
elling and observed in centrifuge tests.

6.3.2 Sand Boils

Evidence of extensive boiling was observed on the ground surface of Test BD4.
The relatively weak crust layer ruptured in many locations under the high
hydraulic gradients generated between the lique�ed sand layer and the ground
surface following liquefaction of the underlying sand layer. Boiling was ob-
served across the entire model surface, possibly in correspondence of the weaker
points of the sur�cial crust. However the presence of the container walls may
have provided a weaker area, as many boils were observed along the wall-crust
interface (Figure 6.36b). The material expelled from the boils consisted of
a mixture of silt and HST95 sand, clearly visible because of the clear con-
trast with the brighter Redhill 110 sand used for the footing embedment layer.
Ejecta were also observed along the perimeter of the footings, where the silt
crust was likely disturbed or ruptured by the footing settlement.

On the contrary, very limited boiling was observed through the overcon-
solidated silt crust in Test BD3. In this case the material constituting the
crust had enough strength (cu � 50 kPa) to resist the generated pressure gra-
dients. Evidence of boiling was observed at the opposite corner of the model,
in correspondence of the locations where the crust was disturbed to measure
the ground water level prior to testing (Figure 6.36a). As mentioned above,
the widespread boiling obsreved in Test BD4 resulted in a faster excess pore
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Figure 6.36: Surface manifestation of liquefaction: a) Test BD3, model surface
after centrifuge spin-down; b) Test BD4, model surface after centrifuge spin-
down.

pressure dissipation with respect to Test BD3.
Figure 6.37 shows the drop in the excess pore pressure measured right

underneath the crust layer in the free-�eld in Test BD4, possibly due to the
rupture of the crust under the established pressure gradient between the liq-
ue�ed soil and the ground surface. Rupture of the crust occurred soon after
the end of shaking, while the excess pore pressure was still increasing steadily
as a consequence of the vertical 
ux of pore 
uid generated during lique�ed
soil re-consolidation. The critical gradient causing the rupture of the crust can
be estimated from the di�erence between the maximum excess pore pressure
before the observed drop (� 24.5 kPa) and the overburden pressure acting
on the silt crust. The overburden on the silt layer in Test BD4 consists of
0.5 m of saturated RedHill 110 sand, exerting on it a pressure of � 10 kPa.
This results in a critical pressure di�erence across the crust of 14.5 kPa, in
line with the shear strength measured in the laboratory (Table 4.7). Based on
the observed measurements, after the initial drop in pore pressure the boil is
possibly occluded under the self-weight of the expelled material, once the pres-
sure gradient reduces below a certain level. Excess pore pressure then starts
increasing again until the critical pressure gradient is again met and a new
rupture of the crust occurs. This could have happened in the same location
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Figure 6.37: Observed sand boil in test BD4: a) EPP drop due to the rupture
of the silt layer adjacent to PPT7; b) Cross-section of the resulting sand boil(s)
and instrument position.

as the �rst or in a new part of the crust, since several boils were observed in
proximity of PPT7 (Figure 6.37).

6.3.3 Excess Pore Pressure Generation and Dissipation

The presence and the characteristics of a crust layer having lower permeability
with respect to the underlying lique�ed deposit, signi�cantly in
uenced the
post-shaking excess pore pressure dissipation in the latter. The dissipation
pattern was seen to depend on the crust layer permeability and strength. As
mentioned above the presence of a relatively thin (0.5 m at prototype scale)
crust layer of silt resulted in slower excess pore pressure dissipation, increasing
the time needed for full EPP dissipation approximately by a factor of 20 with
respect to the uncapped con�guration (Test BD8). Small di�erences in the
dissipation process were also observed between model BD3 and BD4, both in-
cluding a 0.5 m thick HPF5 crust. In particular, dissipation was slightly slower
in Test BD3, because the stronger silt crust did not rupture through the crust
itself under the post-liquefaction pressure gradient generated (Figure 6.36).
Figure 6.38 shows the excess pore pressure dissipation in the deeper part of
the lique�ed deposit during the �rst 2 hours after the end of shaking, for dif-
ferent soil pro�le. In all cases dissipation starts soon after the end of shaking
at the bottom of the lique�ed deposit, the re-consolidation front then starts to
propagate vertically toward the surface. Two phases can be identi�ed in the
observed dissipation pattern, corresponding to the �rst two phases described
in Figure 2.19. The �rst phase takes place in the early stages of the dissipation
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Figure 6.38: Long-term dissipation of excess pore pressure in presence of a
lower permeability crust.

process and lasts approximately 1 hour after the end of shaking. During this
phase the reduction of EPP is due to the re-consolidation of the soil particles,
advancing from the bottom of the deposit up. In absence of a sur�cial crust
having lower permeability, excess pore pressure are dissipated fully during this
phase. On the contrary, in presence of a lower permeability capping layer,
the pore 
uid can not drain toward the ground surface and accumulates at
the interface of the two soil layers. This result in the formation of a water
�lm which carries the load of the overlying crust (and everything resting on
it). From this point onward (phase 2) the dissipation process is driven by the
seepage through the low permeability crust. This second phase is character-
ized by a slower dissipation rate, which progressively reduces as the pressure
gradient across the crust diminishes. The duration of the second dissipation
phase in Test BD3 and BD4 was respectively of 49 and 42.5 hours. Because of
the small di�erence in permeabilty between the surface layer and the lique�ed
deposit (Table 4.5), � 94 % of EPP dissipation was achieved during the �rst
phase in Test BD6 (Figure 6.38). Sampling of the instruments was stopped
before dissipation was complete in this test and no exact measurement of the
time needed for full dissipation is available. However the dissipation trend
suggests that full disipation would have been achieved within few hours from
the end of shaking.
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Figure 6.39 shows the excess pore pressure measured at a depth of 0.5
m underneath the footing models in Test BD3 and BD4. The stress distribu-
tion induced in the foundation soil was seen to a�ect the excess pore pressure
generation in the soil itself, resulting in signi�cantly di�erent response among
the four footing models. The excess pore pressure measured underneath foot-
ing D in Test BD3 shows an atypical trend, di�ering signi�cantly from the
other measurements. Very low values of EPP were recorded until � 5 min-
utes after the end of shaking, where a relatively fast increase of EPP occurs.
The shallower PPTs were located right underneath the silt crust (Figure 6.28),
therefore some �ner material may have penetrated in front of the instrument
face during model preparation (the silt layer was initially poured in the form
of a slurry), partially occluding the PPT. However, the rest of the instruments
do not seem a�ected by similar problems. The response of the soil underneath
footing A and B was similar in both tests, while higher excess pore pressure
was generated underneath footing C. EPP measured in the soil underneath
footing D in Test BD4 also reaches higher values with respect to the lighter
footing models. As explained in detail in Section 6.2.2, this is due to the ability
of sustaining higher excess pore pressure resulting by the higher con�nement
exerted by the heavier footings. However, since no lateral restraint is present,
such excess pore pressure redistributes laterally eventually reaching an equilib-
rium with the free-�eld (Figure 6.39b). This phenomenon occurs to a di�erent
extent underneath all of the footing models, resulting in higher excess pore
pressure with respect to those measured at the same depth in the free-�eld.
According to these observations the EPP recorded underneath footing D (q
= 130 kPa) would be expected to be higher than those recorded underneath
footing D (q = 90 kPa). However this is not the case because, besides pro-
viding a higher potential for EPP generation, the footing induced con�nement
and stress distribution also act toward restraining the generation of such EPP
in the foundation soil (Figure 6.17).

Also shown in Figure 6.39 are the maximum pore pressure ratios achieved
underneath the footing models. Because of the mechanisms described above,
the higher the footing bearing pressure the lower the maximum ru attained.
In particular, full liquefaction (here de�ned by ru = 100 %), is attained only
underneath footing A, while the degree of softening underneath the rest of the
footings is inversely proportional to their bearing pressure.
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Figure 6.39: Excess pore pressure generation at a depth of 0.75 m underneath
the footing models and achieved ru;max.

