

University of Dundee

Logical Support for Bike-Sharing System Design

Ţuţu, Ionuţ; Chiriţă, Claudia Elena; Lopes, Antónia; Fiadeiro, José Luiz

Published in:
From Software Engineering to Formal Methods and Tools, and Back

DOI:
10.1007/978-3-030-30985-5_10

Publication date:
2019

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Ţuţu, I., Chiriţă, C. E., Lopes, A., & Fiadeiro, J. L. (2019). Logical Support for Bike-Sharing System Design. In M.
H. ter Beek, A. Fantechi, & L. Semini (Eds.), From Software Engineering to Formal Methods and Tools, and
Back: Essays Dedicated to Stefania Gnesi on the Occasion of Her 65th Birthday (pp. 152-171). (Lecture Notes
in Computer Science; Vol. 11865). Springer Verlag. https://doi.org/10.1007/978-3-030-30985-5_10

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 09. Jul. 2025

https://doi.org/10.1007/978-3-030-30985-5_10
https://discovery.dundee.ac.uk/en/publications/87e267c9-4bd5-4808-b499-67f95d401c99
https://doi.org/10.1007/978-3-030-30985-5_10

Logical Support for Bike-Sharing System Design

Ionuţ Ţuţu1,2, Claudia Elena Chiriţă2, Antónia Lopes3, and José Luiz Fiadeiro2

1 Simion Stoilow Institute of Mathematics of the Romanian Academy, Romania
ittutu@gmail.com

2 Department of Computer Science, Royal Holloway University of London, UK
claudia.elena.chirita@gmail.com, jose.fiadeiro@rhul.ac.uk

3 LASIGE and Faculdade Ciências, Universidade de Lisboa, Portugal
malopes@ciencias.ulisboa.pt

Abstract. Automated bicycle-sharing systems (bss) are a prominent
example of reconfigurable cyber-physical systems for which the locality
and connectivity of their elements are central to the way in which they
operate. These features motivate us to study bss from the perspective
of Actor-Network Theory – a framework for modelling cyber-physical-
system protocols in which systems are networks of actors that are no
longer limited to programs but can also include humans and physical
artefacts. In order to support logical reasoning about information-flow
properties that occur in bss, we use a logical framework that we have
recently developed for actor networks, which results from a two-stage
hybridization process. The first stage corresponds to a logic that captures
the locality and connectivity of actors in a given configuration of the
network; the second stage corresponds to a logic of possible interactions
between actors, which captures the dynamics of the system in terms of
network reconfigurations. To illustrate the properties that can be checked
using this framework, we provide an actor-network specification of a
particular bss, and use a recently developed tool for hybridized logics to
highlight and correct an information-flow vulnerability of the system.

1 Introduction

Bike-sharing systems (bss) facilitate urban transport by allowing users to borrow
bicycles from a location and return them at the destination of their journey. The
journeys are usually short, and the loan of a bicycle is conditioned by a fee.

The bss model appeared in the 1960s and has since evolved through several
generations. The last decade in the history of bss stands out for a rapid growth:
each year, they are more widespread and their number, sheer size and complexity,
keep increasing. This has led to reshaping cities, and has promoted bike-sharing
systems as one of the main means of urban transportation. If the first genera-
tions of bss were vulnerable to vandalism and incorrect usage, the recent third
generation has tackled issues concerning accessibility, automated payment, and
bike and station distribution across cities.

We are now witnessing a major step forward through which dockless and
electric bicycles feature as solutions to a more balanced distribution, more

2 I. Ţuţu et al.

responsible parking and more equitable use of the public space. These features
have contributed to the success of the fourth-generation bss; from the few small
schemes available in 2015, users can now benefit from city-scale systems with
more than 17 million bikes across the globe [21]. In fact, one may even argue
that bss have become a victim of their own success: communities and owning
organisations were not prepared for such a rapid spread. From the oversupply of
bike-sharing systems in China that led to vast bicycle graveyards, to frequent
attacks on the cyber-security of the systems and users’ privacy breaches, fourth
generation bss are facing various new problems and threats.

In this paper, inspired by Stefania Gnesi’s work on bike-sharing systems [2,3]
(which is just one of her extensive contributions to formal methods in software
engineering), we propose to model a bss using tools and techniques that are
specific to our field of work. We develop a formal specification of a bss using an
actor-network framework based on hybrid logic that we have recently presented
in [12], and show how the logics advanced therein can be used in conjunction with
off-the-shelf formal-specification tools and theorem provers in order to reason
about the design of a bss. Through this, we hope to demonstrate how the devel-
opment and analysis of such models can contribute towards the implementation
of a viable bss transport network. This analysis process could be part of the
feasibility studies and project design processes that precede the implementation
of a bss, or part of the monitoring and evaluation that needs to be conducted
throughout its operation.

The bss model under consideration. The case study that we consider in this
paper is simple. We focus on a fourth generation bike-sharing system operating
in a city that is divided into several geographic regions (e.g., by geo-fencing). The
regions of the city are connected through infrastructure elements such as roads,
pathways, and bridges. To borrow a bicycle, users must connect to the system
and make a request from the region where they are located. Once they collect a
bicycle, users must input the destination of their journey before travelling. If, at
any time during their travel, the destination region becomes full, with no free
parking spaces, the system automatically offers rewards at that region. Rewards
are an alternative to the usual (external) redistribution of bicycles across the
city; they could be free rides or credit, and are meant to encourage nearby users
to borrow bicycles from that region in order to make room for incoming bicycles.
Once users reach their destination, they must secure their bicycles to physical
docks or in designated parking spaces in order to end their journeys.

The specification and verification process. In the following sections, we gradually
formalize the bss presented above using notions of actor-network theory and
hybrid logic. Concepts and background information about the logics used are
introduced on the fly as we progress towards the full specification of the system.
In Section 2, we provide an informal overview of the main concepts involved
in actor networks, which we illustrate with the bss. This is continued with the
presentation of the two hybrid-logic formalisms that we use in the paper, LNC (in
Section 3) and LAN (in Section 4). Then, in Section 5, we discuss the hybrid-logic

Logical Support for Bike-Sharing System Design 3

specification of the bss. Lastly, in Section 6, we analyse the design and show that
any implementation of the bss has the following properties:

– If a region has a free dock, then no rewards are offered at that region.
– If a reward is offered at a region, then a user is expected to arrive there.

Whilst the first property is desired to hold, the second indicates a vulnerability
because it discloses private information about the movement of users. We show
how to address this through small changes in the design.

