Resistance heterogeneity and small airways asthma phenotype

<table>
<thead>
<tr>
<th>Journal:</th>
<th>American Journal of Respiratory and Critical Care Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>Blue-201905-1060LE</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>LE - Letter-to-the-Editor</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>27-May-2019</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Lipworth, Brian; University of Dundee, Scottish Centre for Respiratory Research, School of Medicine, Nienwells Hospital Kuo, Chris; University of Dundee, Scottish Centre for Respiratory Research;</td>
</tr>
<tr>
<td>Subject Category:</td>
<td>1.11 Clinical Asthma < ASTHMA</td>
</tr>
<tr>
<td>Keywords:</td>
<td></td>
</tr>
</tbody>
</table>
Title: Resistance heterogeneity and small airways asthma phenotype

Authors: Brian Lipworth & Chris RuiWen Kuo
Scottish Centre for Respiratory Disease
Ninewells Hospital and Medical School
University of Dundee
Scotland, UK, DD1 9SY

Correspondence to Brian Lipworth, Tel: +44 1382 383188, Fax: +44 1382 383259
b.j.lipworth@dundee.ac.uk

Dr Lipworth reports personal fees and non-financial support from Thorasys, grants, personal fees and non-financial support from Chiesi, grants and personal fees from Teva, grants, personal fees and non-financial support from AstraZeneca, grants and personal fees from Sanofi, during the conduct of the study; grants, personal fees and non-financial support from Boehringer Ingelheim, personal fees from Novartis, personal fees from Cipla, personal fees from Circassia, personal fees from Vectura, personal fees from Glenmark, personal fees from Dr Reddys, personal fees from Lupin, personal fees from Genentech, outside the submitted work; and Son of Dr Lipworth is employee of AstraZeneca.

Dr. Kuo reports personal fees from Pfizer/ Bristol-Myers Squibb, personal fees from Circassia, personal fees from AstraZeneca, outside the submitted work.

Word Count: 232
To the editor,

We read with interest the elegant modelling data of Foy et al (1) who reported a 40% narrowing of small airways was associated with clinically relevant alterations in asthma control and quality of life. Such effects were commensurate with observed responses to biologics on the frequency dependent heterogeneity of the resistance component of respiratory impedance measured by impulse oscillometry (IOS), where the mean (95% CI) pooled effect on R5-R20 was -0.04 (-0.03,-0.05) kPa/l.s.

To further put these changes into clinical context, we previously measured IOS in response to propranolol induced bronchoconstriction in asthma patients where there was a 0.05 kPa/l.s increase in R5-R20 corresponding to a 104.1% (22.6, 185.6) change, along with a subsequent bronchodilator response to salbutamol of -0.17 kPa/l.s and -115.6% (-55.6,-175.7) respectively (2). Moreover in a health informatics evaluation of 302 asthma patients there was a 45% increased risk of worse control in relation to oral corticosteroid use and 47% in relation to inhaled salbutamol use measured over a two year period when comparing cohorts of asthma patients using a cut off value for R5-R20 of less than or greater than 0.07 kPa/l.s (3).

Hence the small airways asthma phenotype reflected by abnormal R5-R20 is associated with poorer control. We believe the findings of Foy et al (1) are important in further validating the use of IOS in determining effects of treatments on small airways of patients with asthma.
References