6.3.3.1 EPP generation in a deep lique�able layer

In model BD6 the lique�able layer (L1) is located at a depth of 4.75 m from
foundation plan (� 2�B), and extends up to 8.75 m. Pore pressure measure-
ments in this layer in the area underneath footing D (Figure 6.40) show a dif-
ferent pattern with respect to that observed right underneath the same footing
in the uncapped case (Figure 6.17). In particular, the generation of excess pore
pressure appears to be less in
uenced by the presence of the footing, resulting
in a more homogeneous response across the deposit. The observed behaviour
is similar to that expected in the free-�eld, characterized by a relatively quick
pore pressure build-up during the �rst cycles of shaking until full liquefaction
is reached and the pore pressure stabilizes at a value equal to the e�ective
vertical stress acting at that location. However, the observed rate of pore
pressure build-up is slower at the top of the deposit, indicating that liquefac-
tion started at the bottom of the deposit (Figure 6.40). This counter-intuitive
observation, as liquefaction in the free-�eld is usually observed to propagate
from the top of the deposit down, suggests that the footing induced stress
distribution extended to the upper part of layer L1, in
uencing the soil cyclic
response. Excess pore pressure traces measured at the top of the lique�able
layer leveled out at approximately 55 kPa, which corresponds to the vertical
e�ective stress at that depth in free-�eld conditions, although the static ver-
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Figure 6.40: Excess pore pressure generation underneath footing D in a deep
lique�able layer overlaid by a deposit of dense sand.

tical e�ective stress at the same location accounting for the footing induced
con�nement is � 85 kPa (obtained from a FEM analysis using Plaxis2D). This
results in excess pore pressure ratios of � 65 % at the top of layer L1. Also
shown in Figure 6.40 is the EPP measured underneath footing B. In this case
the footing in
uence is less evident due to the lower con�nement exerted on
the soil; in particular the rate of excess pore pressure build-up is closer to the
free-�eld one and ru;max of � 90 % is attained.

Figure 6.41 shows the distribution of the static shear stress ratio in the
foundation soil. Values of � between 0.1 and 0.2 are observed in the upper
portion of the lique�able deposit away from the footing edge, while in prox-
imity of the footing axis � is lower than 0.1. This does not seem to in
uence
the pore pressure generation at these locations (respectively PPT4 and 3), al-
though a higher dilative behaviour is observed in the measurements of PPT4
(corresponding to slightly higher �). Figure 6.42 shows the spatial distribution
of excess pore pressure in the deep lique�able layer during shaking; unlike free-
�eld behaviour, liquefaction is observed to start at the bottom of the deposit
and then progress upward with time.
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Figure 6.41: Contours of peak EPP in deep lique�able layer against contours
of footing induced static shear stress ratios (footing D; q=130 kPa).

6.3.4 Dynamic Response of Footings

The elastic response spectra of footing B and D in the tests of Group 2 were
computed from the footing acceleration readings. Figure 6.43 shows the ob-
tained spectra together with the base motion spectra (i.e. equivalent rock
outcrop response) and the design spectra obtained from Eurocode 8 for a soil
type D (i.e. deposits of soft to medium cohesionless soil) for comparison. The
spectra show 10 to 50 % higher spectral accelerations with respect to those
obtained for the tests of Group 1 (Figure 6.25). The shape of the spectra
are similar in all three tests and for both footings. Two peaks in the footing
response were observed, corresponding to structural periods of 0.45 and 0.75 s.
However, Test BD4 shows higher spectral accelerations with respect to those
computed for Test BD3 and BD6, with peak di�erences of respectively 0.18
and 0.19 g. Moreover, the spectral response of the footings in Test BD4 for
structural period between 0.4 to 1 s, show similar magnitude of the equivalent
rock outcrop response. In agreement with what observed in Figure 6.25, the
spectra obtained for footing D reach higher spectral accelerations with respect
to those of footing B. This is ascribed to higher SSI of footing D (heavier)
resulting from the inertia forces generated by the accelerations transmitted to
the footing. The footings show an overall similar response to the base input
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Figure 6.42: Spatial distribution of EPP in deep lique�able layer underneath
footing D at di�erent times during shaking.
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Figure 6.43: Elastic response spectra of footing B and D in presence of lower
permeability surface layer.

motion, although the type of soil pro�le in
uences the magnitude of the spec-
tral accelerations achieved. In particular, the presence of stronger (Test BD3)
or thicker (Test BD6) non-lique�ed soil layers was seen to reduce the footing
spectral response.
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6.4 E�ect of Soil Relative Density

Test MF1 and MF2 will be analysed in this section (Group 3). In these models
the relative density of the lique�able layer (L1) was varied to investigate its role
in the footing response. The relative density of layer L1 in these two additional
tests was respectively 50 % and 80 % (Table 4.10). The results obtained from
these tests have been compared to those from a benchmark model having the
same soil pro�le con�guration and a lique�able layer relative density of 40%
(Test BD8 or BD1). Figure 6.44 shows the layout of the centrifuge models
tested and the positions of the instruments in each test.

Figure 6.44: Layout and transducers positions in tests (a) MF1 and (b) MF2.

6.4.1 Observed Settlement

Figure 6.29 shows the observed footings settlement in the analyzed tests. Both
total settlement and co-seismic settlement are shown. The response of footing
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Figure 6.45: Observed total and co-seismic settlement in test BD3, BD4, and
BD6.

A in these tests was not included in the analysis as it showed to be signif-
icantly a�ected by the ground surface oscillation (Figure 5.16). The higher
vertical oscillation measured on this footing was observed to result in higher
footing settlement, hindering the comparison of its behaviour with the other
footing models. The magnitude of the observed footing settlement was ob-
served to be inversely proportional to the lique�able layer relative density. In
particular, each increment of relative density resulted in a reduction of � 30
to 40 % in the magnitude of the observed total footing settlement. In Test
MF2 the soil model consisted of a homogeneous deposit of HST95 sand at a
relative density of 80 %. According to the relationship proposed by Skempton
(1986) a relative density of 80 % corresponds for �ne sands to a (N1)60 of � 42,
this value returns a CRR of 8.7 (Equation 2.6; Figure 2.13) for an earthquake
moment magnitude of 8.8. Based on the CSR of the input motion used in
the centrifuge tests, which varies from 0.32 to 0.28 from top to bottom of the
soil model respectively (Equation 2.4), the minimum factor of safety against
liquefaction across the soil model was calculated to be 27. This very high
value of FSL obtained for the soil model in Test MF2 indicates that the soil is
far from being classi�ed as lique�able. However relatively high footing settle-
ment was observed in Test MF2. This indicates that even in a non-lique�able
deposit, signi�cant footing settlement can occur, due to the soil softening in-
duced by the generation of excess pore pressure during shaking. Very small
post-shaking deformations were recorded in Test MF2, suggesting that neg-
ligible post-shaking soil re-consolidation took place after the end of shaking
and thus that the total observed footing settlements were almost entirely due
to deviatoric phenomena (Figure 6.46). Assuming that the volumetric strain
of the soil deposit occurs entirely after the end of earthquake shaking, the
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Figure 6.46: E�ect of soil relative density on post-shaking footing settlement.

post-shaking footing settlement may be taken as a measure of it. As for the
total footing settlement, also the post-shaking settlement component was seen
to reduce for increasing soil relative density. This resulted in equivalent volu-
metric strains of the soil deposit in the centrifuge tests of Group 3 of � 1.5 %
in Test BD1, 1 to 0.5 % in Test MF1 and 0.2 % in Test MF2. As discussed in
Section 6.2.1 the shear strain associated to these values according to Ishihara
and Yoshimine (1992) is signi�cantly higher with respect to those observed in
previous centrifuge tests on saturated sand at di�erent relative densities.

In agreement with what was observed in the tests of Group 1 and 2,
footing settlement was seen to reduce for footing bearing pressure higher than
90 kPa (Figure 6.47). The observed reduction in settlement for footing bearing
pressure increasing from 90 to 130 kPa was of 27.3 % for Test BD1 (42 % for
Test BD8), 20.2 % for Test MF1 and 16 % for Test MF2. Despite showing a
consistent trend with respect to what was observed in the rest of the centrifuge
tests performed, the in
uence of bearing pressure on footing settlement was
shown to decrease with increasing soil relative density.