2 Actor networks

Actor Networks (ANANts) are a framework for modelling cyber-physical-system
protocols originally proposed in [23] in the context of physical security. They are
based on Latour’s Actor-Network Theory [17] in recognition of the fact that such
protocols involve a number of entities (called actors, which in concrete situations
may correspond to people, devices, locations, etc.) that have shared agency, and
for which interaction, rather than computation, is the major concern. Beyond
that, ANANts make location a primary concern, which is essential for physical
security as well as other protocols. This brings ANANts in line with spatial logics and
frameworks that deal with the physical distribution of systems [1,6]; in contrast
with those studies, which offer extensive support for topological properties, in
ANANts we only record the locality of actors in relation to other actors.

The structure of actor networks. There are three major steps to follow when
modelling a cyber-physical protocol using ANANts. The first one requires the identi-
fication of the structural aspects of an actor network:

– The relevant sorts (or kinds) of actors.
For the bss case study that we consider in this paper, we distinguish the
human users of the system, the bicycles that they can use to travel, the docks
where the bicycles can be locked, as well as the various regions where docks
are available for users to borrow or return bicycles.

– The means through which actors can store state attributes, knowledge or
data, which for simplicity we capture through propositional symbols.
For instance, in our running example, we use a propositional symbol (which
may be regarded as a Boolean flag) specific to regions to indicate whether
users are offered rewards (free rides) for borrowing bicycles at a given region.

– Channel types, which account for the ability of actors to connect to other
actors. Every channel type has a source and a target, both of which are (actor)
sorts, and can capture transfer of knowledge, intent, or specific actions.
For the bss, we consider channels of type: ask through which users (the
source of the channel) may request to borrow a bicycle at particular regions
(the target of the channel); and path between regions (i.e. with the same
source and target) to indicate the fact that users can travel directly between
two given regions (if they choose to do so) – in other words, we use path to
capture the physical topology of the bss network.

4 I. Ţuţu et al.

Interactions in actor networks. In order to model cyber-physical-system protocols,
we also need to consider the network configurations in which an ANANt may find
itself. Every such configuration gives a detailed account of:

– The exact channels that are available between every two actors – that is, the
actor interconnectivity in a particular configuration.

– How each actor is located in relation to other actors. For instance, this can
capture the fact that, at a given moment in the ‘execution’ of the bss, a
bicycle is locked in a specific dock in a region; or that a user is travelling on
a specific bicycle, and that both the user and the bicycle are in a region.

– For every actor, the propositional symbols that are true for that actor.

Network configurations can change as a result of interactions taking place.
Through an interaction, we identify specific conditions that should be met for a
reconfiguration to occur, and we describe the effects of that reconfiguration. For
the bss, we consider four kinds of interactions, which correspond to:

– borrowing/taking a bicycle from a dock (in a region);
– travelling (on a bicycle) between two regions connected by a path;
– returning a bicycle (to a dock) once the destination is reached; and
– offering rewards (which is done automatically by the system) at full regions.

As an example of the conditions associated with interactions, we assume that a
user can borrow a bicycle only if both the user and the bicycle are in the same
region; moreover, the user must have requested to travel from that region, and
the bicycle should be available in a dock in that region, where it is locked.

Specification for actor networks. Building on the above ingredients, the third
major step in the development of an ANANt-based design consists in describing
the structure and the dynamics of the system by means of axioms written in a
hybrid-logic language that is suitable for actor networks.

Through such axioms, we specify which configurations are well defined: for
example, users can return bicycles at a region only if they are physically present
at that region, on their bicycles, and if there are free docks available. Moreover,
we also specify how networks evolve in time (as a result of reconfigurations) and
the way their evolution is related to the interactions between actors.

We formalize and describe all these steps in detail, and give concrete examples
of actors, channels, configurations, interactions, etc., in the following sections.

Logical support for actor networks. The mathematical structures that support
the development and analysis of ANANts are provided by a kind of hybrid logic
(which we have recently proposed in [12]) whose models are hierarchical Kripke
structures with two layers:

1. a base layer, specific to the states/configurations of a network; in this case,
the possible worlds correspond to the actors of the network, which are the
same for all configurations, while the accessibility relations capture their
locality and connectivity, which may vary from one configuration to another;

Logical Support for Bike-Sharing System Design 5

2. an upper layer, specific to the dynamics of a network; in this case, the possible
worlds correspond to network configurations (i.e., base-layer structures), and
the accessibility relations capture the transitions that are possible between
configurations (i.e., discrete reconfigurations of the network).

There are several defining features of actor networks that distinguish them
from ordinary two-layered Kripke structures:

– Firstly, as mentioned above, all configurations of a given network share the
same underlying set of actors; this means that the cyber-physical systems
modelled using actor networks are closed. However, structures can be of
arbitrary size, even infinite.

– Secondly, the base-layer accessibility relation that corresponds to the locality
of actors is necessarily functional and acyclic; this means that, for every
configuration, the locality of actors in relation to one another is given by a
forest (typically of finite depth) whose nodes are the actors of the network.

– Thirdly, every network reconfiguration is determined by a specific interaction
between the actors at the source of that reconfiguration, where by interaction
we mean a pre-defined set of locality and connectivity constraints.

The logic of actor networks, hereafter denoted LAN, can be obtained by way
of a double constrained-hybridization process, along the lines of the original
construction presented in [12]. In a nutshell, a hybridization of a logic, regarded
as a base logic, consists in an exogenous enrichment of that logic (in the sense
of [20]) with features that are characteristic of hybrid logic (see [4,5]); this is done
both at the syntactic level – by introducing nominals, modalities, and hybrid-logic
operators – and at the semantic level, through Kripke structures whose possible
worlds are labelled with models of the base logic.

In many cases, this process is constrained, in the sense that the Kripke
structures of the resulting hybridized logic are subject to additional semantic
constraints. For instance, the base-logic models that label the possible worlds
of a Kripke structure may share certain information (through what are usually
referred to as rigidity constraints); or some of the accessibility relations may be
required to be reflexive, preorders or, moreover, equivalences, as in the T, S4,
and S5 variants, respectively, of hybrid propositional logic.

As this short introduction to hybridization suggests, the process is applicable
to a broad spectrum of logics, and its result is not a single, definite logical system,
but a class of logical systems, where variations arise from tuning hybridization
parameters such as the precise hybrid features added to the base logic, or the
semantic constraints imposed on Kripke structures. This idea is explored in [9,19],
where hybridization is formalized in the context of Goguen and Burstall’s theory
of institutions [15].4 Actor-network logic(s) can be developed much in the same
way: the main parameter is the base logical system, which by hybridization gives
rise to a formalism for reasoning about the base layer of actor networks; and
4 The papers [13] and [11] can be regarded as precursors of [19]; both deal with enriching
abstract logics – one with temporal features, and the other with modal features.

