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Abstract

Aminoacyl-tRNA synthetases are ubiquitous and essential enzymes for protein synthesis and also a variety 

of other metabolic processes, especially in bacterial species. Bacterial aminoacyl-tRNA synthetases 

represent attractive and validated targets for antimicrobial drug discovery if issues of prokaryotic versus 

eukaryotic selectivity and antibiotic resistance generation can be addressed. We have determined high 

resolution X-ray crystal structures of the Escherichia coli and Staphylococcus aureus seryl-tRNA 

synthetases in complex with aminoacyl adenylate analogues and applied a structure-based drug discovery 

approach to explore and identify a series of small molecule inhibitors that selectively inhibit bacterial seryl-

tRNA synthetases with greater than two orders of magnitude compared to their human homologue, 

demonstrating a route to selective chemical inhibition of these bacterial targets. 

Introduction

The fidelity of protein synthesis is absolutely reliant upon the provision of specific amino acids by 

aminoacyl-tRNA molecules for use by the ribosome.1 Errors in this process cause defects in protein folding 

and function leading to cell death.2 Each of the 20 amino acids has its own aminoacyl-tRNA synthetase 

(aaRS) which catalyses the attachment of the amino acid to its cognate tRNA. Despite the fact that all aaRSs 

share the same overall mechanism, it has long been recognised that there is clearly significant diversity 

between bacterial, mammalian and archaeal enzymes to allow for synthetic and natural product 

discrimination between pathogen and host enzymes3-5.  In addition, in some situations, several different 

amino acids are able to bind to non-cognate aaRSs, requiring an in vivo editing function allowing for the 

possibility of exploiting this feature for future antimicrobial discovery6. For example, the amino acid serine 

is able to bind alanyl-tRNA synthetase (AlaRS) and threonyl-tRNA synthetase (ThrRS) in addition to its 

cognate seryl-tRNA synthetase (SerRS)7. This incorrect binding is rectified in nature by numerous 

proofreading mechanisms6, 8. However, in this context, one of the major challenges presented by aaRS as 

targets for antimicrobial drug discovery is their ubiquitous presence in organisms and particularly with 

respect to bacterial infection in human tissues requiring exploration of strategies that allow for bacterial 

selectivity to prevent issues of specificity and toxicity9. 

Aminoacyl sulfamoyl adenosines (aaSAs) are non-hydrolysable mimetics of the aminoacyl adenylate 

intermediate (aaAMP) formed during the aaRS catalytic cycle and are potent inhibitors of these enzymes.10 

A significant number of natural product inhibitors mimic these reaction intermediates forming tight binding 

complexes with substantial affinity competing effectively with natural aaAMP substrates. Of those, 

mupirocin is the most prominent example that has found clinical utility as a topical treatment for soft tissue 

infections. Mupirocin targets the IleRS enzyme and utilises a hydrophobic “tail” in addition to an aminoacyl 
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adenylate warhead to bind to its target11.  By contrast to many single target antibiotics in clinical use, seryl 

sulfamoyl adenosine (SerSA, 1) can bind and inhibit AlaRS and ThrRS in addition to SerRS and hence is 

a multi-targeting inhibitor7, 12. It can be predicted therefore that SerSA would require mutations in several 

of these enzymes before a resistance phenotype could be conferred. 

The protein databank (PDB) contains X-ray crystal structures of SerRS from Thermus thermophilus13, 14, 

Methanosarcina barkeri15, Pyrococcus horikoshii16, Candida albicans17, Arabidopsis thaliana18, 

Methanopyrus kandleri19, Trypanosoma brucei, human cytoplasmic20 and bovine mitochondrial21. It is 

therefore evident that there is a distinct lack of structural data available for clinically relevant bacteria. 

Although the Escherichia coli SerRS22 structure was solved in 1990, the coordinates were not deposited in 

the PDB thereby hampering efforts in antimicrobial structure-based drug discovery (SBDD) based on this 

structure. Moreover, the X-ray crystal structure of human SerRS in complex with SerSA reveals specific 

conformational changes upon catalysis necessary for function, which are not found in bacterial homologues 

providing further perspectives upon differences in structure that may allow prokaryotic from eukaryotic 

specificity.20 In this study we set out to increase the available structural information for human bacterial 

pathogens and use this to investigate the possibilities for designing bacteria-specific SerRS enzyme 

inhibitors using a SBDD approach.    

Results & Discussion

Crystal structures of SerRS in complex with SerSA inhibitor.

The crystal structures of full-length SerRS from E. coli (EcSerRS) and Staphylococcus aureus (SaSerRS) 

in complex with the SerSA inhibitor were solved at 1.50 Å and 2.03 Å, respectively (Fig. 1, Supplementary 

Table 1). In both structures, the SerSA inhibitor is unambiguously determined by the electron density maps 

(Supplementary Fig. 1).  SerSA is bound deep into a well-conserved SerRS aminoacylation catalytic 

pocket and stabilized by a network of hydrogen bond interactions from the residues in motif 2, motif 3 and 

the serine-binding TxE motif (Fig. 1a) - a typical binding mode in all class 2 aaRSs. Superimposition of 

EcSerRS, SaSerRS and human cytoplasmic SerRS (HsSerRS, PDB ID: 4L8720) structures show a high 

degree of similarity as evidenced by the RMSD values (Supplementary Table 2).  The orientation of the 

bound SerSA inhibitor is comparable in all three structures. However, the N-terminal tRNA-binding domain 

(i.e. the two-stranded anti-parallel coiled coil making the long helical arm) protruding away from the active 

site pockets in the compared structures shows large conformational changes resulting in a high RMSD.20 

The purine ring of the adenosine in SerSA interacts with a conserved phenylalanine (F287 in EcSerRS, 

F281 in SaSerRS and F321 in HsSerRS) via a π- π stacking interaction (Fig. 1b). The M284 in EcSerRS, 
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L278 in SaSerRS and V318 in HsSerRS are positioned such that they provide main chain hydrogen bond 

interactions with the ring nitrogens (Fig. 1c).  The seryl moiety of SerSA extends deep into the pocket to 

interact with T237, E239, R268, E291 and S391 in EcSerRS and equivalent residues in SaSerRS and 

HsSerRS. We note the presence of a highly coordinated water molecule 3Å away from the N3 of the adenine 

moiety of the adenylate (Fig. 1b-c), a feature that has previously been described in class II synthetase 

enzymes.23  In SaSerRS the octahedral coordination of a magnesium ion (Fig 1c) is observed in the active 

site via Glu349, the SerSA sulfone and water molecules, reminiscent of the magnesium ion observed in 

both the Candida albicans SerRS and HsSerRS.

Figure 1: Binding mode of SerSA to E. coli and S. aureus SerRS. a: Superposition of EcSerRS (blue, 

PDB ID: 6R1M) and SaSerRS (gold, PBD ID: 6R1N) with SerSA bound (boxed). b: Interactions of SerSA 

(green sticks) with EcSerRS chain A. Water represented as a red sphere. Hydrogen bond interactions shown 

as black dashes. c: Interactions of SerSA with SaSerRS. Coordinated magnesium ion represented as a green 

sphere.
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Design and synthesis of the selectivity probe.

The X-ray crystal structures of EcSerRS, SaSerRS and the HsSerRS (PDB ID: 4L87) were superimposed 

in Maestro (Schrödinger, LLC).24 Interestingly, a thorough analysis of the active site pockets revealed a 

small extension in the hydrophobic cavity adjacent to the C-2 position of SerSA (1) in the EcSerRS and 

SaSerRS structures. This pocket is centred around a glycine at positions 396 and 390 in EcSerRS, SaSerRS 

respectively. This hydrophobic cavity extension is absent in the HsSerRS (Fig. 2b) as it is filled by the 

bulkier side-chain of threonine at position 434. The conserved nature of this structural difference is reflected 

in amino acid sequence alignments of selected Gram-positive and Gram-negative bacterial pathogens when 

compared to cytoplasmic and mitochondrial variants of the human, bovine and mouse SerRS enzymes 

(Supplementary Fig. 2a). Moreover, inspection of an alignment of the Gram-positive and Gram-negative 

bacterial pathogens shows this glycine to be part of a 12 amino acid region of conservation ending in an 

arginine (397 in EcSerRS, 391 in SaSerRS) suggestive of an invariant bacterial structural feature absent in 

eukaryotic homologues. (Supplementary Fig. 2b). Exploiting such a conserved feature for antimicrobial 

drug discovery extends the range of bacteria that can potentially be targeted whilst also reducing the chances 

of mutation-induced drug resistance. 

A focused structure-activity relationship (SAR) series with variants at the C-2 position of SerSA adenosine 

was designed to investigate the steric tolerance of the hydrophobic cavity and to establish the degree of 

selectivity for the bacterial SerRS over the HsSerRS (Fig. 3a). In silico molecular docking of the designed 

selectivity probes into the active site pockets of the EcSerRS, SaSerRS and HsSerRS crystal structures 

(Supplementary Methods, Supplementary Table 3) and visual analysis of the predicted docking poses 

(Fig. 2c-d) suggested that chloro- and iodo-seryl sulfamoyl adenylate derivatives 2 and 3 respectively 

would not achieve selectivity since 2 and 3 were predicted to interact equally as well with both the bacterial 

and HsSerRS. Compounds 4-8 were however predicted to exhibit selectivity for the bacterial SerRS over 

the HsSerRS. 
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Figure 2: Binding modes of designed seryl sulfamoyl adenylate selectivity probes. (a) 3D spatial 

representation of the seryl sulfamoyl adenylate derivatives indicating C-2 position where SAR study was 

focussed (yellow dashed line). (b) Structural overlay of SaSerRS (Grey, PDB ID 6R1N) and HsSerRS 

(Yellow, PDB ID: 4L87) active site showing the key residue change near the 2 position of the sulfamoyl 

adenylate inhibitor from Gly390 in the bacterial form to Thr434 in the human form. (c) Predicted binding 

modes of seryl sulfamoyl adenylates to SaSerRS (PDB ID 6R1N) using AutoDock 4.2. (d) Predicted 

binding modes of seryl sulfamoyl adenylates to HsSerRS using AutoDock 4.2.

The bulkier groups located at the 2 position of compounds 4-8 were predicted to be accommodated in the 

pocket of the bacterial enzymes. However, due to the steric hindrance from the T434 residue in the 

HsSerRS, compounds 4-8 were predicted to change the torsional angle between the adenine and ribose 

sugar upon binding to the HsSerRS. As a result of the torsional change the π-π stacking interactions with 

F287 and the backbone interaction to V318 are lost leading to a weaker predicted binding affinity and 

therefore increased selectivity for the bacterial SerRS (Fig. 2d). 

A B

DC
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Preparation of SerSA selectivity probes was initiated by the acid-catalysed protection of the commercially 

available 2-chloroadenosine or 2-iodoadenosine (Fluorochem, UK) to provide the acetyl-protected 

adenosines (95-97%) (Scheme 1, 9-10). A Suzuki coupling reaction between the protected adenosine and 

desired boronic acid species (20-70%) was conducted (11-15),25 before sulfonation using sulfonyl chloride 

to afford the sulfonamide (90-95%) (16-22). The sulfonamide was then coupled to the succinimide activated 

protected serine (23) to yield the protected product (40-50%) (24-30). Removal of the benzyl group was 

accomplished by treatment with a solution of boron trichloride dimethyl sulfide complex (2M in DCM),26 

and the resulting alcohol was treated with trifluoroacetic acid and water to  yield compounds 2-8 (2-8, see 

Experimental Section and Supplementary Information for details).  

Bacterial SerRS inhibition by selectivity probe

Using a continuous spectrophotometric assay that specifically measures the adenylate formation reaction7, 

compounds 2-8 were evaluated for the inhibition of ATP-dependent aminoacyl adenylate formation by 

EcSerRS and SaSerRS enzymes and compared their half maximal inhibitory concentration (IC50) values 

with the parent SerSA, compound 1 (Supplementary Table 4 and 5). Compounds 2-8 were active against 

EcSerRS and SaSerRS with IC50 values ranging from 378 nM to 52.7 µM (Table 1). Compound 2 exhibited 

sub-micromolar inhibition of the SaSerRS and EcSerRS with IC50s of 262 nM and 445 nM respectively. 