6.4.2 E�ect of Relative Density on the Excess Pore Pres-
sure Generation

The excess pore pressures generated during shaking underneath footing C and
D were monitored in Test MF1 and MF2, in order to investigate the e�ect of
soil relative density on the excess pore pressure generation pattern described
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Figure 6.47: E�ect of soil relative density on the liquefaction induced settle-
ment of footing models.

in Section 6.2.2. The overall behaviour observed in the tests of Group 3 was
similar to that observed in Group 1. The excess pore pressure measured at
a depth of 0.75 m underneath footing C show that the lowest pore pressures
were recorded not directly beneath the footing, but below the footing’s edge.
Higher EPP were initially generated beneath the central axis of footing C
while small (or negative) excess pore pressures were recorded below the footing
edge (Figure 6.48). The magnitude of the EPP generated underneath footing
C do not seem to be in
uenced by the soil relative density as they initially
reached similar values. This may be explained by the fact that the described
behaviour is suggested to be associated to the static shear stresses induced
in the foundation soil by the footing itself these are a function of the footing
bearing pressure and geometry and do not strictly depend on the soil relative
density. Although, as suggested by Seed & Harder (1990) and Vaid et al.
(2001), the in
uence of static shear stress on the cyclic resistance of sand
increases with increasing relative density (Figure 2.10). No clear evidence of
an e�ect of soil relative density was observed in Test MF1 and MF2, however,
rather than exacerbating the behaviour observed in Test BD7, higher relative
density may have resulted in a broader area of the foundation soil showing
dilative behaviour (as observed in proximity of the footing edge). This may
explain the slightly lower excess pore pressure measured in Test MF1 and
MF2 underneath the footing axis, with respect to Test BD7. Unfortunately
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Figure 6.48: During shaking EPP measurements in the soil underneath footing
C for di�erent values of soil relative density.

no further measurement was available to support or discard this hypothesis.
Figure 6.48 shows that in all of the analyzed cases during shaking drainage

toward the area underneath the footing occurred, moreover the rate of such
drainage was not signi�cantly in
uenced by the soil relative density. The
higher soil relative density in model MF2 resulted in transient pore pressure
variations in correspondence to the strongest cycles of shaking. This behaviour
was more evident under the axis of the footing rather than near the footing
edge.

Figure 6.49 shows the comparison between settlement, acceleration and
pore pressure time histories recorded during shaking underneath footing D
in Test MF1. The overall behaviour presents many analogies with the soil
response observed underneath the same footing in Test BD5 (Figure 6.18). In
particular the same four phases described in Section 6.2.2 were identi�ed as
shown in Figure 6.49. However, a few di�erences exists between the two tests,
in particular the excess pore pressure generated at the axis of the footing in
Test MF1 do not exceed those measured in the free-�eld and was observed to
drop during Phase 2. This behaviour is similar to those observed closer to the
footing edge, where static shear stresses are higher, and may have been caused
by inaccurate positioning of the PPT during the model construction process.
Given the small dimension of the footing models (B = 55 mm at model scale),
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Figure 6.49: Liquefaction induced settlement mechanism in medium-dense
sand (test MF1; footing D).

positioning the transducer few millimeters away from the desired location (i.e.
along the footing axis) may move it outside the ‘zero’ shear stress column
underneath the centre of the footing (Figure 6.19), possibly resulting in the
observed behaviour. Figure 6.49 shows that excess pore pressure at a location
2�B away from the footing axis (PPT3) are in
uenced by the presence of the
footing. The ‘free-�eld’ instrument measured a drop of pore pressure half-
way through Phase 2, this may have been due to drainage toward the soil
underneath the footing caused by the existing pressure gradient.

6.4.3 E�ect of Relative Density on Acceleration Prop-
agation

Soil relative density was observed to control the propagation of the base input
mtion through the soil pro�le. Figure 6.50 shows the Fourier spectra of the
accelerations measured at di�erent depths in Test MF1 and MF2, compared
to that of the base input motion. In both tests the high frequency component
of the input motion (i.e. � 3 Hz) is drastically attenuated in the soil column,
which acts as a low-pass �lter. While the magnitude of the accelerations
recorded in the soil close to the base of the container in the two tests did not
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Figure 6.50: Vertical propagation of base input motion in Test MF1 (DR =
50%) and MF2 (DR = 80%).

present appreciable di�erences (DR = 80 % in both tests), a notably di�erent
response is observed in the upper portion of the soil model. In the top 8 m
of the soil pro�le of model MF1 (DR = 50 %), accelerations were observed
to attenuate as the shear waves propagate vertically through the soil. On the
contrary, the accelerations recorded at the same locations in Test MF2 (DR

= 50 %) were ampli�ed through the soil deposit. This phenomenon was more
pronounced in the frequency range from � 0.8 to 2 Hz. This behaviour may
be explained by the fact that the resonant frequency of the denser (and thus
sti�er) soil column of Test MF2 likely falls within this range, although a unique
value of such a characteristic frequency can not be estimated as it is a function
of the degree of soil softening and may therefore change as shaking progresses.

Figure 6.51 shows the peak acceleration ratio between the accelerations in
the soil and the base motion, evaluated over intervals of 10 seconds. The higher
ampli�cation factor was obtained at the top of the soil model in Test MF2,
where ampli�cation of the base input motion in excess of 100 % was veri�ed.
As a consequence of soil-structure interaction these accelerations were only
partially transmitted to footing D, resulting in a peak ampli�cation factor on
the footing of approximately 1.5 (i.e. 150 % of the base input motion). After
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the shaking induced excess pore pressures reached their maximum values (t �
30 s; Figure 6.48), the accelerations were seen to be attenuated to similar values
in all of the performed centrifuge tests (Figure 6.51, 6.24). This indicates that
the degree of ampli�cation of the base motion only initially depends on the soil
relative density, while signi�cant attenuation occurs irrespective of the soil’s
state if earthquake shaking is perpetuated long enough to generate signi�cant
excess pore pressure in the soil. However this condition is attained earlier in
loose to medium-dense lique�able sand with respect to denser sand.

6.4.3.1 Stress Strain Response

The e�ect of relative density on the constitutive behaviour of saturated HST95
sand was investigated based on the acceleration measurements from the per-
formed centrifuge tests. The degradation of the soil sti�ness with increasing
strain level is a key aspect for the characterization of the soil seismic response.
This is usually assessed based on ‘degradation curves’ obtained from element
testing of the desired material or on the several curves published in the liter-
ature for a wide range of materials. Dynamic centrifuge testing represents a

Figure 6.51: Peak acceleration ratio with respect to the input motion in the
soil underneath the footing for di�erent values of relative density.
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valid alternative for the investigation of constitutive soil behaviour. In partic-
ular, the shaking induced stresses and strains in a centrifuge model are trans-
ferred through the soil without the constraints imposed to the soil sample in
an element tests (Brennan et al., 2005).

The data used in the analysis of the soil constitutive behaviour were
obtained from pairs of vertically aligned accelerometers positioned at di�erent
depths in layer L1, on the axis of footing D. The speci�c instruments considered
for the analysis were ACC2 and 3 in Test BD3, MF1 and MF2 (Figure 6.3;
6.44), therefore the results of the analysis apply to approximately mid-depth
in the lique�able layer (L1). The method proposed by Zeghal & Elgamel
(1994) was used to calculate the shear stresses and strains induced in the soil
by base shaking. This method was developed for �eld measurements and thus
uses accelerations measured on the ground surface for shear stress calculations.
Measurements of such accelerations were not available in this work, therefore
surface acceleration was obtained by linear interpolation between the the two
accelerometers (Brennan et al., 2005). The interpolated surface acceleration
was then used in Zeghal & Elgamel’s expression to calculate the shear stresses
in the soil:

�u(z) = �utop +
�ubottom � �utop
zbottom � ztop

� (z � ztop) (6.6)

�(z) =
1
2
� � � z � (�u(0) + �u(z)) (6.7)