6 I. Ţuţu et al.

by hybridizing that logic further, we obtain an even richer logical system that
provides support for both levels of actor networks.

Despite the logic-independent nature of the construction, for the purpose of
this contribution, and to make the paper more accessible to readers who may
not be familiar with hybridization or institution theory, we choose to focus on a
concrete logical system. We build this logic in two steps: first, we define a logic
of network configurations, called LNC, as a hybridization of propositional logic;
then, we introduce the logic of actor networks (LAN) as a hybridization of LNC.

A short comparison with the developments reported in [12] is in order. Our
previous work also deals with a two-stage constrained hybridization aimed at
developing logics for actor networks, but there are subtle and important differences
to consider. One is that the base logical system corresponds in that case to the
three-valued Łukasiewicz logic. Another is that the presentation relies heavily
on the graph-theoretic notion of an actor-network schema, which determines
an upper bound for the size of the models considered – in [12], all models are
finite. Last but not least, the use of quantifiers over state variables is no longer
restricted to the base layer of the logic of actor networks; instead, we can combine
such quantifiers freely with any of the other sentence-building operators.

3 Network configurations

In what follows, we define the main building blocks of LNC: its signatures (struc-
tured collections of symbols), models (providing interpretations for the symbols
declared in signatures), sentences (built from symbols declared in signatures), and
satisfaction relations (establishing whether a property, formalized as a sentence,
holds at a given model). All are interspersed with relevant fragments of the bss
specification that we are progressively building.

Definition 1. An LNC-signature is a tuple Σ = 〈S, P,N,K〉, where:

– S is a set whose elements we call sorts or kinds of actors,
– P = {Ps}s∈S is an S-indexed family of sets of propositional symbols,
– N = {Ns}s∈S is an S-indexed family of sets of actor names, and
– K = {Ks t}s,t∈S is an S × S-indexed family of sets of channel types.

bss sorts In line with the informal description of the actor-network model5 of
the bss from Section 2, the LNC-signature that we consider here contains the
following four sorts: User, Bike, Dock, and Region.

bss propositional symbols We also declare four propositional symbols:

travelling : User6 to indicate if a user is travelling or not towards some region;
freeDock : Dock to indicate that there is no bicycle locked in a particular dock;
5 Not to be confused with the formal concepts of model from Definitions 2 and 6.
6 We use this colon notation to separate a propositional symbol from its sort, and also
to separate a channel type from the two sorts on which it is defined.

Logical Support for Bike-Sharing System Design 7

fullRegion : Region to indicate that all docks in a region have bicycles in place;
rewardOffered : Region to capture the fact that users are offered free rides when

borrowing bicycles from docks located in a particular region.

bss actor names At this stage, we use no actor names. However, actor names
may be introduced on the fly when dealing with quantified sentences – and in
that case they are sourced from variables. In LNC, a state variable (or variable,
for short) for a signature Σ = 〈S, P,N,K〉 is a triple (x, s,Ns), usually denoted
simply by x : s, where x is the name of the variable, and s is its sort.7 Variables
determine extensions of signatures as follows: for every S-sorted set X of Σ-
variables, Σ[X] = 〈S, P,N ∪X,K〉 is an LNC-signature that includes Σ.

bss channel types We consider five channel types:

ask : User Region to signal a user’s intent to borrow a bicycle at a given region;
choose : User Bike to capture the selection of a bicycle (to borrow) by a user;
choose : User Dock for the selection of a dock (to return a bicycle) by a user;
travelTo : User Region to specify the region towards which a user is travelling;
path : Region Region to indicate that two regions are connected by a path.

The models of an LNC-signature Σ are Kripke structures that interpret the
actor names in Σ as possible worlds, and the channel types as relations on worlds.

Definition 2. Let Σ = 〈S, P,N,K〉 be an LNC-signature. A model, or Kripke
structure, of Σ is a triple 〈A,C,M〉, where 〈A,C〉 is a Kripke frame defining,
for every two sorts s, t ∈ S, actor name n ∈ Ns, and channel type κ ∈ Ks t:

– a set As of possible worlds, or actors, of sort s,
– an element As,n of As, i.e., an actor of sort s corresponding to the name n,
– an accessibility relation, or channel, As t,κ between the sets As and At,
– a functional and acyclic relation C on

⊎
{As | s ∈ S} that captures the

locality of actors, and for which a C a′ reads as a is in/on/at a′,

and M is a family of sets Ms,a ⊆ Ps (the propositions of sort s that hold at a)
indexed by sorts s ∈ S and actors a ∈ As. When there is no risk of confusion, we
may drop the sorts from the notations of As,n, As t,κ, and Ms,a.

Note the properties of the second component of an LNC-model: C is a special
kind of accessibility relation that is used here to capture the placement (location)
hierarchy on actors. Equivalently, it could be presented as a (rooted) forest
structure over the set of all actors. We denote its inverse by B.

A typical example of a Kripke structure for the LNC-signature of the bss can
be seen in Figure 1. We use graphical representations of LNC-models to make the
correspondence between these semantic structures and the actual configurations
of the bss easier to perceive. The model is finite; it consists of six actors, depicted
using circles, which are distributed and related as follows:
7 We annotate the variables of sort s with the set of actor names of sort s in order to
ensure that there are no accidental clashes between variables and actors names.

8 I. Ţuţu et al.

– AUser = {U}, ABike = {B}, ADock = {D1,D2}, and ARegion = {R1,R2};
– the channels are represented using labelled arrows, and they are all singletons

in this case; for instance, Aask = {(U,R1)} and Apath = {(R1,R2)};
– the relation C is depicted through the nesting of nodes; we have, for example,

U C R1 to capture the fact that U is currently in the region R1, D1 C R1 to
capture the fact that D1 is a dock in that region, and B C D1 to capture the
fact that the bicycle B is currently locked in D1;

– the propositions that hold at given actors are indicated in a more coded
way, by symbolic decorations placed on their corresponding circles; we use
the symbols > for travelling, − for freeDock, + for fullRegion, and ? for
rewardOffered; for instance, MR1 = {rewardOffered}, and MD2 = {freeDock}.

U B

D1

R1F

D2 −

R2

ask

choose path

Fig. 1. An LNC-model for the bss

The fact that the actors of a network are sorted has important consequences
on the way we define the sentences of the logic of network configurations.