Compound 3 also exhibited sub-micromolar inhibition of SaSerRS with an IC50 of 378 mM but weaker 

inhibition of EcSerRS with an IC50 of 1.36 µM. Compounds 4-8 all manifested low micromolar inhibition 

against both bacterial SerRS (Table 1). A general trend is observed where increasing the size of the group 

at the 2 position of the adenylate decreases the binding affinity to the bacterial synthetase. Alanyl sulfamoyl 

adenosine (AlaSA, 31) and threonyl sulfamoyl adenosine (ThrSA 32) were also evaluated for inhibition 

against EcSerRS and SaSerRS (Supplementary Table 6). AlaSA 31 showed no inhibitory activity against 

either enzyme at 1 mM while ThrSA 32 manifested IC50s of 285 µM and 231 µM against EcSerRS and 

SaSerRS respectively, thus exhibiting much weaker binding than the designed selectivity probes. These 

results highlight the key role of the beta-hydroxyl of the serine to the overall binding of the compound 

within the adenylate formation site in these enzymes and the overall inhibitory properties of seryl adenylate 

inhibitors modified around the C-2 position of the SerSA adenosine. 

Table 1: IC50 values of designed chemical probes against seryl-tRNA synthetases. Assays were 
conducted as reported.7

O

OHHO

O

H2N
N

N
N

N

X

S N
H

O O O
OH

NH2
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No. X IC50 EcSerRS (µM) IC50 SaSerRS (µM) IC50 HsSerRS (µM)

1 (SerSA) H 0.21 ± 0.03 0.23 ± 0.49 2.17 ± 0.21

2 Cl 0.45 ± 0.05 0.26 ± 0.03 67.3 ± 4.67

3 I 1.36 ± 0.12 0.38 ± 0.04 24.0 ± 2.26

4 C6H5 17.7 ± 1.42 52.7 ± 4.81 >1000 ± >100

5 trans-Propenyl 9.38 ± 0.70 3.46 ± 0.47 >1000 ± >100

6 2-Furyl 36.2 ± 2.41 32.4 ± 3.56 >1000 ± >100

7 3-Thienyl 1.44 ± 0.09 1.24 ± 0.12 >1000 ± >100 (ppt)

8 3-Pyridyl 6.65 ± 0.64 6.34 ± 0.71 >1000 ± >100 (ppt)

SerRS, Seryl t-RNA synthetase. (ppt) precipitation observed at 1000 µM. 
Errors were calculated as s.d. of at least three independent measurements. 

HsSerRS inhibition by selectivity probes

Measurement of the IC50 inhibition kinetics of the original SerSA, compound 1 against the bacterial and 

human SerRS enzymes, reveals a 10-fold difference, in favour of greater specificity of the inhibitor for the 

bacterial enzymes.  Compounds 2-8 were subsequently screened for inhibition of the HsSerRS (Table 1) 

using the same assay system. Assay measurements of compounds 2 and 3, revealed a 31-fold and 11-fold 

increase in IC50 against the bacterial SerRS and HsSerRS, indicating that compounds 2 and 3 did not exhibit 

selectivity overall and had lower affinity than SerSA 1. Overall the observed IC50 of compounds 2-8 

increased with respect to the parental adenylate 1 but remarkably, inhibition of the HsSerRS was effectively 

abolished in compounds 4-8 with IC50 values greater than 1 mM, revealing significant selectivity of these 

compounds towards the tested bacterial SerRS. The best of these compounds (7), with a 3-Thienyl at the 

C-2 position of the SerSA adenosine had an increase in IC50 over SerSA 1 of 6.8 and 8.4 fold for EcSerRS 

and SaSerRS respectively, with effectively negligible binding to the HsSerRS.  The observed selectivity 

overall was attributed to the increased size of 4-8 making them unable to fit into the hydrophobic pocket 

located in the human cytoplasmic SerRS active site due to the presence of T434 as previously hypothesised. 

Binding studies of SerSA and compound 8 to EcSerRS

To independently measure the binding characteristics of the original adenylate SerSA and the derivatives 

synthesised in this study, we measured binding affinity using iso isothermal titration calorimetry (ITC). The 

binding stoichiometry and affinity of SerSA 1 and compound 8 to EcSerRS was determined using ITC 

because compound 8 had the best solubility of the synthesised compounds. Titration of SerSA to EcSerRS 

resulted in a steep slope in the binding isotherm suggesting a very tight binding of the inhibitor to the 
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enzyme. Interestingly, fitting of this binding isotherm using a single site model showed a 2:1 SerSA:SerRS 

stoichiometry with an overall dissociation constant Kd = 1.27 nM (Supplementary Fig. 3a). The 

combination of very high affinity and low enthalpy unfortunately prevented an accurate measurement of 

Kd for SerSA at the individual binding sites. 

By contrast, titration of compound 8 to EcSerRS resulted in a binding isotherm (2:1 compound 8:SerRS 

stoichiometry) that after fitting using a two independent sites model clearly showed two distinct binding 

sites with dissociation constants Kd1 = 0.29 µM and Kd2 = 1.92 µM (Supplementary Fig. 3b). As Kd2 > 4 

Kd1, there is apparent mild negative cooperativity within the system. In both experiments, a negative 

enthalpy value detected for such a tight interaction indicates the role of hydrogen bond and electrostatic 

interactions in the stabilisation of the enzyme–inhibitor complex. The observation of two binding sites for 

SerSA and compound 8 prompted us to investigate the oligomeric state of the EcSerRS in solution, which 

are typically dimers in solution.27 Analytical ultracentrifugation (AUC) experiments were carried out with 

EcSerRS to confirm the oligomeric state of the protein in the presence and absence of SerSA and compound 

8 (Supplementary Table 6). The results confirmed that EcSerRS, both with and without inhibitors, 

appeared with a molecular weight that is consistent with a dimer in solution (Supplementary Fig. 4).  The 

observed SerSA and compound 8 binding stoichiometry is consistent with the previous  structural findings 

showing two SerSA molecules bound to two distinct sites in the X-ray crystal structure of Candida albicans 

SerRS (PDB ID: 3QO8)17. In this structure the second SerSA binding site is located 26 Å distant from the 

active site and appears to play no role in the enzyme function or protein-protein interaction as described by 

the authors17.  

Structural basis of selectivity probe binding to EcSerRS

To understand the molecular basis of the selectivity probe towards bacterial SerRS, we attempted a series 

of co-crystallisation screening of EcSerRS and SaSerRS. Despite extensive screening, we were unable to 

find hit conditions to co-crystallise SaSerRS in the presence of compound 7 or 8. However, we were 

successful in obtaining crystals of EcSerRS amenable to soaking with compound 8, which yielded a 2.6 Å 

resolution structure (Fig. 3a-d). The EcSerRS-SerSA complex structure was solved in the space group P1 

containing two monomers that associate tightly to form a dimer. In contrast, the EcSerRS-compound 8 

complex structure was solved in space group P6122 with 1 molecule in the asymmetric unit. Compound 8 

binds in a similar fashion to SerSA in EcSerRS making key interactions with the residues in motif 2, motif 

3 and the serine-binding TxE motif as described above (Fig. 3c). The 3-pyridyl group of compound 8 

snuggly fits into the hydrophobic cavity without any other obvious interactions (Fig. 3b) with movement 

of the motif 2 loop observed to accommodate the pyridyl group (Fig. 3d). 
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Figure 3: Comparison of binding of SerSA and compound 8 to EcSerRS active site. a: The chemical 

structures of the compounds used in this study. b: Pyridyl group of compound 8 (circled) positioned in the 

active site. c: Interactions of compound 8 (green sticks) with EcSerRS. Hydrogen bond interactions are 

shown as black dashes. d: Superposition of EcSerRS:SerSA (blue, PDB ID:6R1M) with 

EcSerRS:compound 8 (PDB ID:6R1O).

We analysed both structures for presence of a second adenylate-binding site as found in the Candida 

albicans SerRS-SerSA structure (PDB ID: 3QO8)17. No density for the second adenylate was found in the 

EcSerRS-SerSA structure, but density for two additional ligand molecules were observed in the EcSerRS-

compound 8 structure (Fig. 4a). These ligands were found to bind away from the active site in positions 

distinct to that observed in the Candida albicans SerSA (Fig. 4b). Electron density for the complete 

compound was observed for the ligand in the active site (Fig. 4c) and a second ligand which π- π -stacks 

with a third ligand from a symmetry-related molecule for which electron density is only observed for its 

purine and pyridyl rings (Fig. 4d). The seryl moiety of this third ligand is likely to not make any interactions 

with the protein and be flexible due to the absence of electron density for this region of the compound. As 
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11

such the presence of this third ligand molecule is likely to be a crystallographic artefact of the high 

concentration of compound used for soaking and this structure provides evidence for a potential second 

binding site that is supported by the ITC data. 

Figure 4: Second binding site of compound 8 to EcSerRS. a: Binding positions of compound 8 to 
EcSerRS. b: Overlay of EcSerRS:compound 8 (wheat, PDB ID: 6R1O) with Candida albicans SerRS (blue, 
PDB ID: 3QO8) c: Overlay of Fo-Fc omit map of compound 8 in EcSerRS active site contoured at σ 3. d: 
Interaction of two molecules of compound 8 (boxed) from EcSerRS symmetry-related molecules.

Pathogen susceptibility testing to selectivity probes.

Previous studies by Van de Vijver et. al. showed that SerSA (1) did not exhibit an MIC against S. aureus 

and E. coli in disk diffusion studies10. Compounds 1-8 were screened in an antimicrobial susceptibility 

assay using CLSI guidelines28 to determine MIC against both S. aureus and E. coli however no MIC’s were 

observed (>256 ug/ml). This result is consistent with the previous reported studied of 1 and is likely to be 

the result of poor cell permeability or efflux after the molecules enter the cell. In order to rationalise the 

poor activity against bacterial cells the compounds produced in this study were analysed using the 

bioinformatics tool Entryway (www.entry-way.org), which classifies molecules that are likely to be capable 
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12

of accumulating in Gram-negative bacteria. Whilst the compounds fulfil the requirements for globularity 

and contain the required primary amine the number of rotatable bonds exceeds the limits normally founds 

in antimicrobials.29 The compounds described would therefore require further lead optimisation to progress 

them from selective inhibitors to the final desired antimicrobials.

Conclusion 

In summary, we demonstrate the use of structure-based drug design to identify selective inhibitors of 

exemplar SerRS enzymes from Gram-positive and Gram-negative pathogens on the WHO list of bacteria 

for which new antibiotics are urgently needed. Previous studies have investigated inhibiting protein 

synthesis via inhibition of specific aaRS activities leading to the identification of a number of potent 

antibiotics which have progressed through into clinical studies17, 30-33. Rapid development of resistance to 

these synthetase inhibitors has halted their clinical evaluation34. The reported alternative approach herein 

has been a proof of principle example of the capability of structure-based drug design in modifying a multi-

targeting aaRS inhibitor to achieve selectivity.

Analysis using the bioinformatics tool Entryway (www.entry-way.org), showed that whilst the compounds 

fulfil the requirements for globularity and contain the required primary amine the number of rotatable bonds 

exceeds the limits normally founds in antimicrobials.29 Further work is required to achieve clinically viable 

compounds that can permeate the cell membrane but the crystal structures here, nonetheless, provide a 

foundation for structure-based drug design of novel selective inhibitors which multi-target the bacterial 

aminoacyl-tRNA synthetases. 

Experimental

Scheme1: Synthetic route of target SerSA selectivity probes
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2-8

General method B General method C

General method D

General method A

X = Cl or I 9-10

24-30

11-15

16-22

General information in synthetic chemistry. Chemicals were from commonly used suppliers and used 

without further purification. SerSA (1), AlaSA (31) and ThrSA (32) were purchased from Syhthesis 

MedChem (UK) Ltd (Cambridge, UK). Solvents (including dry solvents) for chemical transformations, 

work-up and chromatography were from Sigma-Aldrich (Dorset, UK) at HPLC grade, and used without 

further distillation. Silica gel 60 F254 analytical thin layer chromatography (TLC) plates were from Merck 

(Darmstadt, Germany) and visualized under UV light and/or with potassium permanganate stain. 

Chromatographic purifications were performed using Merck Geduran 60 silica (40-63 μm) or prepacked 

SNAP columns on a Biotage Isolera Purification system (Uppsala, Sweden). Deuterated solvents were from 

Sigma-Aldrich, Chambridge Isotopes and Apollo Scientific Ltd. All 1H and 13C NMR spectra were recorded 

using a Bruker Avance 500 MHz or Bruker Avance 400 MHz spectrometer. All chemical shifts are in ppm 
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14

relative to the solvent peak,  and signal splitting patterns were described as singlet (s), doublet (d), triplet 

(t), quartet (q), quintet (quint), or multiplet (m) with coupling constants (J) are reported in Hz to the nearest 

0.5. High Resolution (HR) mass spectrometry data (m/z) were obtained using a Bruker MaXis Impact 

instrument with an ESI source and Time of Flight (TOF) analyzer. Fourier transform Infrared (FT-IR) 

spectra were recorded on a Bruker Alpha Platinum instrument. Melting points were obtained from a 

Reichert Hot Stage melting point apparatus. HPLC analysis was run on an Agilent 1290 Infinity system 

equipped with a Supelco Ascentis Express 2.7 μM C18 column (50 x 2.1 mm) using a gradient of 95% 

solvent A → 95% solvent B (solvent A: H2O containing 0.1% formic acid; solvent B: 100% MeCN 

containing 0.1% formic acid), flow rate = 0.5 mL/min and UV detection at 254 nm. Specific rotation 

measurements were recorded using a Schmidt and Haensch Polartronic H532 polarimeter, using a 100 mm 

cell and the Sodium D line (589 nm). [α]D are reported in units of 10-1 deg dm2g-1. The purities of all of the 

final compounds for biological testing were determined to be over 95% by NMR and HPLC. See the 

Supporting Information for 1 H and 13C NMR spectra, HR Mass spectrometry and HPLC purity analysis 

of all compounds.