Shear strains were calculated based on the displacement computed by double
integration of the measured accelerations. Data must be band-�ltered prior
each integration step to avoid integration errors due to the presence of para-
sitic frequencies in the original signal. Since in Test MF1 and MF2 only two
vertically aligned instruments were placed in layer L1, a �rst order approxima-
tion was used to calculate the shear strains in the soil (Figure 6.10b). In Test
BD3 an array of three accelerometers was positioned in the soil on the vertical
axis of footing D, thus a more precise second order approximation method may
have been used to calculate the shear strains. However, as discussed in Bren-
nan et al. (2005), small discrepancies may exist between the results of these
two methods, thus a �rst order approximation (between the top and bottom
instruments of the array) was used in Test BD3 too for consistency with the
other tests. The strains calculated with this method (Equation 6.8) may be
considered representative of the mid-point between the two instruments, which
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correspond to 4.5 m in Test MF1 and MF2, and 5.25 m in Test BD3:


 =
(ubottom � utop)
(zbottom � ztop)

(6.8)

Excess pore pressure measurements at this depth were also available in all
of the three centrifuge tests, these provide a measure of the degree of soil
softening associated to the computed constitutive behaviour of the soil itself.
Figure 6.52 shows the time history of the computed shear stresses and strains
for the three centrifuge tests, together with the measured excess pore pressure.
Higher shear stresses were observed in denser sand (Test MF2) up to 15-20 s
after the beginning of shaking, beyond this point the induced shear stresses
drop to values in line with those observed in Test BD3 and MF1. This change
in behaviour corresponds to the point where the excess pore pressure trace

attens at its maximum value. In Test BD3 (loose sand) and MF1 (medium-
dense sand) this occurs earlier in time (between 5 and 10 s), resulting in shear
stresses dropping after the �rst few cycles of shaking. The computed shear
strains also show a general tendency to decrease with time, as a consequence
of soil softening (i.e. generation of EPP). This may be counterintuitive as
higher strain would be expected in softer soil, although the driving force for
such strains (shear stresses) also attenuate as a consequence of soil softening.
Dense sand initially showed a sti�er response as the computed shear strains
are lower with respect to those observed in Test BD3 and MF1, despite the
higher transferred shear stresses. However, a few peaks of high shear strain
are observed between 8 and 15 s, where signi�cant excess pore pressure has
already been generated but despite the resulting reduction of its sti�ness the
soil is still able to transfer high shear stresses. The cyclic drop in excess pore
pressure observed in Test MF2 suggests that this behaviour may be caused by
dilation occuring in the denser sand, generating a cyclic regain in soil strength
and sti�ness (Figure 6.52). Having calculated the shear stresses and strains,
the variation of the soil shear modulus may be estimated. As the constitutive
behaviour of saturated sand is higly non-linear, secant modulus is taken as an
approximation of the soil shear modulus over a signi�cant cycle of shaking. In
multi-frequency shaking the shear stress-strain loops resulting from a signi�-
cant cycle of shaking may be irregularly shaped. Brennan et al. (2005), suggest
that the most reliable method of producing representative moduli consists in
calculating the slope obtained from the di�erence in maximum and minimum
stress applied during a loop, over the di�erence in maximum and minimum

199



Figure 6.52: Earthquake induced shear stresses and strains at z � 5 m. EPP
measured at z = 4.5 m are also shown in order to evaluate the degree of
softening in the soil.

strain developed in that loop (represented by red dashed lines in Figure 6.53).
The stress-strain loops computed at four di�erent stages of the excess pore
pressure induced soil softening, for di�erent values of DR are showed in Fig-
ure 6.53. The time intervals corresponding to these four stages are indicated
in Figure 6.52 with black dashed lines and correspond to:

� a) Beginning of earthquake shaking prior to the generation of excess pore
pressure. The intensity of shaking at this stage is moderate resulting in
shear stresses within � 10 kPa, however slightly higher shear stresses are
observed in the dense sand. The corresponding shear strains are small,
thus the resulting constitutive behaviour is close to a linear response.

� b) Excess pore pressure start to generate in the soil gradually reducing
its sti�ness. This stage also corresponds to the peak shear strains, as
the soil is still able to transfer signi�cant shear stresses. The resulting
loops are wider as the shear strains reach their maximum in this phase.
A marked reduction in the estimated shear modulus is observed in all
three tests, with respect to those calculated in the �rst stage.

� c) Signi�cant excess pore pressure is being generated, further reducing
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the soil sti�ness. The computed loops for Tests BD3 and MF1 are ob-
served to shrink as a result of the reduction of the transferred shear
stresses and strains. However, as discussed above, in Test MF2 the abil-
ity to transfer high shear stresses is maintained longer. A regain of
sti�ness is observed in Test MF2 at this stage, resulting in a high shear
modulus.

� d) Excess pore pressure, and thus soil softening, has reached its maximum
value. The transferred shear stresses have dropped to a minimum in all
of the three tests. As a direct consequence small shear strains develop in
the soil. The extension of the stress-strain loops is further reduced and
small shear moduli are observed in all three tests, irrespective of the soil
DR.

The soil at relative densities of 40 and 50% showed a similar constitutive
response, while for a relative density of 80% a slightly sti�er response was
observed. However a marked degradation of shear modulus for increasing ex-
cess pore pressure occurred in all of the three cases. In order to compare the
calculated shear moduli with standard degradation curves, an estimate of the
soil small strain shear modulus (Gmax) is needed. Gmax depends on the soil
relative density and, in absence of direct measurements, was calculated from
Equation 5.3. The calculated values of small strain shear modulus for rela-
tive densities of 40, 50 and 80% were respectively 51.3, 54.5 and 65.1 kPa.
Figure 6.54 shows the degradation of the soil shear modulus evaluated for
the analyzed centrifuge tests. The observed scatter in the data is believed to
be due to the reduced strains associated with the attenuation of shear loads
in softened soil (Figure 6.10a). Large shear strains may potentially be at-
tained after the shear modulus of the soil has degraded signi�cantly, although
its ability of transferring the the shear stresses producing such strains also de-
grades with soil softening, resulting in a ‘self-limiting’ deformation mechanism.
These aspects represents a signi�cant di�erence between the soil response ob-
served in centrifuge models and those observed in element testing, where the
applied cyclic loads are controlled by the equipment and usually kept con-
stant throughout testing. Most of the standard degradation curves are based
on element testing, thus they are una�ected by the observed soil ‘self-limiting’
deformation mechanism. This did not a�ect the measured peak values of shear
modulus which are in good agreement with the degradation curve proposed
by Hardin & Drnevich (1972). The shear moduli plotted in Figure 6.54 were
calculated over time intervals of 1 s, corresponding to one cycle at a frequency
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Figure 6.53: E�ect of DR on the constitutive behaviour of soi at di�erent
times: a) before EPP generation in the soil; b) at the start of EPP generation;
c) During soil softening; d) During liquefaction or signi�cant soil softening.
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Figure 6.54: Measured degradation of shear modulus of satuarated sand at
di�erent relative densities.

of 1 Hz (i.e. lower limit of the frequency band width of the input motion).
This time interval was chosen to ensure that the shear modulus was calculated
over at least one cycle of shaking, which is a necessary condition to calculate
the secant shear modulus.

Figure 6.55 shows the calculated shear modulus degradation over the �rst
5 s of shaking, corresponding to the duration of shaking before the observed
reduction in the induced shear stresses (Figure 6.52). For what concerns Test
MF2 the time interval considered was from 0 to 15s, as shear stresses were
observed to reduce later in time in this speci�c test. Limiting the analysis of
the soil constitutive behaviour to these time intervals returns a better �t with
the standard degradation curves with respect to Figure 6.54.

The described shear stress ‘self-limiting’ mechanism was observed to in-

uence the soil behaviour to di�erent extents depending on the soil relative
density. Moreover, the intensity and the characteristics of the input motion
may also a�ect this mechanism by determining the degree of soil softening; as
discussed in the previous sections, high frequency base input motions are more
prone to be attenuated following the generation of excess pore pressure in a
saturated sand deposit, thus small shear strains are to be expected in the soil
for such type of input motion. The discussed discrepancy between the soil re-
sponse in dynamic centrifuge models and element testing may compromise the
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Figure 6.55: Measured degradation of shear modulus during the �rst few cycles
of shaking.

use of correlations based on element testing to model the constitutive response
of �eld deposits. An example of such correlations is the Ishihara and Yoshimine
method (Section 2.3.3.2; 6.2.1.2), used to estimated the post-liquefaction vol-
umetric strain in lique�ed soil deposits based on the soil relative density and
a estimate of the maximum shear strain attained in the soil during shaking
(Figure 6.54).