Definition 3. Consider an LNC-signature Σ = 〈S, P,N,K〉 and let s be a sort
in S. The sentences of sort s over Σ are defined by the following grammar:

ϕ ::= p | n | ¬ϕ | ϕ→ ϕ | @n′ ϕ′ | 〈κ〉ϕ∗ | 〈π〉ϕ† | ∃X · ϕ§

where p ∈ Ps and n ∈ Ns are propositional symbols and actor names of sort s,
n′ ∈ Ns′ is an actor name (of any sort s′), ϕ′ is a Σ-sentence of sort s′, κ ∈ Ks s∗

is a channel type with source sort s and target sort s∗, ϕ∗ is a Σ-sentence of
sort s∗, π is a distinguished and new parent modality, ϕ† is a Σ-sentence (of
any sort), X is a finite set of Σ-variables, and ϕ§ is a Σ[X]-sentence of sort s.

Other propositional connectives such as conjunction (∧), disjunction (∨), and
equivalence (↔) can be defined as usual. The dual modal operators [κ], where
κ is a channel type, and [π] for the parent modality, as well as the universal
quantifier over state variables can also be defined in the conventional way:

[κ]ϕ = ¬ 〈κ〉 ¬ϕ [π]ϕ = ¬ 〈π〉 ¬ϕ ∀x · ϕ = ¬∃x · ¬ϕ

The satisfaction relation between LNC-models and sentences is defined, as
for many logical systems, by induction on the structure of sentences, and is
parameterized by actors (i.e., possible worlds of the Kripke structures considered).

Logical Support for Bike-Sharing System Design 9

Definition 4. Let 〈A,C,M〉 be a Σ-model and a an actor of sort s in A. Then:

– 〈A,C,M〉 �a p if p ∈Ma, when p is a propositional symbol of sort s;

– 〈A,C,M〉 �a n if a = An, when n is an actor name of sort s;

– 〈A,C,M〉 �a ¬ϕ if 〈A,C,M〉 2a ϕ;
– 〈A,C,M〉 �a ϕh → ϕc if 〈A,C,M〉 �a ϕh implies 〈A,C,M〉 �a ϕc;
– 〈A,C,M〉 �a @n′ ϕ

′ if 〈A,C,M〉 �a′ ϕ′, where a′ = An′ ;

– 〈A,C,M〉 �a 〈κ〉ϕ∗ if there exists (a, a∗) ∈ Aκ such that 〈A,C,M〉 �a∗ ϕ∗;

– 〈A,C,M〉 �a 〈π〉ϕ† if there exists a† B a such that 〈A,C,M〉 �a† ϕ†; this
implicitly means that the actor a† is of the same sort as ϕ†;

– 〈A,C,M〉 �a ∃X · ϕ§ if there is a Σ[X]-expansion 〈A§,C,M〉 of 〈A,C,M〉
such that 〈A§,C,M〉 �a ϕ§, where by expansion of 〈A,C,M〉 we mean a
Σ[X]-model that interprets all symbols in Σ in the same way as 〈A,C,M〉.

Notice that the satisfaction relation is also sorted: we evaluate LNC-sentences ϕ
of sort s only at actors whose sort is s. Given such a sentence ϕ of sort s, we
write 〈A,C,M〉 � ϕ when 〈A,C,M〉 �a ϕ for all actors a ∈ As.

As an example, consider the following sentence, which is satisfied by the bss
model in Figure 1. Concerning the parsing of sentences, we rely on the usual
precedence rules (e.g. unary sentence-building operators have a higher precedence
than binary operators) and on parentheses to make sure no ambiguities arise.

∃{u : User; b : Bike; d : Dock; r : Region} ·
@u
(
〈π〉 (r ∧ rewardOffered))

(1)

∧ 〈ask〉 r
(2)

∧ 〈choose〉 (b ∧ 〈π〉 (d ∧ 〈π〉 r))
(3)

)
Intuitively, this sentence captures situations where a user (indicated by the
operator @u) is in a region r (in the sense that u and r are connected through
the parent modality) where free rides are offered (as per part 1 of the sentence);
the user u has requested to travel from that region (part 2 of the sentence), and
has selected a bicycle available there (part 3 of the sentence).

4 Network dynamics

The signatures, models, and sentences of the logic of actor networks (LAN) are
obtained through a hybridization of LNC. In this case, we add nominals that
identify initial configurations of networks, and interactions that act as modalities
and are interpreted as transition relations between configurations.

By interaction for an LNC-signature Σ we mean a pair consisting of a name ι
and an existentially quantified sentence ∃X ·ϕ over Σ such that ϕ is quantifier-free.
Intuitively, the sentence ϕ describes specific locality and connectivity relationships
between the actors named in X (such as the fact that various regions of the bss
may be connected by paths). We usually denote interactions by ι : ∃X · ϕ.

10 I. Ţuţu et al.

Definition 5. A LAN-signature is a tuple Ω = 〈S, P,N,K, I, Λ〉, where:

– 〈S, P,N,K〉 is an LNC-signature,
– I is a set of (names of) initial configurations, and
– Λ is a set of interactions (with distinct names) for 〈S, P,N,K〉.

In the context of the bss, we extend the signature presented in Section 3 by
adding a single name init for initial configurations, and four interactions. For each
interaction, we also present a graphical representation (LNC-model) in Figure 2.

Take : ∃{u : User; b : Bike; d : Dock; r : Region} · ϕ
where ϕ = @u (〈π〉 r ∧ 〈ask〉 r ∧ 〈choose〉 b) ∧@b 〈π〉 (d ∧ 〈π〉 r)
This means that users can begin their journeys at a region only if they have
requested to travel from that region (through an ask channel) and there are
bicycles available there that they could borrow (through a choose channel).

Travel : ∃{u : User; b : Bike; r1, r2 : Region} · ϕ
where ϕ = @u (travelling ∧ 〈π〉 (b ∧ 〈π〉 r1)) ∧@r1 〈path〉 r2
That is, travellers can move only between regions that are connected by paths,
and in order to do so, they must use bicycles.

Return : ∃{u : User; b : Bike; d : Dock; r : Region} · ϕ
where ϕ = @u (〈π〉 (b ∧ 〈π〉 r) ∧ 〈travelTo〉 r ∧ 〈choose〉 (d ∧ freeDock ∧ 〈π〉 r))
This means that, in order to return a bicycle, a traveller should be in control
of that bicycle and should have reached already the destination; moreover,
there should be a free dock available at that region (to lock the bicycle).

Reward : ∃{u : User; r : Region} ·@u 〈travelTo〉 (r ∧ fullRegion)

That is, in order to pre-emptively free some of the docks in a region, that
region should be full, and there should be a user travelling towards it.

u b

d

r

ask

choose

u
>

b

r1

r2
path

u

b

d
−

r

travelTo

choose

u

r
+

travelTo

Take Travel Return Reward

Fig. 2. Graphical representations of the four bss interactions

Similarly to LNC, the models of a LAN-signature Ω are also Kripke structures,
but the nominals are interpreted as configurations (i.e., LNC-models) and the
interactions as transition relations between configurations.