General method A: Suzuki coupling reactions (11-15). The boronic acid (4.0 equiv.) was added to a 

stirred solution of 2-chloroadenosine (1.0 equiv.), potassium carbonate (2.00 equiv.) and tetrakis 

(triphenylphosphine) palladium (0) (0.20 equiv.) in THF (8 mL) and water (4 mL). The reaction mixture 

was heated to reflux for 12 h. The reaction mixture was filtered through Celite® and concentrated in vacuo. 

The residue was diluted with water (20 mL) and extracted in EtOAc (3 × 20 mL). The combined organics 

were washed with water (3 × 10 mL) and brine (3 × 10 mL), dried (MgSO4) and concentrated in vacuo to 

give an off-white/yellow solid, which was purified using flash column chromatography to afford the 

coupled products which were used without further purification.

General method B: Introduction of sulfonyl group (16-22). Generation of sulfanoyl chloride: 

Chlorosulfonyl isocyanate (1 mL, 11.5 mmol, 1.0 equiv.) was cooled to 0 °C under an atmosphere of 

nitrogen. Formic acid (0.43 mL, 11.5 mmol, 1.0 equiv.) was added dropwise and the mixture stirred at room 

temperature overnight. Gas evolution was observed. The resulting colourless solid was dried in vacuo. The 

colourless solid was used without further purification / characterisation. Sulfanoyl chloride (2.0 equiv.) in 

DMA (2 mL) was added dropwise to a stirred mixture of acetyl protected adenolate (1.0 equiv.) in DMA 

(3 mL) at 0 °C under an atmosphere of nitrogen. The mixture was then stirred at room temperature for 3 h. 

The reaction mixture was quenched with Et3N (1.5 mL) then MeOH (5 mL). The resulting solution was 

concentrated in vacuo before EtOAc (50 mL) was added. The mixture was extracted with 5% NaHCO3 (3 
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× 15 mL), brine (3 × 10 mL), dried (MgSO4) and concentrated in vacuo to afford the desired product as a 

colourless glassy solid.

General method C: Amide coupling reaction (24-30). Sulfonamide adenylate (1.0 equiv.) was dissolved 

in DMF (10 mL). After addition of DBU (1.1 equiv.), N-Boc-Ser(bzl)-OSu (23) (1.1 equiv.) was added to 

the reaction mixture. After stirring for 16 h at room temperature, the mixture was concentrated in vacuo 

and the residue taken up in water (50 mL) and extracted with dichloromethane (50 mL). The organic layers 

were dried (MgSO4) concentrated in vacuo and purified by flash chromatography (EtOAc) to afford the 

desired product as a colourless powder.

General method D: Global deprotection (2-8). Seryl-sulfonamide adenylate (1.0 equiv.) was dissolved 

in DCM (5 mL) under an atmosphere of nitrogen. To this was added BCl3.SMe2 (2M in DCM, 7.00 equiv.) 

and the reaction was stirred at room temperature for 8 h. The mixture was concentrated in vacuo. The 

residue was re-suspended in TFA:H2O (3:1, 4 mL) and the reaction was stirred overnight at room 

temperature. The mixture was concentrated in vacuo. The crude product was purified by preparative HPLC 

to afford the desired product as a colourless solid. 

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-chloro-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (2). Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-chloro-9H-purin-9-yl)-

2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (24) (0.30 g, 0.43 mmol) to afford the desired product as a colourless powder 

(50.4 mg, 0.11 mmol, 25%) m.p.: 121.3 °C (Decomp); Rf: Baseline (9:1 DCM-MeOH); δH (500 MHz, 

DMSO-d6): 8.48 (1H, s, 6-HAr), 8.42 (2H, brs, NH2), 7.27 (2H, brs, NH2), 7.00 (1H, brs, NH), 6.20 (1H, 

d, J 8.2, 2-HFuryl), 4.99 (1H, brs, OH) 4.75 (1H, apps, 3-HFuryl), 4.62-4.48 (3H, m, 4-HFuryl, 5-HFuryl 

and OH), 4.27 (1H, dd, J 10.1 and 5.9, CH2*O), 4.19 (1H, brs, OH), 4.02 (1H, dd, J 10.1 and 6.2, CH2*O), 

3.52 (3H, m, CH2*chiral and CHChiral); δC (125 MHz, DMSO-d6): 179.3 (C=O), 157.1 (C4Ar), 153.5 

(C2Ar and C8Ar), 140.4 (C6Ar), 120.0 (C9Ar), 89.4 (C2Furyl), 84.4 (C5Furyl), 75.3 (C3Furyl), 74.8 

(C4Furyl), 66.0 (CH2O), 64.7 (CH2Chiral), 52.9 (CHChiral);  νmax/ cm-1 (solid): 3321, 3125, 2784, 1673, 

1592, 1358; HPLC: Tr= 2.26 (100% rel. area); m/z (ES): No mass ion found [α]D = 28.8° (c 0.1, MeOH).

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-iodo-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (3). Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-iodo-9H-purin-9-yl)-

2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (25) (50 mg, 0.06 mmol) to afford the desired product as a colourless powder 
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(4.0 mg, 0.07 mmol, 12%)  m.p.: 135.2 °C (Decomp); Rf: Baseline (9:1 DCM-MeOH); δH (400 MHz, 

DMSO-d6): 8.48 (1H, s, 6-HAr), 8.43 (2H, brs, NH2), 7.26 (1H, brs NH2) 7.00 (1H, brs, NH), 6.19 (1H, d, 

J 5.4, 2-HFuryl), 4.99 (1H, brs, OH),  4.74 (1H, apps, 3-HFuryl), 4.59-4.50 (3H, m, 4-HFuryl, 5-HFuryl 

and OH), 4.26 (1H, dd, J 10.2 and 5.9, CH2*O), 4.18 (1H, brs, OH), 4.04 (1H, dd, J 10.0 and 5.8, CH2*O), 

3.60-3.49 (3H, m, CH2*chiral and CH Chiral),; δC (100 MHz, DMSO-d6): 179.1 (C=O), 157.5 (C4Ar),  

151.0 (C8Ar), 140.3 (C6Ar), 126.9 (C2Ar), 118.1 (C9Ar), 89.4 (C2Furyl), 83.9 (C5Furyl), 75.4 (C3Furyl), 

74.8 (C4Furyl), 65.7 (CH2O), 64.4 (CH2Chiral), 51.9 (CHChiral);  νmax/ cm-1 (solid): 3321, 3125, 2784, 

1673, 1592, 1358; HPLC: Tr= 2.30 (95% rel. area); m/z (ES): (Found: [M-H]-, 558.0. C13H18IN7O8S requires 

[M-H], 558.0. [α]D = 28.4° (c 0.1, MeOH).

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-phenyl-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (4). Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-phenyl-9H-purin-9-yl)-

2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (26) (0.20 g, 0.27 mmol) to afford the desired product as a colourless powder 

(54.0 mg, 0.11 mmol, 39%) m.p.: 143.2 (Decomp); Rf: Baseline (9:1 DCM-MeOH); δH (400 MHz, DMSO-

d6): 8.47 (1H, s, 6-HAr), 8.43 (2H, dd, J 8.0 and 1.6, 6’-HAr and 2’-HAr), 8.20 (1H, s, NH), 7.91 (2H, brs, 

NH2), 7.58-7.48 (3H, m, 3’-HAr, 4’-HAr and 5’-HAr), 6.09 (1H, d, J 5.9, 2-HFuryl), 4.77-4.70 (1H, m, 3-

HFuryl), 4.34-4.28 (2H, m, 4-HFuryl and CH2*O), 4.22-4.16 2H, m, 5-HFuryl and CH2*O), 3.87 (1H, dd, 

J 11.2 and 3.7, CH2*Chiral) 3.69 (1H, dd, J 11.2 and 7.3, CH2*Chiral), 3.60-3.56 (1H, m, ChiralH); δC 

(100 MHz, DMSO-d6): 172.0 (C=O), 163.5 (C2Ar), 155.9 (C4Ar), 150.8 (C8Ar), 140.5 (C6Ar), 137.8 

(C1’Ar), 130.1 (C4’Ar), 128.7 (C5’Ar and C3’Ar), 128.2 (C6’Ar and C2’Ar), 119.1 (C9Ar), 87.1 

(C2Furyl), 82.8 (C5Furyl), 73.8 (C3Furyl), 71.3 (C4Furyl), 68.5 (CH2O), 61.0 (CH2Chiral), 57.6 (Chiral 

H); νmax/ cm-1 (solid): 3367, 3070, 1673, 1598; HPLC: Tr= 1.89 (100% rel. area); m/z (ES): (Found: [M+H]+, 

510.1405. C19H23N7O8S requires [M+H], 510.1402). [α]D = 25.7° (c 0.1, MeOH).

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-propenyl-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (5). Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-propenyl-9H-purin-9-

yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (27) (65 mg, 0.09 mmol) to afford the desired product as a colourless powder 

(22.5 mg, 0.05 mmol, 53%) m.p.: 115.3 (Decomp); Rf: Baseline (9:1 DCM-MeOH); δH (500 MHz, DMSO-

d6): 8.50 (1H, s, 6-HAr), 8.15 (1H, s, NH), 7.88 (2H, brs, NH2), 7.09 (1H, dd, J 15.4 and 6.7, 2-HPropyl), 

6.41 (1H, d, J 15.4, 1-HPropyl), 5.95 (1H, d, J 5.9, 2-HFuryl), 4.63 (1H, app t, J 5.9, 3-HFuryl), 4.28-4.09 

(4H, m, 4-HFuryl, 5-HFuryl and CH2O), 3.83 (1H, dd, J 11.1 and 3.6, CH2* Chiral), 3.65 (1H, dd, J 11.1 
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and 7.0, CH2* Chiral), 3.56-3.50 (1H, m, Chiral H), 2.88 (2H, app d, J 5.3, NH2), 1.98 (3H, d, J 6.7, CH3); 

δC (125 MHz, DMSO-d6): 172.2 (C=O), 163.5 (C2Ar), 153.8 (C4Ar), 150.9 (C8Ar), 145.9 (C6Ar), 122.3 

(C2Pro), 119.4 (C9Ar), 117.9 (C1Pro), 93.7 (C2furyl), 83.4 (C5Furyl), 75.4 (C3Furyl), 70.5 (C4Furyl), 

70.2 (CH2O), 57.3 (CH2 Chiral), 54.8 (Chiral H), 19.1 (CH3); νmax/ cm-1 (solid): 3106, 2942, 1668, 1595, 

1182; HPLC: Tr= 0.81 (100% rel. area); m/z (ES): (Found: [M+H]+, 474.1406. C16H23N7O8S requires 

[M+H], 474.1402). [α]D = 27.0° (c 0.1, MeOH).

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-(furan-2-yl)-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (6). Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(furan-2-yl)-9H-purin-

9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (28) (100 mg, 0.14 mmol) to afford the desired product as a colourless powder 

(14.6 mg, 0.03 mmol, 21%) m.p.: 117.2 (Decomp); Rf: Baseline (9:1 DCM-MeOH); δH (500 MHz, DMSO-

d6): 8.54 (1H, brs, NH), 8.34 (2H, brs, NH2), 8.14 (1H, s,  6-HAr), 7.96 (1H, app s, 3’-HAr), 7.46 (1H, app 

t, J 10.1, 5’-HAr), 6.76 (1H, dd, J 10.1 and 8.5, 4’-HAr), 6.02 (1H, d, J 5.2, 2-HFuryl), 4.65 (1H, d, J 5.2, 

3-HFuryl), 4.52-4.45 (2H, m, CH2O), 4.29 (1H, app s, 4-HFuryl), 4.20 (1H, app s, 5-HFuryl), 3.89-3.75 

(3H, m, CH2 Chiral and Chiral H); δC (125 MHz, DMSO-d6): 172.0 (C=O), 158.1 (C2Ar), 156.1 (C4Ar), 

152.5 (C1’Ar), 150.6 (C8Ar), 145.3 (C3’Ar), 141.2 (C6Ar), 117.9 (C9Ar), 113.9 (C5’Ar), 113.2 (C4’Ar), 

88.2 (C2Furyl), 84.6 (C5Furyl), 73.4 (C3Furyl), 71.8 (C4Furyl), 60.6 (CH2O), 54.9 (Chiral C), 45.2 (CH2 

Chiral); νmax/ cm-1 (solid): 3089, 1689, 1595, 1477, 1383; HPLC: Tr= 2.04 (97% rel. area); m/z (ES): (Found: 

[M+H]+,. C17H21N7O9S requires [M+H], 500.1194.) [α]D = 22.9° (c 0.1, MeOH).