6.4.4 E�ect of Relative Density on Footing Response

Figure 6.56 shows the elastic response spectra of footing C and D computed
from the measured footing response in Test BD8, MF1 and MF2, for 5% damp-
ing. Also, shown in the �gure are the response spectra of the base motion (i.e.
equivalent rock outcrop acceleration) and the design spectra obtained from
Eurocode 8 for a soil type D (i.e. deposits of soft to medium cohesionless soil)
for comparison. Results showed that soil relative density signi�cantly a�ected
the spectral response of the footings, spectral accelerations being directly pro-
portional to soil relative density. Despite the higher magnitude of spectral
acceleration observed for footings resting on denser soil, the peak in the re-
sponse always occurs in the period range 0.5 to 1 s (i.e. f ranging from 1 to
2 Hz), in agreement with the spectral response observed in the tests of Group
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1 and 2. One of the driving frequencies of the input motion (� 1.3 Hz) also
fall within this range (Figure 6.1). Another consistent aspect of the footing
spectral response with respect to Group 1 and 2, is that the high frequency
component of the input motion (i.e. f > 2.5 Hz; T < 0.4 s) is not ampli�ed.

Figure 6.56: Elastic response spectra of footing C and D for di�erent values of
soil relative density.

Given their similar weight, the spectral response of footing C and D were
expected to be similar; this was only partially veri�ed as small anomalies in
the spectral response of footing C were observed. These anomalies may be
due to the proximity of footing C to the container end wall. In particular this
would justify the peak in the spectral response of footing C in Test BD8 in cor-
respondence of one of the input motion driving frequencies, which would have
propagated undamped to the container wall. It is clearly shown in Figure 6.56
that moving from a medium dense sand (DR = 50 %; lique�able) to a dense
sand (DR = 80 %; non-lique�able), drastically changes the spectral response.
In this respect it is worthwhile to compare the spectral response of footing D
in Test BD2 (Figure 6.25) and MF2, the presence of a relatively thin lique-
�able layer (DL = 1.85 m) right underneath the footing was seen to reduce
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its spectral response of approximately 65 % with respect to a homogeneous
deposit of dense saturated sand.

6.5 Main Findings and Observations

Data from a series of 10 centrifuge tests have been discussed in this chapter.
The tests have been subdivided in three groups: 5 tests (BD1, BD2, BD5,
BD7, BD8) investigating the behaviour of footings resting directly on lique�ed
soil deposits of di�erent thicknesses, 3 tests (BD3, BD4, BD6) investigating
the e�ect of a sur�cial ‘crust’ of non-lique�able soil on the footing behviour,
and 2 additional tests (MF1, MF2) investigating the e�ect of the lique�able
soil relative density on the observed footing response.

The EPP generation pattern in the foundation soil was seen to be strongly
a�ected by the footing induced stress distribution in the soil. Lower EPP were
measured during shaking below the footing edges, where the footing induced
shear stresses are a maximum. This e�ect was seen to be proportional to the
footing bearing pressure. In particular, for higher bearing pressures, signi�cant
pressure gradients generated between di�erent areas of the foundation soil
during shaking. Such gradients resulted in during shaking cross-drainage to
occur, determining an overall ‘partially drained’ soil response.

The liquefaction induced footing settlement was seen to proportional to
the footing bearing pressure up to a given level of stress (in these tests of the
order of 100 kPa) beyond which settlement no longer increased for increasing
footing bearing pressure, and even reduced for a further increase of bearing
pressure.

Lique�ed soil was seen to strongly de-amplify the base motion, almost
completely �ltering out its higher frequency component. This behaviour re-
sulted in a relatively low seismic demand at foundation level.

The presence of a sur�cial non-lique�ed soil layer in the tests of group
2, resulted in lower footing settlement, the reduction of the settlement being
proportional to the strength and thickness of the non-lique�ed crust. Longer
times were required for the dissipation of the shaking induced EPP in the
capped tests, the rate of EPP dissipation being controlled by the permeabil-
ity of the non-lique�ed material. Thin and/or weak crusts were observed to
rupture under the pressure gradients generated by the vertical dissipation of
the EPP, resulting in the formation of accumulation of ejected material on the
ground surface (i.e. ‘sand boils’).
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Higher relative density of the ‘lique�able’ layer resulted in lower footing
settlement , both due to the lower potential for volumetric strain of denser
soil and to its higher shear strength. Counter-intuitively the magnitude of the
shaking induced EPP was observed to be substantially una�ected by the soil
DR. Despite the observed reduction of footing settlement, the seismic demand
at foundation level was seen to increase proportionally to the soil DR, reaching
a potentially unacceptable level for the denser soil tested.
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Chapter 7

Footing Settlement Estimation

In this section the method for the estimation of the liquefaction induced set-
tlement of structures resting on shallow foundations is reassessed, based on
the �eld and experiment evidence presented in this work (Chapters 5 and 6)
as well as those available in the literature.

7.1 Shortcomings of Existing Method

As already discussed in Chapter 1, the current methodologies for the esti-
mation of the liquefaction induced settlement of shallow foundations during
earthquakes may be divided into two main approaches. The �rst approach
consists of extending the methods developed to evaluate the post-liquefaction
volumetric strain of lique�able soil deposits (e.g. Ishihara and Yoshimine,
1992; Tokimatsu and Seed, 1987), to the case of a structure resting on the
ground surface. The second approach consists of using the empirical chart
developed by Liu & Dobry (1997) based on �eld evidences from the Niigata
earthquake (1964). The �rst approach is based on the erroneous assumption
that the two cases (with and without structure) are equivalent in terms of
settlement mechanism and it does not account for the deviatoric deformations
occurring underneath a footing. The second approach described overcomes this
limitation as it is based on �eld measurements of footing settlement. However,
despite having been veri�ed for cases from the Luzon earthquake by Adachi
et al. (1992), it is based on a limited number of case histories from only two
major earthquakes. Moreover, the Liu & Dobry method overlooks potentially
important variables concerning with the characteristics of the structure and
the soil type and state. In particular its main shortcomings are:

� Poor agreement of experimental and �eld cases for B=DL ratios higher
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than 1.5 (Figure 2.30).

� Does not account for building weight.

� Does not account for soil relative density.

� Does not account for soil layering.

� Does not account for input motion characteristics.

7.2 Field and Centrifuge Footing Settlement
Data Analysis

The Liu & Dobry framework is taken as a starting point and modi�ed accord-
ing to the insights and observations from �eld case histories and centrifuge
tests discussed in Chapter 3 and 6 respectively. Such a methodology is based
on the unveri�ed assumption that a direct proportionality exists between set-
tlement and lique�ed depth. However, as discussed in Section 6.2.1, this is
not the case (Figure 6.8). In particular the resulting normalization of footing
settlement by the depth of liquefaction was shown to be misleading for high
values of B/DL ratio in a series of centrifuge tests described in Dashti (2009)
(Figure 2.30). Also most of the data from the Maule earthquake presented
in this work (Figure 3.11), which are characterized by relatively high B/DL

ratio, are not in agreement with the boundaries proposed by Liu & Dobry. In
both the centrifuge tests performed by Dashti (2009) and the �eld cases from
the Maule earthquake, the high values of B/DL ratio are a consequence of
relatively thin lique�able deposits. These observations indicate that the depth
of liquefaction in
uences the settlement in a non-linear way. This may be due
to di�erent types of failure mechanisms generating underneath the footings
as a function of the lique�ed layer thickness (Figure 6.7). Since a unique re-
lationship between footing settlement and DL cannot be identi�ed based on
the available data, the proposed method correlates absolute footing settlement
to the footing B/DL ratio. This correlation returns a clearer trend in the
available case histories database, as the scatter in the data is reduced (Fig-
ure 7.1). Moreover, unlike in the Liu & Dobry chart (Figure 2.30), centrifuge
and �eld cases are in good agreement within this framework. In particular,
the proposed correlation better captures the footing behaviour for high values
of B/DL ratio. An upper and a lower boundary curve are also proposed based
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Figure 7.1: Proposed curves for the estimation of the maximum and minimum
liquefaction induced foundation settlement.

on the available database of �eld and experimental case histories (Figure 7.1).
The equations describing these curves are respectively:

Sav;max = 6:86 � exp
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(7.1)
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(7.2)

7.2.1 Building Weight

Despite representing an improvement over the Liu & Dobry chart, the pro-
posed method does not take into account several potentially important vari-
ables. The weight of the structure resting on the foundation is one of these.
Intuitively it may be anticipated that footing settlement increases with the
weight of the structure, although, both �eld (Section 5.4) and experimental
(Section 6.2.1) evidences indicate that the relationship between footing settle-
ment and structure weight (i.e. footing bearing pressure) is non-linear. The
centrifuge models tested showed that whilst increasing bearing pressure caused
an increase in settlement as expected, this was only true up to a point, and
that very heavy structures appeared to settle less than some lighter structures
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Figure 7.2: E�ect of foundation bearing pressure on foundation settlement
within the proposed chart.