Logical Support for Bike-Sharing System Design 11

Definition 6. Consider a LAN-signature Ω = 〈S, P,N,K, I, Λ〉. A Kripke model
〈D,C〉 of Ω consists of a domain |D|, i.e., a plain set of worlds, together with
– a possible world Di ∈ |D| for each configuration name i ∈ I,
– a transition relation Dι ⊆ |D| × |D| for each interaction name ι in Λ,

and a family of 〈S, P,N,K〉-models Cw = 〈Aw,Cw,Mw〉, for w ∈ |D|, such that
– for all possible worlds w,w′ ∈ |D| and sorts s ∈ S we have (Aw)s = (Aw′)s;
– for every possible world w ∈ |D| and interaction ι : ∃X · ϕ in Λ, there exists
a transition (w,w′) ∈ Dι if and only if Cw � ∃X · ϕ.

When there is no risk of confusion, we may also denote (w,w′) ∈ Dι by w
ι−−→ w′.

Figure 3 depicts a model for the bss that corresponds to the journey of a
user from one region (R1) to another (R2). This model has four possible worlds,
C0 − C3, of which C0 is the interpretation of init; and it has three transitions,
one for each of the following interactions: Take, Travel, and Return.

U B

D1

R1

D2
−

R2

ask

choose path

C0 (init)

U
>

B

D1
−

R1

D2
−

R2
path

travelTo

C1

D1
−

R1

U
>

B

D2
−

R2

path

travelTo

choose

C2

D1
−

R1

U B

D2

R2

path

C3

Take

Travel

Return

Fig. 3. A possible LAN-model for the bss

In order to define the syntax of the logic of actor networks, we consider a
different kind of extension of a signature: not only with state variables, but
with network variables as well. In LAN, a network variable for a signature Ω =
〈S, P,N,K, I, Λ〉 is a pair (y, I), where y is the name of the variable.8 For any S-
sorted set X of state variables for 〈S, P,N,K〉 and any set Y of network variables
for Ω, we obtain the extended signature Ω[X;Y] = 〈S, P,N ∪X,K, I ∪ Y,Λ〉.
8 Similarly to the logic LNC, we annotate LAN-variables with the set of configuration
names in order to avoid accidental name clashes when building the extension.

12 I. Ţuţu et al.

Definition 7. The LAN-sentences over Ω = 〈S, P,N,K, I, Λ〉 are given by:

ψ ::= ϕ | i | ¬¬ψ | ψ ⇒ ψ | i : ψ | 〈|ι|〉ψ | ∃∃X;Y · ψ′

where ϕ is an LNC-sentence over 〈S, P,N,K〉, i ∈ I is a configuration name, ι is
an interaction name in Λ, X and Y are finite sets of state and network variables,
respectively, and ψ′ is a LAN-sentence over the extended signature Ω[X;Y].

For quantified sentences, when the set Y is empty, we also write∃∃X · ψ′ in
place of ∃∃X;Y · ψ′. Similarly, when X is empty, we write∃∃Y · ψ′.

Notice that, similarly to LNC-sentences, LAN-sentences are built using hybrid-
logic operators, but in this case we use a distinct double-symbol notation; more-
over, the local-satisfaction operators (represented as @n in LNC) are denoted
here by means of a colon. We extend the use of this notation to other Boolean
connectives (∧∧, ∨∨, ⇔), to the dual modal operators ([[_]]), and to the universal
quantifier (∀∀), which are defined as in Section 3.

Definition 8. Let 〈D,C〉 be a LAN-model for a signature Ω = 〈S, P,N,K, I, Λ〉,
and w ∈ D a possible worlds. The local satisfaction of Ω-sentences by 〈D,C〉 at
w is defined by structural induction, as follows:

– 〈D,C〉 �w ϕ if Cw � ϕ, when ϕ is an LNC-sentence over 〈S, P,N,K〉;
– 〈D,C〉 �w i if w = Di, when i is a configuration name;

– 〈D,C〉 �w¬¬ψ if 〈D,C〉 2w ψ;
– 〈D,C〉 �w ψh ⇒ ψc if 〈D,C〉 �w ψh implies 〈D,C〉 �w ψc;

– 〈D,C〉 �w i : ψ if 〈D,C〉 �w
′
ψ, where w′ = Di;

– 〈D,C〉 �w 〈|ι|〉ψ if there exists a transition w ι−−→ w′ such that 〈D,C〉 �w
′
ψ;

– 〈D,C〉 �w∃∃X;Y · ψ′ if there exists a Ω[X;Y]-expansion 〈D′, C ′〉 of 〈D,C〉
such that 〈D′, C ′〉 �w ψ′, where by expansion of 〈D,C〉 we mean a Ω[X;Y]-
model 〈D′, C ′〉 such that (a) D′ has the same domain as D and gives the
same interpretation as D for configuration names and interactions in Ω, and
(b) for every world w ∈ |D′|, C ′w is an 〈S, P,N ∪X,K〉-expansion of Cw.

We write 〈D,C〉 � ψ when 〈D,C〉 �w ψ for all possible worlds w ∈ |D|.

The definition above justifies the use of different notations for the sentence-
building operators of LAN. Formally, the relationship between the two kinds
of operators is described in the list below, where 〈D,C〉 is an Ω-model with
non-empty sets of actors for each sort, w ∈ |D| is a possible world, ϕ, ϕh, ϕc, ϕ1,
ϕ2 are 〈S, P,N,K〉-sentences, and ϕ′ is an 〈S, P,N ∪X,K〉-sentence.

– 〈D,C〉 �w ¬ϕ only if 〈D,C〉 �w¬¬ϕ
– 〈D,C〉 �w ϕh → ϕc only if 〈D,C〉 �w ϕh ⇒ ϕc

– 〈D,C〉 �w ϕ1 ∧ ϕ2 if and only if 〈D,C〉 �w ϕ1 ∧∧ ϕ2

– 〈D,C〉 �w ϕ1 ∨ ϕ2 if 〈D,C〉 �w ϕ1
∨∨ ϕ2

Logical Support for Bike-Sharing System Design 13

– 〈D,C〉 �w ϕ1 ↔ ϕ2 only if 〈D,C〉 �w ϕ1 ⇔ ϕ2

– 〈D,C〉 �w ∃X · ϕ′ if 〈D,C〉 �w∃∃X · ϕ′

– 〈D,C〉 �w ∀X · ϕ′ if and only if 〈D,C〉 �w ∀∀X · ϕ′

Most of the above properties are one-way implications (‘if’, or ‘only if’),
because the global satisfaction of LNC-sentences relies on an implicit universal
quantification (over actors). Equivalences are guaranteed to hold only for those
sentence-building operators that commute with universal quantifiers.