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-(thiophen-3-yl)-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (7). Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(thiophen-3-yl)-9H-

purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-

(benzyloxy)-1-oxopropan-2-yl]carbamate (29) (0.30 g, 0.40 mmol) to afford the desired product as a 

colourless powder (27.5 mg, 0.05 mmol, 13%) m.p.: 108.3 °C (Decomp); Rf: Baseline (9:1 DCM-MeOH); 

δH (500 MHz, DMSO-d6): 8.46 (1H, brs, NH), 8.34 (1H, s, 2’-HAr), 8.14 (1H, s, 6-HAr), 8.00 (2H, brs, 

NH2), 7.87-7.78 (1H, m, 4’-HAr), 7.68-7.59 (1H, m, 5’-HAr), 6.00 (1H, d, J 5.5, 2-HFuryl), 4.70 (1H, t, J 

5.5, 3-HFuryl), 4.37-4.22 (4H, m, CH2O, 4-HFuryl and 5-HFuryl), 3.83-3.65 (3H, m, CH2 chiral and chiral 

H); δC (125 MHz, DMSO-d6): 172.0 (C=O), 163.5 (C2Ar), 156.0 (C4Ar), 150.7 (C8Ar), 140.1 (C6Ar), 

127.8 (C4’Ar), 127.1 (C5’Ar), 120.0 (C2’Ar), 119.2 (C9Ar), 116.8 (C1’Ar), 88.2 (C2Furyl), 84.2 (C5furyl), 

73.7 (C3Furyl), 71.8 (C4Furyl), 60.8 (CH2O), 57.2 (Chiral C), 45.4 (CH2 chiral); νmax/ cm-1 (solid): 3096, 
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1685, 1588, 1402, 1275; HPLC: Tr= 2.04 (100% rel. area); m/z (ES): (Found: [M+H]+, 516.0972. 

C17H21N7O8S2 requires [M+H], 516.0966.) [α]D = 20.7° (c 0.1, MeOH).

Preparation of (2S)-2-amino-1-[([[(2R, 3S, 4R, 5R)-5-(6-amino-2-(pyridine-3-yl)-9H-purin-9-yl)-3,4-

dihydroxyoxolan-2-yl]methoxy)sulfonyl)amino]-3-hydroxypropan-1-one (8).Preparation was via 

general method D using tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(pyridine-3-yl)-9H-

purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-

(benzyloxy)-1-oxopropan-2-yl]carbamate (30) (100 mg, 0.13 mmol) to afford the desired product as a 

colourless powder (23.8 mg, 0.05 mmol, 36%) m.p.: 120.2 °C (Decomp); Rf: Baseline (9:1 DCM-MeOH); 

δH (500 MHz, DMSO-d6): 9.50 (1H, s, 2’-HAr), 8.95-8.75 (2H, m, 6’-HAr and 4’-HAr), 8.47 (1H, s, 6-

HAr), 7.93 (2H, brs, NH2), 7.54-7.50 (1H, m, 5’-HAr), 6.04 (1H, d, J 6.0 2-HFuryl), 4.82-4.72 (1H, m, 3-

HFuryl), 4.37-4.23 2H, m, CH2*O and 4-HFuryl), 4.18 (2H, app d, J 8.9, 5-HFuryl and CH2*O), 3.82 (1H, 

d, J 8.0 CH2 chiral), 3.73-3.60 (1H, m, CH2 chiral), 3.58-3.54 (1H, m, Chiral H); δC (125 MHz, DMSO-d6): 

171.9 (C=O), 160.3 (C2Ar), 156.1 (C4Ar), 151.0 (C4’Ar), 150.8 (C8Ar), 150.7 (C2’Ar), 141.2 (C6Ar), 

138.6 (C2’Ar), 135.6 (C6’Ar), 133.4 (C1’Ar), 125.2 (C5’Ar), 119.4 (C9Ar), 87.9 (C2Furyl), 82.9 

(C5Furyl), 73.7 (C3Furyl), 71.2 (C4Furyl), 68.7 (CH2O), 60.8 (CH2 chiral), 57.5 (Chiral C); νmax/ cm-1 

(solid): 3317, 3118, 1633, 1587, 1587, 1382; HPLC: Tr= 1.99 (100% rel. area); m/z (ES): (Found: [M+H]+, 

511.1356. C18H22N8O8S requires [M+H], 511.1356. [α]D = 19.3° (c 0.1, MeOH).

Preparation of 2’3’-O-Isopropylidene-2-chloroadenosine (9). 2-Chloroadenosine (0.20 g, 0.66 mmol, 

1.0 equiv.) and p-toluenesulfonic acid mono hydrate (1.26 g, 6.6 mmol, 10 equiv.) were dissolved in acetone 

(100 mL) under an atmosphere of nitrogen. The reaction was stirred at room temperature overnight. While 

cooling in an ice bath a saturated NaHCO3 solution (100 mL) was added to the reaction mixture until the 

pH of the solution was slightly basic. The acetone was removed in vacuo. The remaining aqueous solution 

was extracted with EtOAc (3 × 50 mL). The combined organics were dried (MgSO4) and concentrated in 

vacuo. The desired product was isolated as a colourless solid (203 mg, 0.59 mmol, 90%); m.p.: 184.2-185.6 

°C; Rf: 0.67 (9:1 Chloroform-MeOH); δH (500 MHz, DMSO-d6): 8.37 (1H, s, 6-HAr), 7.87 (2H, brs, NH2), 

6.07 (1H, d, J 2.8 2-HFuryl), 5.29 (1H, dd, J 6.2 and 2.8, 3-HFuryl), 5.09 (1H, app t, J 5.4, OH), 4.95 (1H, 

dd, J 6.2 and 2.8, 4-HFuryl), 4.22 (1H, dd, J 6.2 and 5.4, 5-HFuryl), 3.65-3.50 (2H, m, CH2), 1.56 (3H, s, 

CH3a), 1.34 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 158.1 (C4Ar), 153.0 (C2Ar), 149.9 (C8Ar), 139.9 

(C6Ar), 128.2 (C5Ar), 119.0 (C9Ar), 113.1 (Acetyl C), 89.4 (C2Furyl), 86.7 (C5Furyl), 83.4 (C3Furyl), 

81.2 (C4Furyl), 61.5 (CH2), 37.0 (CH3a), 25.2 (CH3b); νmax/ cm-1 (solid): 3473, 3299, 1761, 1651, 1381; 

HPLC: Tr= 2.26 (100% rel. area); m/z (ES): (Found: [M+H]+, 342.0965. C13H16ClN5O4 requires [M+H], 

342.0964. [α]D = -115.5° (c 0.1, MeOH).
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Preparation of 2’3’-O-Isopropylidene-2-iodoadenosine (10). 2-iodoadenosine (1.00 g, 2.54 mmol, 1.0 

equiv.) and p-toluenesulfonic acid mono hydrate (4.83 g, 25.4 mmol, 10 equiv.) were dissolved in acetone 

(200 mL) under an atmosphere of nitrogen. The reaction was stirred at room temperature overnight. While 

cooling in an ice bath a saturated NaHCO3 solution (200 mL) was added to the reaction mixture until the 

pH of the solution was slightly basic. The acetone was removed in vacuo. The remaining aqueous solution 

was extracted with EtOAc (3 × 100 mL). The combined organics were dried (MgSO4) and concentrated in 

vacuo. The desired product was isolated as a colourless solid (0.94 g, 2.17 mmol, 86%); m.p.: 182.4-184.1 

°C; Rf: 0.69 (9:1 Chloroform-MeOH); δH (400 MHz, DMSO-d6): 8.34 (1H, s, 6-HAr), 7.83 (2H, brs, NH2), 

6.06 (1H, d, J 4.0, 2-HFuryl), 5.30 (1H, dd, J 6.2 and 4.0, 3-HFuryl), 5.09 (1H, app t, J 5.2, OH), 4.96 (1H, 

dd, J 6.2 and 3.9, 4-HFuryl), 4.20 (1H, d, J 3.9, 5-HFuryl), 3.52 (2H, app s, CH2), 1.56 (3H, s, CH3a), 1.37 

(3H, s, CH3b); δC (100 MHz, DMSO-d6): 158.2 (C4Ar), 156.4 (C8Ar), 149.8 (C6Ar), 121.4 (C9Ar), 119.3 

(C2Ar) 113.6 (Acetyl C), 89.6 (C2Furyl), 87.3 (C5Furyl), 84.0 (C3Furyl), 81.7 (C4Furyl), 62.0 (CH2), 27.5 

(CH3a), 25.7 (CH3b); νmax/ cm-1 (solid): 3473, 3299, 1761, 1651, 1381; HPLC: Tr= 2.30 (100% rel. area); 

m/z (ES): (Found:  [M+Na]+, 455.8. C13H16IN5O4 requires [M+Na], 455.8. [α]D = -102.0° (c 0.1, MeOH).

Preparation of 2’3’-O-Isopropylidene-2-phenyladenosine (11). Preparation was via general method A 

using 2’3’-O-Isopropylidene-2-chloroadenosine (9) (0.50 g, 1.46 mmol) and phenyl boronic acid (0.71 g, 

5.85 mmol) to afford the desired product as a colourless powder (0.43 g, 1.12 mmol, 76%); m.p.: 166.2-

168.1 °C; Rf: 0.58 (9:1 Chloroform-MeOH); δH (500 MHz, DMSO-d6): 8.36 (3H, app s, 6-HAr, 2’-HAr 

and 6’-HAr), 7.46 (3H, app s, 4’-HAr, 3’-HAr and 5’-HAr), 7.39 (2H, brs, NH2), 6.26 (1H, app s, 2-HFuryl), 

5.52 (1H, app s, 3-HFuryl), 5.10 (1H, app s, 4-HFuryl), 5.04 (1H, app s, OH), 4.22 (1H, app s, 4-HFuryl), 

3.69-3.51 (2H, m, CH2), 1.59 (3H, s, CH3a), 1.37 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 158.5 (C2Ar), 

156.4 (C4Ar), 150.4 (C8Ar), 140.8 (C6Ar), 138.8 (C1’Ar), 134.4 (C4’Ar), 128.7 (C3’Ar and C5’Ar), 128.2 

(C2’ Ar and C6’Ar), 118.7 (C9Ar), 113.6 (Acetyl C), 89.5 (C2Furyl), 87.2 (C5Furyl), 83.8 (C3Furyl), 81.9 

(C4Furyl), 62.0 (CH2), 27.6 (CH3a), 25.7 (CH3b); νmax/ cm-1 (solid): 3314, 3157, 1655, 1596, 1372; HPLC: 

Tr= 2.24 (100% rel. area); m/z (ES): (Found: [M+H]+, 384.1676. C19H21N5O4 requires [M+H], 384.1666. 

[α]D = -1.4° (c 0.1, MeOH).

Preparation of 2’3’-O-Isopropylidene-2-propenyladenosine (12). Preparation was via general method 

A using 2’3’-O-Isopropylidene-2-chloroadenosine (9) (0.50 g, 1.46 mmol) and transpropenyl boronic acid 

(0.50 g, 5.85 mmol) to afford the desired product as a colourless powder (0.17 g, 0.50 mmol, 34%); m.p.: 

81.6-83.4 °C; Rf: 0.58 (9:1 Chloroform-MeOH); δH (500 MHz, DMSO-d6): 8.29 (1H, s, 6-HAr), 7.22 (2H, 

brs, NH2), 6.92 (1H, dd, J 15.2 and 7.2, 2-Hpropyl), 6.33 (1H, d, J 15.2, 1-Hpropyl), 6.13 (1H, app s, 2-

HFuryl), 5.34 (1H, app s, 3-HFuryl), 5.26 (1H, t, J 5.4, OH), 5.02 (1H, app s, 4-HFuryl), 4.22 (1H, app s, 

5-HFuryl), 3.62-3.49 (2H, m, CH2), 1.90 (3H, d, J 7.2, CH3propyl), 1.56 (3H, s, CH3a), 1.35 (3H, s, CH3b); 
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δC (125 MHz, DMSO-d6): 158.8 (C2Ar), 156.2 (C4Ar), 149.9 (C8Ar), 140.3 (C6Ar), 134.0 (C2Pro), 131.9 

(C1Pro), 119.1 (C9Ar), 89.9 (C2Furyl), 86.9 (C5Furyl), 83.6 (C3Furyl), 81.9 (C4Furyl), 62.2 (CH2), 27.6 

(CH3a), 25.7 (CH3b), 18.3 (CH3Pro); νmax/ cm-1 (solid): 3451, 3310, 3162, 1657, 1575, 1373; HPLC: Tr= 

2.11 (72% rel. area); m/z (ES): (Found: [M+H]+, 348.3. C16H21N5O4 requires [M+H], 348.5. [α]D = -50.2° 

(c 0.1, MeOH).