(Figure 6.6). A similar trend was observed plotting the normalized foundation
settlement observed in the �eld case histories analyzed against the founda-
tion bearing pressure (Figure 3.13). Figure 7.2 shows that the same trend
occurs for absolute foundation settlement values within the available case his-
tory. Peak absolute settlement corresponds for the available case history to
foundation bearing pressures in the range 80-100 kPa, in agreement with the
centrifuge test results presented in this work. It is believed that the stress
level at which the increase in footing settlement ceases is not unique, and may
be a function of several variables including soil and foundation type and mo-
tion characteristics. As discussed in Section 6.2.1 and 6.2.2, the presence of a
shallow foundation resting on the ground surface signi�cantly a�ects the stress
distribution in the foundation soil. In particular the additional con�nement
exerted by the foundation causes a reduction in the excess pore pressure ra-
tio measured underneath it. As a consequence of this phenomenon, an area
of non-lique�ed soil (i.e. ru < 1) persists underneath the foundation during
shaking. The dimension of such area is directly proportional to the foundation
bearing pressure and width (depth of � 2�B for q = 130 kPa; Figure 6.13).
In addition, areas of high static shear stresses generates in correspondence of
the footing edges (Figure 6.19). In correspondence to these areas a reduced
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Figure 7.3: E�ect of foundation dimensions on the induced stress distribution
in the undelying soil.

excess pore pressure generation has been measured in the centrifuge tests dur-
ing earthquake shaking (Figure 6.17). This behaviour has been associated to
a dilative response of the soil under such shear stresses. The extension of such
‘bulbs’ of high shear stress is again directly proportional to foundation bear-
ing pressure but independent from its dimensions. Because of this distinction,
structures characterized by the same B/DL ratio may correspond to di�erent
stress distributions induced in the lique�able soil underneath the foundation
depending on its dimensions Figure 6.19.

7.2.2 Maximum Observed Footing Settlement

The �eld and experimental case histories have been plotted in a three di-
mensional space of axes B/DL, q and Sav, in an analogous way to the chart
described in Section 5.5. Although in that case normalized settlement and
building width were used instead of Sav and B/DL (Figure 3.15). A surface
representing the maximum expected liquefaction induced settlement is pro-
posed. Such a surface has been obtained by interpolating a set of selected
maximum values in the case histories (�eld and experimental) database.

A contour plot of this curve is also shown to allow a quick estimation
of the maximum expected foundation settlement based on its dimension and
bearing pressure and on the lique�able soil depth at the site (Figure 7.5).
Contours of the maximum induced settlement curve are drawn in the area of
higher density of data (solid lines), although an extrapolation of the curve
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beyond this area of the plane is also proposed (dashed lines). However, this is
based on speculation as data points outside such area are scarce.

Figure 7.4: Field and experimental case histories plotted in a 3D space of axes
B/DL, q and Sav and proposed surface interpolating maximum settlement
values.

7.2.3 Soil Relative Density

One of the main criticisms commonly addressed to the Liu & Dobry chart is
that it does not account for di�erences in soil type and state within the �eld
case database it is based on. This is not entirely true, as the calculation of the
factor of safety against liquefaction of the soil, necessary for the estimation of
DL, is usually based on parameters which directly depend on the soil type and
density (see Chapter 2.3.2). However no distinction is made between di�erent
soils that are considered lique�able (FSL < 1).

Although soil relative density is recognized to signi�cantly in
uence the
pore pressure build up in lique�able soils and their strain potential, this is
not considered in the Liu & Dobry approach. Unfortunately it is di�cult to
classify the available �eld cases based on soil relative density. No case speci�c
information on soil type is available for the Niigata case histories (Yoshimi
& Tokimatsu, 1997), while relative density pro�les may be estimated for the
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Figure 7.5: Contour plot of maximum observed foundation settlement surface.

Luzon (Adachi et al., 1992) and Maule (see Chapter 3) cases based on SPT
blowcounts. However, SPT blowcounts often show high variability within the
same location, therefore it is challenging to associate a single value of relative
density to each �eld case. On the contrary, centrifuge models are characterized
by soil deposits of uniform relative density depending on the methodology used
for their preparation. Because of this characteristic it is preferable to evaluate
the e�ect of soil relative density on foundation settlement based on centrifuge
test data. Figure 7.6 shows the centrifuge test case histories database con-
sidered in this work color-coded as a function of the lique�able layer relative
density. As discussed in Section 6.4.1, the �gure clearly shows that the liq-
uefaction induced foundation settlement is inversely proportional to the soil
relative density.

As discussed in Section 2.3.2, �nes content and type may also in
uence
the liquefaction of foundation soil. However, all of the centrifuge tests consid-
ered were performed on soil models consisting of clean sand of di�erent types,
thus the e�ect of �nes on the liquefaction induced foundation settlement can-
not be evaluated based on the available experimental case history.
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Figure 7.6: E�ect of DR on foundation model settlement observed in centrifuge
tests.

7.2.4 Soil Layering

In the Liu & Dobry framework all cases are treated in the same way regardless
of the layering pattern. However, the presence of a sur�cial non-lique�able
layer in the soil deposit can signi�cantly alter the response of a structure
resting on such deposit. As discussed in Section 6.3.1, the e�ect of such layers
on the liquefaction induced foundation settlement depends on the sur�cial
layer’s strength and thickness. Sur�cial non-lique�able layers may result from a
relatively low ground water table (Figure 7.7b), from the presence of a sur�cial
deposit of dense cohesion-less soil (Figure 7.7c) or from a sur�cial crust of
cohesive soil (Figure 7.7d). Soil layering controls the type of failure mechanism
developing in the lique�ed soil underneath a shallow foundation. In particular,
the in
uence of the foundation induced stress distribution on the foundation
soil cyclic behaviour (see Section 7.2.1) decreases with increasing thickness
of the sur�cial non-lique�able layer (Figure 6.41). Non-lique�able soils are
usually characterized by a lower permeability with respect to lique�able ones.
As discussed in Section 6.3.2, the greater the di�erence in permeability between
the sur�cial non-lique�able layer and the underlaying lique�ed deposit, the
more the duration of the settlement of structures resting on the ground surface
is extended in time.

Figure 7.8 shows the foundation settlement observed in a number of cen-
trifuge tests for di�erent layering scenarios (only models having bearing pres-
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Figure 7.7: Schematic of the main patterns of soil deposit layering including a
layer of lique�able soil.

sure within the interval 120-150 kPa are considered). The experimental data
are superimposed onto the �eld cases database and to the boundary curves
described in Section 7.2, in Sav - B/DL space. Four di�erent scenarios are
considered, and the data are color-coded according to the speci�c scenario
they belong to (Figure 7.8). Despite the limited number of experimental cases
available, the same trend occurring in the �eld cases, which is the reduction of
foundation settlement for increasing B/DL ratio, is observed within the di�er-
ent layering scenarios. The centrifuge data show that the liquefaction induced
settlement in the presence of a sur�cial crust of non-lique�able material, is
inversely proportional to the undrained shear strength of such material. More-
over, the data also show that even in the case of a sur�cial non-lique�able layer
consisting of dense sand (i.e. cu = 0), a signi�cant reduction of the induced
settlement can occur for relatively thick capping layers (e.g. a few metres).