5 On the design of a bike-sharing system

The two logical systems presented in this paper, LNC and LAN, enable us to
give a detailed formal account of the way in which bike-sharing systems operate,
hence opening the possibility for formal verification (using suitable proof tech-
niques) at a later stage of development. To that end, in this section we discuss a
formal specification of the bss. By formal specification we mean a pair 〈Ω,Γ 〉,
where Ω is a LAN-signature and Γ is a finite set of LAN-sentences over Ω. The
actual bike-sharing networks defined by 〈Ω,Γ 〉 correspond to the Ω-models that
satisfy all sentences in Γ . A specification of this kind is commonly known as a
flat, or unstructured, specification. There are several ways to build structured
specifications from these; for that purpose, various modularization techniques
have been explored in the literature, especially around the notion of institution
(see, e.g., the monograph [25]) – and they can be used in conjunction with LNC
and LAN without special intervention. However, for the purpose of this work,
and for simplicity, we describe the specification as a plain set of sentences over
the LAN-signature for the bss discussed in Section 4.

We consider three categories of sentences: (a) sentences that ensure that the
base-layer Kripke structures (LNC-models) are actual, well-defined configurations
of the bss; (b) sentences that define the potential initial configurations of the bss;
(c) sentences that describe the effects that interactions have on the structure
and properties of the configurations; and (d) sentences that deal with the frame
problem9 by specifying non-effects of the interactions in terms of attributes of the
configurations that are preserved or reflected along transitions. For each category,
we discuss below a few important examples. The full specification of the bss is
available in [27] through the repository engine Ontohub [8].

In order to make the following LNC and LAN-sentences easier to read, we make
explicit all quantifiers over state variables; cf. Definition 8, where the satisfaction
of a LNC-sentence at a world is implicitly quantified over actors of suitable sort.

Well-defined configurations The sentences in this category concern the
locality and connectivity of the actors, as well as the way in which these structural
aspects are related to propositional attributes such as travelling and rewardOffered.
9 This problem is notorious for axiomatizing the way in which states change when an
event occurs; various solutions have been proposed in connection to formalisms such
as the situation calculus, event calculus, or default logic, among others; see, e.g. [26].

14 I. Ţuţu et al.

Take, for instance, the following two LNC-sentences, which ensure that at most
one traveller can use a bicycle at a given time (1), and that, in any configuration,
at most one bicycle can be locked in one of the docks (2).

∀{u1, u2 : User; b : Bike} ·@u1
〈π〉 b ∧@u2

〈π〉 b→ @u1
u2 (1)

∀{b1, b2 : Bike; d : Dock} ·@b1 〈π〉 d ∧@b2 〈π〉 d→ @b1 b2 (2)

In regard to connectivity, there is a special relationship between the channels
of type ask : User Region and those of type choose : User Bike. The aim is to
ensure that whenever a user requests to travel from a region (through a channel
of type ask), if there is a bicycle available in that region (i.e., a bicycle locked in
a dock, and not claimed by another traveller), then the user can obtain a bicycle
(perhaps even that bicycle) through a choose channel.

We specify this requirement in two steps: first, in (3) and (4) we provide
preconditions for the existence of ask and choose channels; then, in (5) we describe
choose as an injective partial mapping from users to bicycles (all in the same
region), and in (6) we ensure that the interpretation of choose is maximal.

∀{u : User; r : Region} ·@u (〈ask〉 r → 〈π〉 r) (3)
∀{u : User; b : Bike} ·@u (〈choose〉 b

→ ∃{d : Dock; r : Region} · (〈ask〉 r ∧@b 〈π〉 (d ∧ 〈π〉 r))) (4)
∀{u1, u2 : User; b1, b2 : Bike} ·

@u1
〈choose〉 b1 ∧@u2

〈choose〉 b2 → (@u1
u2 ↔ @b1 b2) (5)

∀{u : User; b : Bike; d : Dock; r : Region} ·
(@u 〈ask〉 r → ∃{b1 : Bike} ·@u 〈choose〉 b1)
∨ (@b 〈π〉 (d ∧ 〈π〉 r)→ ∃{u1 : User} ·@u1

〈choose〉 b) (6)

There is a similar relationship between the channels of type travelTo : User
Region and the channels of type choose : User Dock. For space considerations,
and because the entire specification is available in [27], we do not present it
explicitly here.

For propositional attributes, we consider the following characterizations:

∀{u : User} ·@u travelling↔ ∃r : Region ·@u 〈travelTo〉 r (7)
∀{d : Dock} ·@d freeDock↔ ¬∃b : Bike ·@b 〈π〉 d (8)
∀{r : Region} ·@r fullRegion↔ ∀d : Dock ·@d (〈π〉 r → ¬ freeDock) (9)

Initiality constraints The only restriction that we impose on the interpretation
of init is that no user is travelling at that configuration, and no reward is offered.

init : (¬∃{u : User} ·@u travelling ∧ ¬∃{r : Region} ·@r rewardOffered) (10)

Interaction effects To axiomatize the effects of interactions, we make use of
LAN-sentences of the form ψh ⇒ 〈|ι|〉ψc or ψh ⇒ [[ι]]ψc, where ι is an interaction,
ψh is a precondition for ι, and ψc is postcondition for ι – which holds either at one

Logical Support for Bike-Sharing System Design 15

of the configurations reached through a ι-transition, or at all such configurations,
depending on whether we use the possibility or the necessity operator.

∀∀{u : User; b : Bike; d : Dock; r : Region} ·
@u (〈π〉 r ∧ 〈ask〉 r ∧ 〈choose〉 b) ∧@b 〈π〉 (d ∧ 〈π〉 r)10

⇒ [[Take]] @u (〈π〉 (b ∧ 〈π〉 r) ∧ ∃{r1 : Region} · 〈travelTo〉 r1) (11)
∀∀{u : User; b : Bike; r1, r2 : Region} ·

@u (travelling ∧ 〈π〉 (b ∧ 〈π〉 r1)) ∧@r1 〈path〉 r2
⇒ 〈|Travel|〉@u 〈π〉 (b ∧ 〈π〉 r2) (12)

∀∀{u : User; b : Bike; d : Dock; r : Region} ·
@u (〈π〉 (b ∧ 〈π〉 r) ∧ 〈travelTo〉 r ∧ 〈choose〉 (d ∧ freeDock ∧ 〈π〉 r))
⇒ [[Return]] (@b 〈π〉 (d ∧ 〈π〉 r) ∧@u (〈π〉 r ∧ ¬ travelling)) (13)

∀∀{r : Region} · ∃{u : User} ·@u 〈travelTo〉 (r ∧ fullRegion)

⇒ [[Reward]] @r rewardOffered (14)

Consider, for instance, the sentence 12 describing the effects of the interaction
Travel. By the definition of Travel (on page 10), we know that the interaction can
lead to a change of any configuration where a traveller u, currently in a region
r1, can follow a path in order to reach another region, r2. The axiomatization of
Travel ensures that there exists indeed a reconfiguration of the system (as per the
semantics in LAN of the possibility operator) such that u reaches the region r2.