Preparation of 2’3’-O-Isopropylidene-2-(furan-2-yl)adenosine (13). Preparation was via general 

method A using 2’3’-O-Isopropylidene-2-chloroadenosine (9) (0.50 g, 1.46 mmol) and 2-furyl boronic acid 

(0.66 g, 5.85 mmol) to afford the desired product as a colourless powder (0.25 g, 0.67 mmol, 46%); m.p.: 

96.3-98.2 °C; Rf: 0.59 (9:1 Chloroform-MeOH);  δH (500 MHz, DMSO-d6): 8.35 (1H, s, 6-HAr), 7.83 (1H, 

5’-HAr), 7.44 (2H, brs, NH2), 7.13 (1H, s, 3’-HAr), 6.65 (1H, s, 4’-HAr), 6.20 (1H, app s, 2-HFuryl), 5.40 

(1H, app s, 3-HFuryl), 5.10 (1H, app s, 4-HFuryl), 5.05 (1H, app s, OH), 4.22 (1H, app s, 5-HFuryl), 3.67-

3.52 (2H, m, CH2), 1.55 (3H, s, CH3a), 1.35 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 156.8 (C2Ar), 156.0 

(C4Ar), 152.6 (C2’Ar), 149.3 (C8Ar), 144.2 (C5’Ar), 140.2 (C6Ar), 117.9 (C9Ar), 113.0 (Acetyl C), 112.0 

(C3’Ar), 111.4 (C4’Ar), 89.0 (C2Furyl), 86.8 (C5Furyl), 83.3 (C3Furyl), 81.5 (C4Furyl), 61.6 (CH2), 27.9 

(CH3a), 25.2 (CH3b);  νmax/ cm-1 (solid): 3419, 3311, 2987, 2938, 1639, 1547, 1369; HPLC: Tr= 2.20 (57% 

rel. area); m/z (ES): (Found: [M+H]+, 374.1462. C17H19N5O5 requires [M+H], 374.1459. [α]D = -44.8° (c 

0.1, MeOH).

Preparation of 2’3’-O-Isopropylidene-2-(thiophen-3-yl)adenosine (14). Preparation was via general 

method A using 2’3’-O-Isopropylidene-2-chloroadenosine (9) (0.50 g, 1.46 mmol) and 3-thienyl boronic 

acid (0.75 g, 5.85 mmol) to afford the desired product as a colourless powder (0.46 g, 1.17 mmol, 80%); 

m.p.: 100.1-102.0 °C; Rf: 0.62 (9:1 Chloroform-MeOH); δH (500 MHz, DMSO-d6): 8.34 (1H, s, 6-HAr), 

8.18 (1H, dd, J 3.1 and 1.2, 2’-HAr), 7.79 (1H, dd, J 5.0 and 1.2, 4’-HAr), 7.42 (1H, dd, J 5.0 and 3.1, 5’-

H), 7.36 (2H, brs, NH2), 6.23 (1H, d, J 6.2, 2-HFuryl), 5.49 (1H, dd, J 6.2 and 2.7, 3-HFuryl), 5.11 (1H, dd, 

J 6.2 and 2.7, 4-HFuryl), 4.22 (1H, t, J 5.5 and 2.7, 5-HFuryl), 3.59 (2H, dd, J 11.5 and 5.5, CH2), 1.57 (3H, 

s, CH3a), 1.36 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 173.2 (C2Ar), 155.8 (C4Ar), 140.3 (C6Ar), 127.4 

(C4’Ar), 125.1 (C5’Ar), 120.0 (C2’Ar), 119.2 (C9Ar), 116.7 (C1’Ar), 114.2 (AcetylC), 90.6 (C2Furyl), 

87.3 (C5Furyl), 83.6 (C3Furyl), 81.2 (C4Furyl), 61.8 (CH2), 26.7 (CH3a), 25.0 (CH3b); νmax/ cm-1 (solid): 

3253, 2939, 1633, 1586, 1344; HPLC: Tr= 2.19 (79% rel. area); m/z (ES): (Found: [M+H]+, 365.1058. 

C17H19N5O4S requires [M+H], 365.1051. [α]D = -6.6° (c 0.1, MeOH).

Preparation of 2’3’-O-Isopropylidene-2-(pyridine-3-yl)adenosine (15). Preparation was via general 

method A using 2’3’-O-Isopropylidene-2-chloroadenosine  (9) (0.50 g, 1.46 mmol) and 3-pyridine boronic 

acid (0.71 g, 5.85 mmol) to afford the desired product as a colourless powder (0.29 g, 0.75 mmol, 51%); 
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m.p.: 122.4-124.2 °C; Rf: 0.53 (9:1 Chloroform-MeOH); δH (500 MHz, DMSO-d6): 9.49 (1h, s, 2’-HAr), 

8.67-8.61 (2H, m, 6’-HAr and 4’-HAr), 8.40 (1H, s, 6-HAr), 7.52 (3H, brs, NH2 and 5’-HAr), 6.26 (1H, d, 

J 2.7, 2-HFuryl), 5.52 (1H, dd, J 6.1 and 2.7, 3-HFuryl), 5.10 (1H, dd, J 6.1 and 2.9, 4-HFuryl), 5.05 (1H, 

t, J 5.5, OH), 4.23 (1H, dd, J 8.2 and 5.3, 5-HFuryl), 3.62-3.51 2H, m, CH2), 1.57 (3H, s, CH3a), 1.36 (3H, 

s, CH3b); δC (125 MHz, DMSO-d6): 160.3 (C2Ar), 156.5 (C4Ar), 150.8 (C4Pip), 150.2 (C8Ar), 149.5 

(C2Pip), 141.1 (C6Ar), 134.5 (C6Pip), 134.1 (C1Pip), 124.0 (C5Pip), 119.0 (C9Ar), 113.5 (Acetyl C), 89.7 

(C2Furyl), 87.2 (C5Furyl), 83.8 (C3furyl), 81.9 (C4Furyl), 62.0 (CH2), 27.6 (CH3a), 25.7 (CH3b); νmax/ cm-1 

(solid): 3322, 1632, 1572, 1375; HPLC: Tr= 1.99 (100% rel. area); m/z (ES): (Found: [M+H]+, 385.1626. 

C18H20N6O4 requires [M+H], 385.1619. [α]D = -1.4° (c 0.1, MeOH).

Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-chloro-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-

2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (16). Preparation was via general method B using 2’3’-

O-Isopropylidene-2-chloroadenosine (9) (0.17 g, 0.49 mmol, 1.0 equiv.) to afford the desired product as a 

colourless glassy solid (0.19 g, 0.46 mmol, 94%) m.p.: 69.4-71.7 °C; Rf: 0.46 (9:1 Chloroform-MeOH); δH 

(500 MHz, DMSO-d6): 8.33 (1H, s, 6-HAr), 7.90 (2H, brs, NH2), 7.60 (2H, brs, SNH2), 6.18 (1H, d, J 2.5, 

2-HFuryl), 5.36 (1H, dd, J 6.2 and 2.3, 3-HFuryl), 5.03 (1H, dd, J 6.2 and 3.4, 4-HFuryl), 4.43 (1H, dd, J 

9.0 and 3.4, 5-HFuryl), 4.23 (2H, ddd, J 17.2, 9.0 and 3.4, CH2), 1.57 (3H, s, CH3a), 1.36 (3H, s, CH3b); δC 

(125 MHz, DMSO-d6): 156.9 (C4Ar), 153.2 (C2Ar), 149.8 (C8Ar), 139.9 (C6Ar), 118.1 (C9Ar), 113.7 (C 

Acetyl), 88.8 (C2Furyl), 83.7 (C4Furyl), 83.4 (C3Furyl), 80.9 (C4Furyl), 68.1 (CH2), 26.9 (CH3a), 25.2 

(CH3b); νmax/ cm-1 (solid): 3321, 3171, 1594, 1206; HPLC: Tr= 2.30 (95% rel. area); m/z (ES): (Found: 

[M+H]+, 421.0695. C13H17ClN6O6S requires [M+H], 421.0692. [α]D = -20.2° (c 0.1, MeOH).

Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-iodo-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-

furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (17). Preparation was via general method B using 2’3’-O-

Isopropylidene-2-iodoadenosine (10) (0.20 g, 0.46 mmol) to afford the desired product as a colourless 

glassy solid (0.20 g,  0.39 mmol, 85%) m.p.: 70.2-71.7 °C; Rf: 0.48 (9:1 Chloroform-MeOH); δH (500 MHz, 

DMSO-d6): 8.24 (1H, s, 6-HAr), 7.80 (2H, brs, NH2), 7.59 (2H, brs, SNH2), 6.18 (1H, d, J 4.0, 2-HFuryl), 

5.33 (1H, dd, J 6.1 and 4.0, 3-HFuryl), 5.02 (1H, dd, J 6.1 and 3.8), 4.43 (1H, app d, J 3.8, 5-HFuryl), 4.28-

4.12 (2H, m, CH2), 1.63 (3H, s, CH3a), 1.38 (3H, s, CH3b); δC (100 MHz, DMSO-d6): 156.5 (C4Ar), 156.4 

(C8Ar), 149.7 (C6Ar), 121.5 (C9Ar), 119.4 (C2Ar), 114.2 (Acetyl C), 89.1 (C2Furyl), 84.3 (C5Furyl), 84.1 

(C3Furyl), 81.4 (C4Furyl), 68.5 (CH2), 27.4 (CH3a), 25.7 (CH3b); νmax/ cm-1 (solid): 3321, 3171, 1594, 

1206; HPLC: Tr= 2.35  (100% rel. area); m/z (ES): (Found: [M+Na]+, 442.9. C13H17IN6O6S requires 

[M+Na], 442.9. [α]D = -21.9 ° (c 0.1, MeOH).
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Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-phenyl-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-

2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (18). Preparation was via general method B using 2’3’-

O-Isopropylidene-2-phenyladenosine (11) (0.40 g, 1.04 mmol) to afford the desired product as a colourless 

glassy solid (0.23 g, 0.50 mmol, 48%) m.p.: 89.9-91.2 °C; Rf: 0.50 (9:1 Chloroform-MeOH); δH (500 MHz, 

DMSO-d6): 8.38-8.33 (3H, m, 6-HAr, 2’-HAr and 6’-HAr), 7.60 2H, brs, SNH2), 7.54-7.45 (3H, m, 3’-

HAr, 4’-HAr and 5’-HAr), 7.42 2H, brs, NH2), 6.34 (1H, app s, 2-HFuryl), 5.36 1H, d, J 6.3, 3-HFuryl), 

5.20 (1H, app s, 4-HFuryl), 4.46 (1H, app s, 5-HFuryl), 4.25-4.15 (2H, m, CH2), 1.60 (3H, s, CH3a), 1.38 

(3H, s, CH3b); δC (125 MHz, DMSO-d6): 158.6 (C2Ar), 156.4 (C4Ar), 150.3 (C8Ar), 140.8 (C6Ar), 138.7 

(C1’Ar), 130.2 (C4’Ar), 129.2 (C3’Ar and C5’Ar), 128.7 (C6’Ar and C2’Ar), 119.1 (C9Ar), 89.3 

(C2Furyl), 84.1 (C5Furyl), 83.8 (C3Furyl), 81.6 (C4Furyl), 68.6 (CH2), 27.5 (CH3a), 25.7 (CH3b); νmax/ 

cm-1 (solid): 3354, 2936, 1628, 1376; HPLC: Tr= 2.27 (100% rel. area); m/z (ES): (Found: [M+H]+, 

463.1401. C19H22N6O6S requires [M+H], 463.1394. [α]D = 17.6° (c 0.1, MeOH).

Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-propenyl-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-

2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (19). Preparation was via general method B using 2’3’-