The importance of the thickness of the sur�cial non-lique�able layer in
reducing the likelyhood and magnitude of surface manifestations of sub-soil liq-
uefaction (e.g. structural settlement), was �rst investigated by Ishihara (1993).
He produced a chart relating the sur�cial manifestation of liquefaction to the
thicknesses of the sur�cial non-lique�able and of the underlying lique�able
layers, and to the earthquake motion peak ground acceleration (Figure 2.20).
However, such a chart does not take into account the type of material the
non-lique�able layer consists of, and thus its shear strength. Results from the
centrifuge tests described in Section 6.3, showed that a relatively thin sur�cial
layer of cohesive material characterized by a relatively high undrained shear
strength, may provide a substantial reduction of the induced foundation set-
tlement, of the same order of that observed in presence of a thick capping layer
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Figure 7.8: Centrifuge tests results for foundations resting on a sur�cial non-
lique�able layer.

of dense sand (Figure 6.32). These observations suggest that in order to ac-
count correctly for the e�ect of a sur�cial non-lique�able layer on the response
of a structure resting on such layer, in case of sub-soil liquefaction, both its
thickness and strength must be considered.

7.2.5 Input Motion Characteristics

The proposed approach does not account for the e�ect of di�erent earthquake
motions on the liquefaction induced settlement of shallow foundations. How-
ever, it is reasonable to assume that earthquakes of di�erent magnitude (and
thus duration) and frequency content, may result in di�erent amount of foun-
dation settlement. In a similar way to what was observed for the e�ect of soil
type in the previous section, earthquake intensity is indirectly accounted for
in the calculation of the factor of safety against liquefaction of the soil, neces-
sary for the estimation of DL. This implies that only earthquakes whose CSR
is higher than the soil CRR at a speci�c site are considered in the proposed
method. However no distinction is made between di�erent the motions capa-
ble of trigger liquefaction. As discussed in Section 6.2.1, besides determining
whether or not liquefaction is triggered in the foundation soil, the character-
istics of the earthquake motion also in
uence the rate of settlement of the
foundation (Figure 6.12).

During a given earthquake the soil type and layering pattern at di�erent
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Figure 7.9: Arias Intensity time histories of a set of strong earthquake motions.

locations may signi�cantly alter the seismic loading on the foundation, a�ect-
ing its response. This site speci�c behaviour makes the identi�cation of the
motion charcteristics e�ect more complex. In particular, for the �eld cases
considered, no footing acceleration records are available. Because of this issue
it was not possible to evaluate the e�ect of motion related variables within the
analyzed case histories database. Further testing in which the input motion is
a variable would be bene�cial to better understand the in
uence of the earth-
quake motion characteristic on the response of shallow foundations resting on
lique�able soils. In particular, results presented in this work suggest that Arias
intensity of a ground motion may be successfully correlated with the amount of
foundation settlement. Since the Maule earthquake is characterized by a high
Arias Intensity (Figure 7.9), it is representative of severe earthquake loading,
and therefore it is believed to represent a good choice for developing safe design
guidelines.

7.2.6 Proposed Method

An improved method is proposed which aims to overcome some of the short-
comings of the current methods listed in Section 7.1. This methodology aims
to provide an estimate of the maximum expected average foundation settle-
ment in the case of earthquake induced soil liquefaction (Figure 7.10). Four
input parameters are required to de�ne Smax;q;DR :

� Building width, B (m).
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� Lique�ed soil thickness, DL (m).

� Foundation bearing pressure, q (kPa).

� Pre-earthquake lique�able soil relative density, DR (%).

The proposed method does not take into account the soil layering pattern. As
discussed in Section 6.3 and 7.2.4, the presence of a sur�cial non-lique�able
layer can signi�cantly reduce the sub-soil liquefaction induced settlement of a
structure resting on such layer, depending on the layer strength and thickness.
In cases where a non-lique�able layer exists overlying the lique�ed portion the
foundation settlement estimate obtained should be adjusted to account for the
presence of the capping layer. Indications on how to account for the presence
of a sur�cial non-lique�ed soil crust are given in Sections 6.3 and 7.2.4.

A limitation of the proposed method is that it does not take into account
SSI e�ect. It is unclear whether SSI during earthquake shaking are detrimental
or concur to reduce the liquefaction induced footing settlement. This is be-
cause the additional cyclic load on the foundation soil resulting from SSI may
determine di�erent soil behaviour with respect to the static footing loading
alone.

The proposed methodology is based on the assumption that liquefaction
is triggered in the foundation soil, however, among the earthquakes able to
trigger soil liquefaction, a proportionality between shaking intensity and in-
duced foundation settlement may be expected. The currently available data
are not su�cient to establish such a relationship, as the �eld database avail-
able comes from a very limited number of earthquakes, therefore this aspect is
overlooked in the methodology and may represent a further improvement.
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Figure 7.10: Flowchart of proposed liquefaction induced foundation settlement
estimation method.
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Chapter 8

Conclusions

This thesis has described a program of �eld and centrifuge investigations aim-
ing to improve the understanding of the seismic performance of structures built
on shallow foundations resting on soil deposits containing layers of lique�ed
soil. The e�ects of several parameters, including footing bearing pressure, soil
layering, lique�ed layer thickness and soil relative density, on the measured
liquefaction induced foundation settlement have been investigated. By meet-
ing the objectives described in Section 1.2, the conclusions summarized below
have been drawn.

8.1 Summary of Findings

8.1.1 Maule Earthquake Field Observations

The analysis of 23 buildings that su�ered settlement and tilting as a conse-
quences of their foundation soil’s liquefaction during the February 27th 2010
Maule earthquake in Chile has been compared with the existing case history
database. This has revealed shortcomings in the current methodology used
to estimate this type of settlement, using the chart proposed by Liu & Dobry
(1997). Using such a chart in engineering practice may result in a signi�cant
underestimation of the expected liquefaction induced settlement, leading to
unconservative foundation design when thin lique�able layers are considered
(e.g. DL < B) (Figure 3.11). The collected �eld data suggest a possible corre-
lation between the building height/bearing pressure and liquefaction induced
settlement. In particular, heavier buildings on lique�able soils appear to su�er
reduced settlement.
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8.1.2 E�ect of Foundation Bearing Pressure

The results of the centrifuge tests presented in this work support the hypothesis
derived from the analysis of �eld cases (Figure 3.13), that whilst increasing the
bearing pressure of shallow foundations on lique�able soil causes an increase
in likely settlement, this is only true up to a certain stress level (here � 80-100
kPa), above which settlements may no longer increase with increased bearing
pressure and may even reduce. It is believed that the stress level at which
the increase in footing settlement ceases is not unique, and may be a function
of several variables including soil and foundation type and motion character-
istics. It appears from the testing performed that this may be attributable
to the stress distribution induced in the soil by the foundation itself, which
is controlled by its bearing pressure. In particular, the observed reduction of
footing settlement for high bearing pressure has been associated with the high
initial shear stresses existing in correspondence of the footing edges. Both the
magnitude of these stresses and the extension of their area of in
uence are
directly proportional to the footing bearing pressure (Figure 2.32; 6.19; 7.3).

8.1.3 Excess Pore Pressure Generation Pattern in the
Foundation Soil

Excess pore pressure measurements from the centrifuge tests described in this
work showed that, in the presence of a footing resting directly on lique�able
soil, limited or no softening occurred in the soil below the footing edge during
earthquake shaking. In particular, these observations were seen to be valid
for footings exerting a relatively high bearing pressure (here > 90 kPa) on
the soil. Areas of the foundation soil which experienced least pore pressure
increase were seen to correspond with those where the footing induced initial
shear stresses �i were a maximum (Figure 6.19). In the tests performed an
� value of approximately 0.4 represented the threshold value above which no
pore pressure increase was observed. Partially drained loading conditions were
observed in all of the centrifuge tests performed, with signi�cant drainage
taking place during shaking to equalize the initial inhomogeneous excess pore
pressure generation (Figure 6.17).