The frame problem The sentences(11)–(14) above capture successfully the
direct effects that the interactions may have, but convey no information about
their non-effects. For example, Travel does not affect the relative locality of
bicycles with respect to the docks. We specify this property in (15) and (16).

∀∀{b : Bike; d : Dock} ·@b 〈π〉 d⇒ [[Travel]] @b 〈π〉 d (15)
∀∀{b : Bike; d : Dock} · 〈|Travel|〉@b 〈π〉 d⇒ @b 〈π〉 d (16)

A considerable number of other trivial sentences of this kind need to be added
to the bss specification; see [27]. In addition, some of the sentences describing
non-effects are necessarily conditional. For instance, the reward offered at a region
is preserved by Take if no dock in that region can be freed by the interaction.

∀∀{r : Region} ·@r rewardOffered

∧ ¬∃{u : User; b : Bike; d : Dock} ·@u 〈choose〉 (b ∧ 〈π〉 (d ∧ 〈π〉 r))
⇒ [[Take]] @r rewardOffered (17)

A different situation arises when considering the ‘reflection’ of the rewardOffered
properties. If, say, a reward is offered at a region r after a Reward-transition, then
10 Note that 〈ask〉 b entails 〈π〉 b; moreover, under the hypothesis @u 〈choose〉 b, and

by (3), (4), and the functionality of π, @u 〈ask〉 r and ∃{d : Dock} ·@b 〈π〉 (d ∧ 〈π〉 r)
are semantically equivalent. Still, to give a better picture of the configurations affected
by Take (or by any of the other interactions), we write the precondition in full.

16 I. Ţuţu et al.

either the reward is also offered (at the same region r) at the source configuration
of the transition (in which case, the property is preserved by the interaction), or
it is generated by the transition as an effect of Reward.

∀∀{r : Region} · 〈|Reward|〉@r rewardOffered

⇒ @r rewardOffered ∨ ∃{u : User} ·@u 〈travelTo〉 (r ∧ fullRegion) (18)

It is important to highlight the fact that, under the current specification, Reward
is the only interaction through which rewards can be offered at given regions.
That is, for any interaction ι different from Reward, we have:

∀∀{r : Region} · 〈|ι|〉@r rewardOffered⇒ @r rewardOffered (19)

6 Information-flow properties

Generally, in the context of actor networks, by information flow we refer to
the transfer of information from one configuration to another as a result of a
reconfiguration process. A particular application of information-flow properties is
to characterize invariants. For that purpose, suppose 〈Ω,Γ 〉 is the actor-network
specification of the bss described in Section 5. We say that a LAN-sentence ψ
over some extension Ω[X;Y] of Ω is an invariant for 〈Ω,Γ 〉 when, for every
interaction ι, ∀∀X;Y · ψ ⇒ [ι]ψ is a semantic consequence of Γ – that is, when
〈D,C〉 � ∀∀X;Y ·ψ ⇒ [ι]ψ for all models 〈D,C〉 that satisfy all sentences in Γ .11

We analyse the following two invariants of the bss, denoted by FD and RO.

FD : If a region has a free dock, then no reward is offered at that region.

∀{d : Dock} ·@d (freeDock→ [π]¬ rewardOffered) (20)

RO : If a reward is offered at a region, then a traveller is expected to arrive there.

∀{r : Region} ·@r rewardOffered→ ∃{u : User} ·@u 〈travelTo〉 r (21)

To verify that the sentences FD ⇒ [[ι]]FD and RO ⇒ [[ι]]RO are indeed conse-
quences of 〈Ω,Γ 〉, where ι is any of the four interactions of the bss, we use a
recently developed extension of the Heterogeneous Tool Set (Hets) [22], called
H [7], that provides support for specification and reasoning in hybridized logics.

In particular, for reasoning purposes, H implements a verification-by-trans-
lation method based on theoretical results presented in [10]. This involves three
main steps: (1) translating the verification problem to first-order logic using a
suitable encoding of the hybridized logic, (2) solving the problem there using
automated-theorem-proving technologies that have already been developed for
first-order logic (such as SPASS [28] or Vampire [24]), and (3) transferring the
result of the verification process back to the hybridized logic.
11 When both X and Y are empty, we can further prove that ψ holds at all reachable

configurations of the model of 〈Ω,Γ 〉 by verifying that Γ entails init : ψ.

Logical Support for Bike-Sharing System Design 17

Details of this process, including intermediate results that assist the theorem
provers in establishing that FD and RO are invariants, can be found in [27].

Dealing with vulnerabilities As the two invariants discussed above show,
the analysis of information-flow properties can be used to validate the design of
the bss by providing formal guarantees of desired properties such as FD; but the
same process can also be used to prove the existence of vulnerabilities: by RO,
it follows that any implementation of the current bss design may inadvertently
disclose information about the users’ whereabouts.

What we briefly demonstrate next is that we can emend the design presented
in Section 5 to prevent the vulnerability described by RO while maintaining the
desired property FD. For that purpose, it suffices to examine the proof of RO
(as provided through the H extension of Hets), which reveals that the invariant
hinges on the fact that rewards are deterministically offered by Reward-transitions,
and only by Reward-transitions. This suggests that one way to correct the design is
by dropping the sentences described in (19), or by replacing them with sentences
that express the fact that rewards can also be offered by Take, Travel, or Return
when the region is full. Intuitively, the effect of the change is that rewards may
now be non-deterministically offered by any of the four interactions. As a final
verification, we have checked that the change does not affect FD.

To prove that RO is no longer deducible from the specification, all we need
is to find a model of the specification that does not satisfy RO. We obtain such
a model from the Kripke structure depicted in Figure 3, by letting the Return-
transition generate a reward at R2 in the configuration C3. This model satisfies
all bss axioms presented in Section 5 except (19), and does not satisfy RO.

7 Conclusions and further work

In this paper, we have presented an actor-network approach to the design and
analysis of a bike-sharing system. We have shown how various aspects of the bss
can be formalized using a combination of two hybrid-logic formalisms: a logic of
network configurations, which deals with static aspects of the bss, and a logic
of actor networks, which is defined on top of the logic of network configurations
and deals with dynamic aspects of the system – i.e., the way reconfigurations
occur as a result of interactions between actors.