O-Isopropylidene-2-propenyladenosine (12) (0.15 g, 0.43 mmol) to afford the desired product as a pale 

yellow oil (0.14 g, 0.33 mmol, 77%) Rf: 0.47 (9:1 Chloroform-MeOH); δH (500 MHz, DMSO-d6): 8.25 

(1H, s, 6-HAr), 7.61 2H, brs, SNH2), 7.23 (2H, brs, NH2), 6.90 (1H, dd, J 13.4 and 6.6, 2-HPropyl), 6.36 

(1H, d, J 13.4, 1-HPropyl), 6.24 (1H, app s, 2-HFuryl), 5.42 (1H, app s, 3-HFuryl), 5.15 (1H, app s, 4-

HFuryl), 4.40 (1H, app s, 5-HFuryl), 4.35-4.25 (2H, m, CH2), 1.90 (3H, d, J 6.6, CH3 Propyl), 1.57 (3H, s, 

CH3a), 1.36 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 171.0 (C2Ar), 156.1 (C4Ar), 150.9 (C8Ar), 140.0 

(C6Ar), 125.5 (C2Pro), 119.4 (C9Ar), 117.7 (C1Pro), 112.4 (Acetyl C), 88.2 (C2Furyl), 83.4 (C5Furyl), 

83.1 (C3Furyl), 81.4 (C4Furyl), 70.5 (CH2), 26.7 (CH3a), 25.0 (CH3b), 18.8 (CH3Pro); νmax/ cm-1 (solid): 

3326, 3182, 2987, 2938, 1622, 1585, 1374; HPLC: Tr= 2.14 (67% rel. area); m/z (ES): (Found: [M+H]+, 

427.1400. C16H22N6O6S requires [M+H], 427.1394. [α]D = 16.5° (c 0.1, MeOH).

Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(furan-2-yl)-9H-purin-9-yl)-2,2-dimethyl-

tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (20). Preparation was via general method 

B using 2’3’-O-Isopropylidene-2-(furan-2-yl)adenosine (13) (0.25g, 0.67 mmol) to afford the desired 

product as a colourless glassy solid (0.20 g, 0.45 mmol, 67%) m.p.: 83.3-85.2 °C; Rf: 0.46 (9:1 Chloroform-

MeOH); δH (500 MHz, DMSO-d6): 8.31 (1H, s, 6-HAr), 7.83 (1H, s, 3’-HAr), 7.56 (2H, brs, SNH2), 7.47 

(2H, brs, NH2), 7.12 (1H, d, J 3.2, 5’-HAr), 6.65 (1H, dd, J 3.2 and 1.8, 4’-HAr), 6.30 (1H, d, J 1.9, 2-

HFuryl), 5.44 (1H, d, J 6.2 3-HFuryl), 5.23 (1H, dd, J 6.2 and 3.5, 4-HFuryl), 4.43 (1H, app s, 5-HFuryl), 

4.35-4.15 (2H, m, CH2), 1.58 (3H, s, CH3a), 1.36 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 159.5 (C2Ar), 

155.8 (C4Ar), 152.3 (C1’Ar), 150.6 (C8Ar), 145.0 (C3’Ar), 140.0 (C6Ar), 119.4 (C9Ar), 114.4 (Acetyl C), 
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113.3 (C5’Ar), 112.1 (C4’Ar), 90.7 (C2Furyl), 84.4 (C5Furyl), 83.3 (C3Furyl), 81.1 (C4Furyl), 70.5 (CH2), 

26.7 (CH3a), 24.5 (CH3b); νmax/ cm-1 (solid): 3319, 3161, 2988, 1628, 1577, 1361; HPLC: Tr= 2.27 (51% 

rel. area); m/z (ES): (Found: [M+H]+, 453.1189. C17H20N6O7S requires [M+H], 453.1187. [α]D = 1.4° (c 

0.1, MeOH).

Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(thiophen-3-yl)-9H-purin-9-yl)-2,2-dimethyl-

tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (21). Preparation was via general method 

B using 2’3’-O-Isopropylidene-2-(thiophen-3-yl)adenosine (14) (0.45 g, 1.16 mmol) to afford the desired 

product as a pale brown oil (0.51 g, 1.09 mmol, 94%) Rf: 0.48 (9:1 Chloroform-MeOH); δH (500 MHz, 

DMSO-d6): 8.31 91H, s, 6-HAr), 8.18 (1H, d, J 2.0, 2’-HAr), 7.77 (1H, dd, J 6.1 and 2.0, 5’-HAr), 7.58 

(2H, brs, SNH2), 7.42 (1H, d, J 6.1, 4’-H), 7.38 (2H, brs, NH2), 6.31 (1H, d, J 2.2, 2-HFuryl), 5.54 (1H, d, 

J 4.0, 3-HFuryl), 5.20 (1H, d, J 4.0, 4-H Furyl), 4.44 (1H, app s, 5-HFuryl), 4.35-4.15 (2H, m, CH2), 1.60 

(3H, s, CH3a), 1.37 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 169.5 C2Ar), 155.9 (C4Ar), 149.4 (C8Ar), 

142.2 (C6Ar), 134.8 (C4’Ar), 132.4 (C5’Ar), 126.4 (C9Ar), 125.0 (C2’Ar), 117.9 (C1’Ar), 113.5 (Acetyl 

C), 88.9 (C2Furyl), 83.7 (C5Furyl), 83.2 (C3Furyl), 81.2 (C4Furyl), 68.1 (CH2), 26.7 (CH3a), 25.1 (CH3b); 

νmax/ cm-1 (solid): 3324, 3200, 2988, 1619, 1398; HPLC: Tr= 2.23 (82% rel. area); m/z (ES): (Found: 

[M+H]+, 469.0958. C17H20N6O6S2 requires [M+H], 469.0959. [α]D = 6.0° (c 0.1, MeOH).

Preperation of [(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(pyridine-3-yl)-9H-purin-9-yl)-2,2-dimethyl-

tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate (22). Preparation was via general method 

B using 2’3’-O-Isopropylidene-2-(pyridine-3-yl)adenosine (15) (0.29 g, 0.75 mmol) to afford the desired 

product as a colourless glassy solid ( 0.25 g, 0.54 mmol, 72%) m.p.: 93.1-94.7 °C; Rf: 0.39 (9:1 Chloroform-

MeOH); δH (500 MHz, DMSO-d6):9.48 (1H, s, 2’-HAr), 8.67-8.59 (2H, m, 6’-H and 4’-H), 8.37 (1h, s, 6-

HAr), 7.65-7.50 (5H, m, SNH2, NH2 and 3’-HAr), 6.34 (1H, d, J 2.2, 2-HFuryl), 5.58 (1H, d, J 3.7 3-

HFuryl), 5.19 (1H, dd, J 6.0 and 3.7, 4-HFuryl), 4.45 (1H, app s, 5-HFuryl), 4.30-4.20 (2H, m, CH2), 1.60 

(3H, s, CH3a), 1.39 (3H, s, CH3b) ; δC (125 MHz, DMSO-d6): 161.7 (C2Ar), 155.8 C4Ar), 150.8 (C4’Ar), 

150.6 (C8Ar), 149.5 (C2’Ar), 141.1 (C6Ar), 135.4 (C6’Ar), 133.2 (C1’Ar), 124.0 (C5’Ar), 119.1 (C9Ar), 

114.2 (Acetyl C), 89.4 (C2Furyl), 84.0 (C5Furyl), 83.7 (C3Furyl), 81.6 (C4Furyl), 68.0 (CH2), 27.5 (CH3a), 

25.7 (CH3b); νmax/ cm-1 (solid): 3345, 3180, 2985, 1632, 1580, 1374; HPLC: Tr= 2.04 (100% rel. area); m/z 

(ES): (Found: [M+H]+, 464.1357. C18H21N7O6S requires [M+H], 464.1347. [α]D = 53.5° (c 0.1, MeOH).

Preparation of N-Boc-Ser(bzl)-OSu (23). To a stirred solution of N-Boc-(Bzl)-Ser-OH (0.50 g, 1.69 

mmol, 1.0 equiv.) in EtOAc/Dioxane (1:1, 10 mL) cooled to 0 °C were added N-hydroxysuccinimide (0.21 

g, 1.78 mmol, 1.05 equiv.) and DCC (0.37 g, 1.78 mmol, 1.05 equiv.). The resulting mixture was stirred at 

room temperature overnight. The reaction mixture was filtered through Celite® and the filtrate concentrated 
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in vacuo. The residue was re-suspended in EtOAc (35 mL), washed with 5% NaHCO3 (3 × 5 mL), water (2 

× 10 mL), and brine (10 mL). The organic phase was dried (MgSO4) and concentrated in vacuo to afford 

the desired product as a colourless solid which was used without further purification. (0.35 g, 0.90 mmol, 

53 %) m.p.:98.3-99.2 °C; Rf: 0.5 (9:1 DCM-MeOH); δH (500 MHz, DMSO-d6): 7.45-7.28 (5H, m, H-Bzl), 

4.69 (1H, d, J 5.7, H-Chiral), 4.55 (2H, s, CH2Bzl), 3.80 (2H, d, J 5.7, CH2), 2.82 (4H, brs, CH2C=O), 1.41 

(9H, s, BOC); δC (125 MHz, DMSO-d6): 169.8 (Succinimide C=O), 166.8 (C=O), 155.2 (BOC C=O), 137.8 

(C1Ar), 128.2 (C3 and C5), 127.5 (C4), 127.5 (C2 and C6), 78.9 (C BOC), 72.3 (CH2Bzl), 68.6 (CH2C), 

52.3 (Chiral C), 28.1 (CH3 × 3), 25.4 (CH2 × 2); νmax/ cm-1 (solid): 3366, 2970, 1741, 1518, 1366; HPLC: 

Tr= 2.61 (83% rel. area); m/z (ES): (Found: [M+H]+, 393.1663. C19H24N2O7 requires [M+H], 393.1656. 

[α]D = -7.6° (c 0.1, MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-chloro-9H-purin-9-yl)-2,2-

dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (24). Preparation was via general method C using [(3aR, 4R, 6R, 6aR)-6-(6-

amino-2-chloro-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate 

(16) (0.15 g, 0.36 mmol) to afford the desired product as a colourless glassy solid (0.19 g, 0.46 mmol, 94%) 

m.p.: 168.6-170.2 °C; Rf: 0.51 (9:1 DCM-MeOH); δH (500 MHz, DMSO-d6): 8.43 (1H, s, 6-HAr), 7.83 

(2H, brs, NH2), 7.30-7.20 (5H, m, Bzl), 6.10 (1H, d, J 5.7, 2-HFuryl), 6.04 (1H, brs, NH), 5.25 (1H, d, J 

5.7, 3-HFuryl), 4.94 (1H, d, J 5.7, 4-HFuryl), 4.47 (2H, s, CH2 Bzl), 4.35 (1H, d, J 5.7, 5-HFuryl), 4.07-

4.01 (3H, m, CH2Chiral and Chiral H), 3.69-3.67 (2H, m, CH2), 1.55 (3H, s, CH3a), 1.38 (9H, s, CH3 × 3), 

1.29 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 171.6 (C=O), 157.8 (C4Ar), 155.4 (C=O BOC), 153.9 

(C2Ar), 151.0 (C8Ar), 140.3 (C6Ar), 138.0 (C1Bzl), 128.7 (C3Bzl and C5Bzl), 128.3 (C2Bzl and C6Bzl), 

127.9 (C4Bzl), 119.1 (C9Ar), 114.4 (C acetate), 90.6 (C2Furyl) 84.4 (C5Furyl), 83.3 (C3Furyl), 81.4 

(C4Furyl), 79.5 (BOC C), 73.7 (CH2 Bzl), 70.5 (CH2O), 69.8 (CH2C), 54.9 (Chiral C), 28.3 (CH3 × 3), 

26.7 (CH3a), 24.9 (CH3b); νmax/ cm-1 (solid):3330, 1691, 1637, 1304; HPLC: Tr= 2.59 (100% rel. area); m/z 

(ES): (Found: [M+H]+, 698.2012. C28H36ClN7O10S requires [M+H], 698.2006. [α]D = -50.4° (c 0.1, MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-iodo-9H-purin-9-yl)-2,2-

dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (25). Preparation was via general method C using [(3aR, 4R, 6R, 6aR)-6-(6-

amino-2-iodo-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate 

(17) (0.20 g, 0.39 mmol) to afford the desired product as a colourless glassy solid (40.4 mg, 0.05 mmol, 

13%) m.p.: 166.2-168.9°C; Rf: 0.54 (DCM-MeOH); δH (400 MHz, DMSO-d6): 8.38 (1H, s, 6-HAr), 7.75 

(2H, brs, NH2), 7.30-7.20 (5H, m, Bzl), 6.07 (1H, app s, 2-HFuryl), 5.24 (1H, app s, 3-HFuryl), 4.92 (1H, 

app s, 4-HFuryl), 4.42 (2H, app s, CH2 Bzl), 4.35 (1H, app s, 5-HFuryl), 4.08-4.01 (3H, m, CH2 Chiral and 
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Chiral H) 3.70-3.62 (2H, m, CH2), 1.54 (3H, s, CH3a), 1.38 (9H, s, CH3 × 3), 1.20 (3H, s, CH3b); δC (100 

MHz, DMSO-d6): 174.5 (C=O), 157.3 (C4Ar), 155.5 (C=O BOC), 152.3 (C8Ar), 139.0 (C6Ar), 137.7 

(C1Bzl), 128.7 (C5Bzl and C3Bzl), 128.1 (C4Bzl), 127.8 (C2’Ar and C6’Ar), 118.5 (C9Ar), 116.4 (C2Ar), 

114.4 (Acetyl C), 88.3 (C2Furyl), 82.8 C5Furyl), 81.5 (C3Furyl), 79.6 (BOC C), 79.0 (C4Furyl), 73.5 (CH2 

Bzl); 69.9 (CH2O), 67.4 (CH2C), 56.4 (Chiral C), 28.3 (CH3 × 3), 26.4 (CH3a), 24.9 (CH3b);  νmax/ cm-1 

(solid): 3330, 1691, 1637, 1304; HPLC: Tr=  2.67 (100% rel. area); m/z (ES): (Found: [M+Na]+, 812.1. 