8.1.4 E�ect of Soil Layering

From the analysis of both the available �eld cases and centrifuge test results,
it is evident how the soil layering pattern strongly a�ects the settlement of
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a structure having shallow foundations. Centrifuge tests, predominantly con-
sisting of footing models resting directly on loose saturated sand deposits,
were performed to investigate the behaviour of shallow foundations on lique-
�able soil. The tests showed that this was a worst case scenario among all
the possible strati�cation patterns. In particular, the presence of a surface
non-lique�able crust was seen to cause a reduction of the induced foundation
settlement (Figure 6.32; 7.8). As discussed in Section 6.3 and 7.2.4, the re-
duction of the observed settlement was seen to be directly proportional to
the thickness of the crust layer and to its shear strength. In the �eld, sur�-
cial non-lique�able layers may result from a relatively low ground water table,
from the presence of a sur�cial deposit of dense cohesion-less soil or from a
sur�cial crust of cohesive soil (Figure 7.7). If the sur�cial crust is character-
ized by lower permeability with respect to the underlying lique�able soil, the
duration of foundation settlement may be extended in time proportionally to
the di�erence in permeability between the two materials (Figure 2.19; 6.38).

8.1.5 Thickness of the Lique�ed Layer

The post-liquefaction settlement of the ground surface in level soil deposits is
directly proportional to the amount of lique�ed soil in such soil deposits, thus
to the thickness of the soil layer that actually lique�es (Ishihara & Yoshimine,
1992). This indirectly depends on the earthquake motion magnitude, as stronger
motions are able to trigger liquefaction at greater depths in a given soil. How-
ever, structures resting on the ground surface usually undergo higher settle-
ments with respect to the free-�eld, as signi�cant deviatoric deformations take
place in the foundation soil. These deviatoric deformations rather than on the
extent of liquefaction at the site, mainly depend on the structure characteristics
and seismic soil-structure interaction. Because of this reason, it is non-trivial
to establish a direct correlation between liquefaction induced structure settle-
ment and lique�ed layer thickness. The amount of lique�ed soil underneath a
structure built on shallow foundations is believed to control the type of failure
mechanism generating within it (Figure 6.16). In particular, it is assumed that
a particular thickness of lique�ed layer exists beyond which a further increase
does not in
uence anymore the type of failure mechanism (Figure 6.7; 6.8).

The deviatoric deformations in the foundation soil cease with the end of
earthquake shaking. Further structure settlement may however occur which
are due to the re-consoildation of soil during post-liquefaction excess pore
pressure dissipation. Similarly to those occurring in free-�eld soil deposits,
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these deformations are of a volumetric type and are linearly dependent on the
thickness of the lique�ed soil at the site (Figure 6.9).

8.1.6 E�ect of Soil Relative Density

Soil relative density is well acknowledged to in
uence the soil’s cyclic response.
In particular, the denser the soil the higher its cyclic resistance (Figure 2.13).
Moreover, unlike its resistance to liquefaction, the soil potential for post-
liquefaction volumetric strain decreases with increasing relative density. These
two aspects of soil’s mechanical behaviour result in the observed reduction of
liquefaction induced structure settlement for increasing soil relative density
(Figure 6.47; Figure 7.6). Although the observed strain in the foundation soil
are inversely proportional to its relative density, the magnitude of the excess
pore pressure generated in the foundation soil as a consequence of earthquake
shaking does not appear to depend on this speci�c state variable. In the cen-
trifuge tests performed in this work, similar values of excess pore pressure were
recorded underneath the footings for relative density varying from 40 to 80%.
However, a signi�cant cyclic regain of strength may take place in denser soil,
as a consequence of an increased dilative behaviour. This was not the case in
the centrifuge tests described in this work, although moderate transients can
be observed in the excess pore pressure traces of test MF2 (Figure 6.48).

8.1.7 Constitutive Behaviour of Lique�ed Soil

The constitutive behaviour of the loose lique�able sand during earthquake
shaking was analyzed, and shown to di�er from that derived from element test-
ing of saturated loose sand samples. In particular, following the development
of signi�cant excess pore pressure, the softened soil was seen to undergo smaller
cyclic shear strains in the centrifuge models with respect to those measured
in element testing in previous studies (Hardin & Drnevich, 1972; Ishibashi
& Zhang, 1993; Seed & Idriss, 1970). The observed di�erence is ascribed to
the di�erent loading conditions experienced by the soil in dynamic centrifuge
modelling with respect to element testing. While in element testing the cyclic
shear stresses are imposed to the soil by means of the testing equipment, in
centrifuge models (as well as in the �eld) such stresses are controlled by the
ability of the soil to transmit the vertically propagating shear waves, and thus
on the degree of soil softening. As a consequence, once signi�cant excess pore
pressures develop in the soil, the experienced cyclic shear stresses drop. De-
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spite the low shear modulus of the softened soil, the resulting shear strains
also reduce, as the driving force for such strains has diminished (Figure 6.10;
Figure 6.52). This behaviour can be clearly observed in the centrifuge tests
performed as part of this study, comparing the constitutive behaviour of the
soil in the �rst few cycles of shaking (Figure 6.54), when no signi�cant softening
has occurred, and that for the entire earthquake motion (Figure 6.55).

Because of this peculiar behaviour, care should be taken when using
the degradation curves available in the literature to describe the constitutive
behaviour of loose saturated sands in the �eld. In particular, the shear stress
‘self-limiting’ mechanism described in this study is expected to be more critical
for high magnitude earthquake motions, where signi�cant soil softening may
potentially occur and persist over a relevant portion of the shaking duration.

8.1.8 Improved Method for Liquefaction Induced Foun-
dation Settlement Estimation

An improved chart for the estimation of the liquefaction induced foundation
settlement has been proposed (Figure 7.10). A good correlation has been ob-
served between the B=DL ratios and the observed absolute average settlement
for the available database of �eld and experimental cases. In particular, the
proposed chart better captures the response of footings resting on ‘thin’ lique-
�able layers with respect to the Liu & Dobry chart (Figure 2.23). The e�ect
of building weight on the induced footing settlement has also been included in
the proposed method. A chart for the estimation of the maximum expected
liqufaction induced footing settlement as a function of building width, foun-
dation bearing pressure and lique�able layer thickness, is proposed based on
the available database of �eld and experimental cases (Figure 7.5). Further
re�nement of this estimate can be obtained from the equation reported in Fig-
ure 7.10 as a function of the soil’s relative density. This equation is based on
Figure 7.6.

As discussed above, the results from the centrifuge tests performed as
part of this study as well as those available in the literature, clearly suggest
that other variables, such as the layering pattern of the soil deposit, are also
important in determining the amount of foundation settlement. However, the
available data are not su�cient to establish a direct correlation between these
variables, and therefore these were not included in the proposed method.
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8.2 Recomendations for Future Work

Further experimental work on the topic treated in this work is needed. In
particular the relationship between the observed liquefaction induced building
settlement and the characteristics of the superstructure (e.g. higher centre of
mass), ground motion (e.g. frequency content) and non-lique�able crust (e.g.
permeability and shear strength) should be further investigated.

As explained in Section 3.2.6, the centre of mass of the footing models
used in the centrifuge tests was kept to a minimum resulting in structures with
low H/B ratio. Taller structures (i.e. higher centre of mass) are expected
to ’feel’ larger overturning moments during earthquake shaking, which may
exacerbate the SSI e�ects between the foundation and the underlying soil.
Foundation rocking induces cyclic variations of the stress distribution in the
foundation soil, possibly in
uencing the build-up of excess pore pressure.

Besides the amplitude of earthquake loading (i.e. PGA), the build-up of
excess pore pressure is also in
uenced by the loading rate (i.e. frequency of
earthquake shaking). Because of this, the frequency content of a given ground
motion may contribute to determining the degree of softening occurring in the
foundation soil and hence the resulting foundation settlement. However the
e�ects of loading rate depend on the wave propagation through the soil deposit
at the site, and are therefore strongly site speci�c.

Section 6.3 describes the e�ect of a non-lique�able sur�cial crust on the
observed liquefaction induced foundation settlement. Rock
our consolidated
to di�erent levels was used to create a lower permeability sur�cial layer in the
centrifuge tests described in this section. Crusts consisting of di�erent materi-
als (e.g. clay) should be investigated in future studies. In particular, a better
understanding of the relationship between the observed foundation settlement
and properties such as crust thickness, shear strength and permeability, would
be valuable for the interpretation of �eld case studies and for the development
of procedures for the estimation of potential foundation settlement in case of
sub-soil liquefaction.
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