The full specification of the bss has been analysed using a recently developed
extension of Hets that provides support for hybrid(ized) logics. This includes
support for parsing, static analysis, as well as formal verification – which relies on
a general encoding of hybridized logics into first-order logic. Using the toolset, we
have confirmed two information-flow properties of the bss: first, that the rewards
at a region automatically cease to be offered when one of the docks in that
region becomes free; and second, that all regions where rewards are offered have
users travelling towards them. The latter shows that the system is vulnerable by
design; we have used Hets again to identify (and then correct) the part of the
specification that is responsible for the vulnerability.

18 I. Ţuţu et al.

Beyond the actual analysis of the bss, one of the benefits of conducting a case
study of this kind is that it confirms that the formal specification & verification
tools that we have available today (thanks to a decades-long series of theoretical
developments on the foundations of algebraic specification) are already well
capable of dealing with complex, real-world reconfigurable systems. At the same
time, it shows some of the limitations of the current technology – or, at least, of
the one discussed in this paper. Currently, for the bss, there is no way to ensure
that all travellers can actually reach their destination (or that they eventually do).
This is due to the limited expressive power of hybrid logics. A simple and elegant
solution that we aim to pursue further is to consider dynamic-logic operators as
in [16,18,14]. This raises a series of new and interesting challenges because some
of the key results on hybrid logics, such as their encoding into first-order logic,
cannot be generalized in a straighforward way to dynamic logics.

References

1. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Proceedings of the 15th ACM-IEEE Interna-
tional Conference on Formal Methods and Models for System Design, MEMOCODE
2017, Vienna, Austria, September 29 – October 02, 2017. pp. 146–155. ACM (2017)

2. ter Beek, M.H., Fantechi, A., Gnesi, S.: Challenges in modelling and analyzing
quantitative aspects of bike-sharing systems. In: Leveraging Applications of Formal
Methods, Verification and Validation. Technologies for Mastering Change – 6th
International Symposium. LNCS, vol. 8802, pp. 351–367. Springer (2014)

3. ter Beek, M.H., Gnesi, S., Latella, D., Massink, M.: Towards automatic decision
support for bike-sharing system design. In: Software Engineering and Formal
Methods. LNCS, vol. 9509, pp. 266–280. Springer (2015)

4. Blackburn, P.: Representation, reasoning, and relational structures: A hybrid logic
manifesto. Logic Journal of the IGPL 8(3), 339–365 (2000)

5. Braüner, T.: Hybrid Logic and its Proof-Theory, Applied Logic Series, vol. 37.
Springer (2011)

6. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking spatial logics for
closure spaces. Logical Methods in Computer Science 12(4) (2016)

7. Codescu, M.: Hybridisation of institutions in Hets. In: 8th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2019, June 3–6, 2019, London, UK
(2019), Tool available at http://imar.ro/~diacon/forver/forver.html

8. Codescu, M., Kuksa, E., Kutz, O., Mossakowski, T., Neuhaus, F.: Ontohub: A
semantic repository engine for heterogeneous ontologies. Applied Ontology 12(3-4),
275–298 (2017)

9. Diaconescu, R.: Quasi-varieties and initial semantics for hybridized institutions. J.
Log. Comput. 26(3), 855–891 (2016)

10. Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first-order logic.
Mathematical Structures in Computer Science 26(5), 745–788 (2016)

11. Diaconescu, R., Stefaneas, P.S.: Ultraproducts and possible worlds semantics in
institutions. Theor. Comput. Sci. 379(1-2), 210–230 (2007)

12. Fiadeiro, J.L., Ţuţu, I., Lopes, A., Pavlovic, D.: Logics for actor networks: A
two-stage constrained-hybridisation approach. Journal of Logical and Algebraic
Methods in Programming 106, 141–166 (2019)

http://imar.ro/~diacon/forver/forver.html

Logical Support for Bike-Sharing System Design 19

13. Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. Journal
of Logic, Language and Information 1(3), 203–233 (1992)

14. Găină, D., Ţuţu, I.: Birkhoff completeness for hybrid-dynamic first-order logic.
In: Automated Reasoning with Analytic Tableaux and Related Methods – 28th
International Conference, TABLEAUX 2019, London, UK, September 3–5, 2019,
Proceedings. Springer (2019)

15. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

16. Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-based
systems. In: Fundamental Approaches to Software Engineering – 22nd International
Conference. LNCS, vol. 11424, pp. 79–97. Springer (2019)

17. Latour, B.: Reassembling the Social: An Introduction to Actor-Network Theory.
Oxford University Press (2005)

18. Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: A logic for the stepwise
development of reactive systems. Theor. Comput. Sci. 744, 78–96 (2018)

19. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of in-
stitutions. In: Algebra and Coalgebra in Computer Science. LNCS, vol. 6859, pp.
283–297. Springer (2011)

20. Mateus, P., Sernadas, A., Sernadas, C.: Exogenous semantics approach to enriching
logics. In: Essays on the Foundations of Mathematics and Logic, Advanced Studies
in Mathematics and Logic, vol. 1, pp. 165–194. Polimetrica (2005)

21. Moon-Miklaucic, C., Bray-Sharpin, A., de la Lanza, I., Khan, A., Re, L.L.,
Maassen, A.: The evolution of bike sharing: 10 questions on the emergence of
new technologies, opportunities, and risks. Tech. rep., Washington, DC: World
Resources Institute (2019), available online at http://www.wri.org/publication/
evolution-bike-sharing

22. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set (Hets).
In: Proceedings of 4th International Verification Workshop in connection with
CADE-21. vol. 259. CEUR-WS.org (2007)

23. Pavlovic, D., Meadows, C.A.: Actor-network procedures (extended abstract). In: Dis-
tributed Computing and Internet Technology. LNCS, vol. 7154, pp. 7–26. Springer
(2012)

24. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Commun. 15(2-3), 91–110 (2002)

25. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal
Software Development. Monographs in Theoretical Computer Science, an EATCS
Series, Springer (2012)

26. Shanahan, M.: Solving the frame problem – a mathematical investigation of the
common sense law of inertia. MIT Press (1997)

27. Ţuţu, I., Chiriţă, C., Lopes, A., Fiadeiro, J.: A hybrid-logic specification of a BSS.
Ontohub (2019), https://ontohub.org/forver/BSS.dol

28. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: SPASS version 3.5. In: Automated Deduction. LNCS, vol. 5663, pp. 140–145.
Springer (2009)

http://www.wri.org/publication/evolution-bike-sharing
http://www.wri.org/publication/evolution-bike-sharing
https://ontohub.org/forver/BSS.dol