C28H36IN7O10S requires [M+Na], 812.1. [α]D = -52.2° (c 0.1, MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-phenyl-9H-purin-9-yl)-2,2-

dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (26). Preparation was via general method C using [(3aR, 4R, 6R, 6aR)-6-(6-

amino-2-phenyl-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl sulfamate 

(18) (0.20 g, 0.43 mmol) to afford the desired product as a colourless glassy solid (0.21 g, 0.29 mmol, 67%) 

m.p.: 155.8-157.7 °C; Rf: 0.64 (9:1 DCM-MeOH); δH (500 MHz, DMSO-d6): 8.42(1H, s, 6-HAr), 8.37 (2H, 

d, J 6.9 6’-HAr and 2’-HAr), 7.57-7.41 (3H, m, 5’-HAr, 4’-HAr and 3’-HAr), 7.38 (2H, brs, NH2), 7.26-

7.24 (5H, m, 2-HBzl, 3-HBzl, 4-HBzl, 5-HBzl and 6-HBzl), 6.27 (1H, d, J 3.0, 2-HFuryl), 6.06 (1H, d J 

8.1, NH), 5.46 (1H, d, J 3.0, 3-HFuryl), 5.07 (1H, app s, 4-HFuryl), 4.45-4.41 (3H, m, BzlCH2, 5-HFuryl), 

4.05 (2H, d, J 4.9, CH2O), 3.96-3.92 (1H, m, Chiral H), 3.67-3.58 (2H, m, Chiral CH2), 1.59 (3H, s, CH3a), 

1.39 (9H, s, CH3 × 3), 1.35 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 173.5 (C=ONH), 158.7 (C2Ar), 156.8 

(C4Ar), 156.4 (C=O BOC), 150.6 (C8Ar), 140.0 (C6Ar), 138.5 (C1’Ar and C1Bzl), 130.4 (C4’Ar), 129.6-

127.1 (C2Bzl, C3Bzl, C4Bzl, C5Bzl, C6Bzl, C2’Ar, C3’Ar, C5’Ar and C6’Ar), 118.0 (C9Ar), 112.5 

(Acetyl C), 88.8 (C2Furyl), 83.5 (C5Furyl), 83.4 (C3Furyl), 81.6 (C4Furyl), 79.5 (BOC C), 71.8 (CH2 Bzl), 

71.1 (Chiral CH2), 67.1 (CH2), 57.1 (Chiral C), 28.2 (CH3 × 3), 27.1 (CH3a), 25.2 (CH3b); νmax/ cm-1 (solid): 

3358, 3193, 2980, 1629, 1575, 1438; HPLC: Tr= 2.54 (100% rel. area); m/z (ES): (Found: [M+H]+, 

740.2718. C34H41N7O10S requires [M+H], 740.2708. [α]D = 17.9° (c 0.1, MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-propenyl-9H-purin-9-yl)-

2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (27). Preparation was via general method C using [(3aR, 4R, 6R, 6aR)-6-(6-

amino-2-propenyl-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl 
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sulfamate (19) (0.14 g, 0.33 mmol) to afford the desired product as a colourless glassy solid (64.9 mg, 0.09 

mmol, 28%) m.p.: 142.9-144.3 °C; Rf: 0.47 (9:1 DCM-MeOH); δH (500 MHz, DMSO-d6): 8.33 (1H, s, 6-

HAr), 7.30-7.26 (5H, m, 2’-HAr, 3’-HAr, 4’-HAr, 5’-HAr and 6’-HAr), 7.18 (2H, brs, NH2), 6.92 (1H, dd, 

J 15.3 and 7.0, 2-HPro), 6.35 (1H, d, J 15.3, 1-HPro), 6.15 (1H, d, J 2.8, 2-HFuryl), 6.06 (1H, d, J 7.7 NH), 

5.33 (1H, dd, J 6.3 and 2.8, 3-HFuryl), 5.04 (1H, app t, J 6.3, 4-HFuryl), 4.42 (2H, d, J 9.9, CH2 Bzl), 4.36 

(1H, d J 2.4, 5-HFuryl), 4.15-3.95 (3H, m, CH2O and ChiralH), 3.73-3.54 (2H, m, CH2 Chiral), 1.89 (3H, 

dd, J 7.0 and 1.5, Me), 1.56 (3H, s, CH3a), 1.39 (9H, s, CH3 × 3), 1.33 (3H, s, CH3b); δC (125 MHz, DMSO-

d6): 172.5 (C2Ar), 170.1 (C=ONH), 156.1 (C4Ar), 155.4 (C=OBOC), 150.8 (C8Ar), 140.3 (C6Ar), 137.8 

(C1’Ar), 128.7-127.5 (Aromatics), 125.2 (C2pro), 119.1 (C9Ar), 117.7 (C1Pro), 114.3 (Acetyl C), 88.9 

(C2Furyl), 83.7 (C5Furyl), 83.4 (C3Furyl), 81.7 (C4Furyl), 79.5 (BOC C), 71.8 (CH2 Bzl), 71.1 (CH2O), 

67.1 (CH2 Chiral), 56.5 (Chiral C), 28.2 (CH3 × 3), 27.1 (CH3a), 25.2 (CH3b), 17.8 (CH3Pro); νmax/ cm-1 

(solid): 3359, 2968, 1627, 1579, 1345; HPLC: Tr= 2.45 (78% rel. area); m/z (ES): (Found: [M+H]+, 

704.2719. C31H41N7O10S requires [M+H], 704.2708. [α]D = -8.6° (c 0.1, MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(furan-2-yl)-9H-purin-9-yl)-

2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-1-

oxopropan-2-yl]carbamate (28). Preparation was via general method C using [(3aR, 4R, 6R, 6aR)-6-(6-

amino-2-(furan-2-yl)-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methyl 

sulfamate (20) (0.20 g, 0.44 mmol) to afford the desired product as a colourless glassy solid (0.10 g, 0.14 

mmol, 32%) m.p.:157.7-159.4 °C; Rf: 0.50 (9:1 DCM-MeOH); δH (500 MHz, DMSO-d6): 8.40 (1H, s, 6-

HAr), 7.81 (1h, s, 3’-HAr), 7.42 (2H, brs, NH2), 7.32-7.28 (5H, m, Bzl), 7.24 (1H, d, J 4.1, 5’-HAr), 6.62 

(1H, dd, J 4.1 and 1.87, 4’-HAr), 6.21 (1H, d, J 2.8, 2-HFuryl), 6.06 (1H, app s, NH), 5.36 (1H, app s, 3-

HFuryl), 5.08 (1H, app s, 4-HFuryl), 4.48-4.32 (3H, m, CH2 Bzl and 5-HFuryl), 4.15-3.90 (3H, m, CH2O 

and Chiral H), 3.70-3.50 (2H, m, CH2Chiral), 1.57 (3H, s, CH3a), 1.38 (9H, s, CH3 × 3), 1.33 (3H, s, CH3b); 

δC (125 MHz, DMSO-d6): 170.0 (C=ONH), 158.3 (C2Ar), 156.4 (C4Ar), 155.3 (C=OBOC), 152.5 

(C1Furan), 150.6 (C8Ar), 144.7 (C3Furan), 140.2 (C6Ar), 137.7 (C1Bzl), 128.8-127.7 (Aromatics), 119.3 

(C9Ar), 114.2 (Acetyl C), 112.4 (C5Furan), 111.9 (C4Furan), 89.2 (C2Furyl), 84.4 (C5Furyl), 84.1 

(C3Furyl), 82.1 (C4Furyl), 79.6 (BOC C), 72.2 (CH2 Bzl), 71.0 (CH2O), 67.7 (CH2 Chiral), 56.9 (Chiral 

C), 28.7 (CH3 × 3), 27.6 (CH3a), 25.7 (CH3b); νmax/ cm-1 (solid): 3342, 1674, 1572, 1364; HPLC: Tr= 2.51 

(73% rel. area); m/z (ES): (Found: [M+H]+, 730.2513. C32H39N7O11S requires [M+H], 730.2501. [α]D = -

24.8° (c 0.1, MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(thiophen-3-yl)-9H-purin-9-

yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)sulfonyl)amino]-3-(benzyloxy)-

1-oxopropan-2-yl]carbamate (29). Preparation was via general method C using [(3aR, 4R, 6R, 6aR)-6-
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(6-amino-2-(thiophen-3-yl)-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-

yl]methyl sulfamate (21) (0.50 g, 1.06 mmol) to afford the desired product as a colourless glassy solid (0.33 

g, 0.45 mmol, 42%) m.p.: 156.2-158.0 °C; Rf: 0.58 (9:1 DCM-MeOH); δH (500 MHz, DMSO-d6): 8.38 

(1H, s, 6-HAr), 8.19 (1H, dd, J 3.1 and 1.1, 2’-HAr), 7.78 (1h, dd, J 5.1 and 1.1 4’-HAr), 7.57 (1H, dd, J 

5.0 and 3.1, 5’-HAr), 7.30 (2H, brs, NH2), 7.29-7.25 (5H, m, bzl), 6.23 (1H, d, J 3.0, 2-HFuryl), 6.07 (1H, 

app s, NH), 5.41 (1H, d, J 2.8, 3-HFuryl), 5.07 (1H, d, J 2.8, 4-HFuryl), 4.41 (3H, app d, J 9.9, CH2Bzl) and 

5-HFuryl, 4.10-4.00 (2H, m, CH2O), 3.98-3.94 (1H, m, Chiral H), 3.70-3.50 (2H, m, CH2Chiral), 1.58 (3H, 

s, CH3a), 1.39 (9H, s, CH3 × 3), 1.35 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 173.2 (C2Ar), 170.1 

(C=ONH), 156.1 (C4Ar), 155.9 (C=OBOC), 150.8 (C8Ar), 142.8 (C6Ar), 138.5 (C1Bzl), 128.0 (C5Bzl 

and C3Bzl), 127.3 (C6Bzl and C2Bzl), 127.1 (C4Bzl), 126.1 (C4Thio), 125.1 (C5Thio), 120.0 (C2Thio), 

119.4 (C9Ar), 117.0 (C1Thio), 113.1 (Acetyl C), 88.7 (C2Furyl), 83.6 (C5Furyl), 83.3 (C3Furyl), 81.6 

(C4Furyl), 79.7 (BOC C), 73.4 (CH2 Bzl), 71.7 (CH2O), 68.9 (CH2 Chiral), 56.2 (Chiral C), 28.2 (CH3 × 

3), 27.1 (CH3a), 25.2 (CH3b); νmax/ cm-1 (solid): 3250, 3052, 1675, 1526, 1374; HPLC: Tr= 2.53 (100% rel. 

area); m/z (ES): (Found: [M+H]+, 746.2286. C32H39N7O10S2 requires [M+H], 746.2273. [α]D = 28.9° (c 0.1, 

MeOH).

Preparation of tert-butyl N-[(2S)-1-[(([(3aR, 4R, 6R, 6aR)-6-(6-amino-2-(pyridine-3-yl)-9H-purin-9-

yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-d][1,3]dioxol-4-yl]methoxy)2sulfonyl)amino]-3-

(benzyloxy)-1-oxopropan-2-yl]carbamate (30). Preparation was via general method C using [(3aR, 4R, 

6R, 6aR)-6-(6-amino-2-(pyridine-3-yl)-9H-purin-9-yl)-2,2-dimethyl-tetrahydro-2H-furo[3,4-

d][1,3]dioxol-4-yl]methyl sulfamate (22) (0.25 g, 0.54 mmol) to afford the desired product as a colourless 

glassy solid (0.12 g, 0.16 mmol, 29%) m.p.: 167.2-164.5 °C; Rf: 0.39 (9:1 DCM-MeOH); δH (500 MHz, 

DMSO-d6): 9.49 (1H, s, 2’-HAr), 8.64 (2H, d, J 5.7, 6’-HAr and 4’-HAr), 8.46 (1H, s, 6-HAr), 7.52 (3H, 

brs, NH2 and 5’-HAr), 7.27-7.24 (5H, m, Bzl), 6.27 (1H, d, J 3.0, 2-HFuryl), 6.08 (1H, d, J 7.8, NH), 5.43 

(1H, d, J 2.7, 3-HFuryl), 5.07 (1H, app s, 4-Hfuryl), 4.41 (3H, app, s, CH2 Bzl and 5-HFuryl), 4.05 (2H, d, 

J 4.6, CH2O), 3.94 (1H, s, Chiral H), 3.62 (2H, d J 6.6, CH2 Chiral), 1.59 (3H, s, CH3a), 1.36 (9H, s, CH3 × 

3), 1.35 (3H, s, CH3b); δC (125 MHz, DMSO-d6): 173.7 (C=ONH), 160.5 (C2Ar), 156.1 (C4Ar), 155.4 

(C=OBOC), 150.2 (C4Pip), 150.1 (C8Ar), 148.9 (C2Pip), 140.1 (C6Ar), 137.7 (C1Bzl), 134.9 (C6Pip), 

133.2 (C1Pip), 128.0 (C5Bzl and C3Bzl), 127.3 (C6Bzl and C2Bzl), 127.1 (C4Bzl), 123.5 (C5Pip), 119.4 

(C9Ar), 114.2 (Acetyl C), 89.0 (C2Furyl), 83.5 (C5Furyl), 83.4 (C3Furyl), 81.5 (C4Furyl), 79.6 (BOC C), 

73.7 (CH2 Bzl), 71.7 (CH2O), 68.2 (CH2 Chiral), 54.7 (Chiral C), 28.2 (CH3 × 3), 27.1 (CH3a), 25.2 (CH3b); 

νmax/ cm-1 (solid): 3377, 2976, 1662, 1573, 1369; HPLC: Tr= 2.37 (100% rel. area); m/z (ES): (Found: 

[M+H]+, 741.2674. C33H40N8O10S requires [M+H], 741.2661. [α]D = -13.6° (c 0.1, MeOH).

Page 27 of 36

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



28

Protein expression and purification.  EcSerRS (from E. coli strain B ER2560) and SaSerRS (from S. 

aureus seg50 (1150)) were cloned into pET52b(+) vector (Merck Millipore, Germany) using the NcoI and 

SacI restriction sites allowing for the production of protein with a thrombin cleavable C-terminal His10-tag. 

EcSerRS and SaSerRS were overexpressed in Lemo21(DE3) cells grown in Auto Induction Media – 

Terrific Broth (Formedium) supplemented with 100 μg/ml ampicillin at 37°C for 8 hours followed by 

overnight growth at 25°C. Cells were harvested by centrifugation at 5000 rpm in a JLA 8.1000 rotor 

(Beckman Coulter) for 15 min, and the pellet was re-suspended in buffer A (50 mM Tris-HCl pH 7.5, 500 

mM NaCl, 30 mM Imidazole). The cells were disrupted by sonication at 70 % amplitude for 30 sec on ice 

and 8 pulses. The lysate was centrifuged at 18,000 rpm in a JA 25.50 rotor (Beckman Coulter) for 30 mins. 

The supernatant was decanted, passed through a 0.2 μm filter and applied to a 5 ml HisTrap column (GE 

healthcare, USA). The bound protein was eluted with a gradient of buffer B (50 mM Tris-HCl pH 7.5, 500 

mM NaCl, 500 mM Imidazole) (0-100% over 50 ml) on an ÄKTA Pure (GE healthcare, USA) at 2 ml/min. 

The protein was dialyzed into 2 L of buffer A with thrombin cleavage (1 unit/μg). The protein was passed 

through the 5 ml HisTrap column to remove the cleaved His-tag and other contaminants. The proteins 

typically present over 95 % purity at this stage as judged via SDS-PAGE gel and were taken for 

crystallization trials after dialysis into 20 mM Tris-HCl pH 7.5, 200 mM NaCl and 1 mM MgCl2. Further 

purification was used for protein used for kinetic and binding studies to ensure complete removal of 

thrombin using a HiLoad 16/600 Superdex 200 pg column (GE Healthcare, USA) in 20 mM Tris-HCl pH 

7.5, 200 mM NaCl and 1 mM MgCl2. The purified protein was subsequently stored in 50 % glycerol at -

80°C. HsSerRS was expressed and purified as previously described.35 

Crystallisation and structure solution. 

Co-crystals of EcSerRS in the presence of SerSA were obtained from a drop set up in 96-well sitting drop 

format with 20 mg ml−1 protein and ten-fold molar excess of SerSA. Drops consisted of 100 nl protein 

preincubated with SerSA and 100 nl reservoir solution with a reservoir volume of 95 µl. Crystals were 

obtained from a drop containing 0.2 M sodium phosphate monobasic monohydrate, pH 4.7 and 20 % (w/v) 

PEG 3350 following incubation at 4°C and cryoprotected in reservoir solution containing 25 % (v/v) 

ethylene glycol. 

Co-crystals of His-tagged SaSerRS were obtained from a drop set up with 20 mg ml−1 protein in the 

presence of ten-fold molar excess of SerSA in 24-well hanging drop format. Drops consisted of 1 µl protein 

preincubated with SerSA and 1 µl reservoir solution with a reservoir volume of 500 µl. Plates were 

incubated at 4°C and crystals obtained in 0.2 M sodium malonate pH 5.0 and 13 % (w/v) PEG 3350. Crystals 

were cryoprotected for 10 s in reservoir solution containing 20 % (v/v) ethylene glycol and ten-fold molar 

excess of SerSA. 
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Crystals of apo-EcSerRS were obtained at 21°C from a 24-well hanging drop format as described above 

with 30 mg ml−1 protein in a crystallisation condition consisting of 0.1 M sodium citrate pH 5.5, 0.8 M 

lithium sulfate and 0.05 M ammonium sulfate. A single crystal was soaked for 30 mins in 0.1 M sodium 

citrate pH 5.5, 0.75 M lithium sulfate, 0.05 M ammonium sulfate, 20 % (v/v) ethylene glycol and 100 mM 

compound 8 (10 % (v/v) DMSO in final solution). 

All crystals were flash frozen in liquid nitrogen and diffraction data collected at 100 K at beamlines I03 

and I04 (Diamond Light Source, United Kingdom). Data was indexed and integrated using iMosflm36 

and scaled using Aimless in CCP437 or autoPROC38 was used in the DLS auto-processing pipeline. The 

crystal structure of aq_298 (PDB 2DQ3, unpublished) was used as a search model in Phaser MR39 to 

solve the structures of EcSerRS and SaSerRS by molecular replacement. Phenix40 and Buster41 were 

used for iterative rounds of refinement with model building carried out in COOT.42 Figures were made 

using PyMOL (Schrödinger, LLC).

Kinetic analyses.  SerRS assays were performed at 37°C in a Cary 100 UV/Vis double beam 

spectrophotometer with a thermostatted 6X6 cell changer. The final assay volume was 0.2 ml, containing 

50 mM HEPES adjusted to pH 7.6, 10 mM MgCl2, 50 mM KCl, 1 mM dithiothreitol, 10% (v/v) 

dimethylsulphoxide, 10 mM D-glucose, 0.5 mM NADP+, 1.7 mM.min yeast hexokinase and 0.85 mM.min 

L. mesenteroides glucose 6-phosphate dehydrogenase (Roche, Germany). Concentrations of SerRS, amino 

acid, substrate (Ap4A, Sigma-Aldrich, Dorset, UK ) and pyrophosphate were as stated in the text 

(Supplementary Table 3 and Supplementary Table 4). Unless otherwise stated, background rates were 

acquired in the absence of amino acid, which was then added to initiate the full reaction. Assays were 

continuously monitored at 340 nm, to detect reduction of NADP+ to NADPH, where ΔNADPH; 340nm = 

6220 M-1 cm-1. Kinetic constants relating to substrate dependencies and IC50 values for inhibitors were 

extracted by non-linear regression using GraphPad Prizm 7.00. 

Isothermal titration calorimetry. Calorimetric titrations of EcSerRS with SerSA and/or compound 8 were 

performed on a VP-ITC microcalorimeter (MicroCal) at 25°C and measured in triplicates. The gel-filtration 

purified EcSerRS was concentrated and dialysed overnight against the ITC buffer (20 mM Tris-HCl, pH 

7.5 and 200 mM NaCl) at 4°C. All the solutions were degassed by sonication. The overnight dialysis ITC 

buffer was used to prepare SerSA and compound 8 solutions. The EcSerRS (3 µM for SerSA and 7 µM for 

compound 8) in the sample cell (1.445 ml) was titrated with ligand solution (70 µM of SerSA and 140 µM 

of compound 8) in the syringe (280 ul). The EcSerRS - SerSA ITC experiments consisted of a preliminary 

2 µl injection followed by 52 successive 5 µl injections. The EcSerRS - compound 8 ITC experiments 

consisted of a preliminary 2 µl injection followed by 26 successive 10 µl injections. Each injection lasted 
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20 s with an interval of 120 s between consecutive injections. The solution in the reaction cell was stirred 

at 307 rpm throughout the experiments. The heat response data for the preliminary injection was discarded 

and the rest of the data was used to generate binding isotherm. The data were fit using either the one binding 

site model or the two independent binding sites model included in the Origin 7.0 (MicroCal). 

Thermodynamic parameters, including association constant (Ka), enthalpy (∆H), entropy (∆S) and binding 

stoichiometry (N) were calculated by iterative curve fitting of the binding isotherms. The Gibbs free energy 

was calculated using ∆G = ∆H - T∆S. 

Analytical ultracentrifugation. All experiments were performed at 50000 rpm, using a Beckman Optima 

analytical ultracentrifuge with an An-50Ti rotor. Data were recorded using the absorbance (at 280 nm with 

10 µm resolution and recording scans every 20 seconds) and interference (recording scans every 60 

seconds) optical detection systems. The density and viscosity of the buffer was measured experimentally 

using a DMA 5000M densitometer equipped with a Lovis 200ME viscometer module. The partial specific 

volume for the protein constructs were calculated using Sednterp from the amino acid sequences. For 

characterisation of the protein samples, SV scans were recorded for a dilution series, starting from 0.8 

mg/mL. Where a ligand was included, this was present at 400 uM (a 20-fold excess over the highest 

concentration protein sample). Data were processed using SEDFIT, fitting to the c(s) model.43 Figures were 

made using GUSSI.44.

Microbiological susceptibility testing. Bacterial strains: E. Coli ATCC 25922 and S. aureus ATCC 25923 

were used. MIC values were determined by broth micro-dilution method, in triplicate, using cation-adjusted 

Mueller Hinton broth (Sigma) according to the Clinical Laboratory Standards Institute (CLSI) guidelines28. 

Experiments were carried out in 96 well micro-titre plates (Star Labs) containing the medium plus Inhibitors 

1-8 as appropriate. Inhibitors 1-8 were dissolved in water to a concentration of 256ug/ml and diluted in 

broth. Plates were incubated overnight at 37 °C for 18–20 h and MIC was determined by visual inspection.

Additional data that support the findings of this study are available from the corresponding author upon 

reasonable request.

Associated Content 

Supporting Information.

The following files are available free of charge.

Crystallographic refinement data, Structural overlay statistics, in silico docking scores and analysis, 

biological assays and determination of IC50 values, ITC and AUC data, and Characterisation of target 

compounds (PDF)
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Accession Codes

The crystallographic data that support the findings of this study are available from the Protein Data Bank 

(http://www.rcsb.org). EcSerRS:SerSA, 6R1M; SaSerRS:SerSA, 6R1N; EcSerRS:compound 8, 6R1O. 

Authors will release the atomic coordinates upon article publication. 
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SerRS, Seryl aminoacyl-tRNA synthetase. SerSA, Seryl sulfamoyl adenosine. AlaSA, alanyl sulfoamoyl 
adenosine. ThrSA, Threonyl sulfamoyl adenosine.
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