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O-GIcNAcylation is an abundant post-translational modification in the
nervous system, linked to both neurodevelopmental and neurodegenerative
disease. However, the mechanistic links between these phenotypes and
site-specific O-GIcNAcylation remain largely unexplored. Here, we show
that Ser517 O-GIcNAcylation of the microtubule-binding protein Collapsin
Response Mediator Protein-2 (CRMP2) increases with age. By generating
and characterizing a Crmp25°'™ knock-in mouse model, we demonstrate
that loss of O-GIcNAcylation leads to a small decrease in body weight and
mild memory impairment, suggesting that Ser517 O-GlcNAcylation has a
small but detectable impact on mouse physiology and cognitive function.

1. Introduction

Intracellular homeostasis and rapid cellular responses to extracellular stimuli are
coordinated by combinations of different post-translational modifications on pro-
teins. O-GIcNAcylation involves the addition of O-linked N-acetylglucosamine
(O-GIcNAC) to serine/threonine residues on nucleocytoplasmic proteins [1-3].
Levels of protein O-GIcNAcylation are linked to levels of the sugar donor UDP-
GIcNACc synthesized via the hexosamine biosynthetic pathway (HBP) that integrates
input from carbohydrate, amino acid, fat and nucleotide metabolism [4]. O-GIcNA-
cylation has been proposed to fine-tune protein function according to nutrient levels
in conjunction with stress signals [5]. As a consequence of perturbations in cellular
UDP-GIcNAc levels due to defects of metabolic homeostasis, abnormal levels of
O-GlcNAcylation have been suggested to contribute to the development of chronic
diseases such as diabetes, cancer and neurodegeneration [6,7].

Only two enzymes, O-GIcNAc transferase (OGT) and O-GIcNAc hydrolase
(OGA), are responsible for establishing the dynamic O-GIcNAcome, by addition
and removal of the modification, respectively [8-10]. It is well established
that OGT is essential for mammalian embryogenesis, and Ogt™~ null mice are
not viable [11-14]. OGA, encoded by a single gene (Mgea5/Oga), is also indispen-
sable for mammalian development. Mice homozygous for Oga™~ mutation do
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not survive beyond perinatal development and show defects
in glycogen mobilization [15,16]. O-GlcNAcylation is particu-
larly important in the nervous system. Neuron-specific genetic
ablation of Ogt in mice results in severely attenuated neurode-
velopment [17]. Furthermore, loss of Ogt in the adult mouse
brain leads to neurodegenerative phenotypes [18]. Studies
using conditional Ogt knock-out mice have revealed essential
roles for O-GIcNAcylation in controlling appetite [19], brown-
ing of white adipose tissue through regulating Agouti-related
protein neurons [20] and excitatory synapse maturation [21].
In humans, missense mutations in Ogt have recently been
linked to the X-linked intellectual disability syndrome
OGT-XLID [22-26].

Despite the identification of numerous O-GIcNAc¢ modifi-
cation sites in over 3000 proteins, little is known about their
physiological and functional significance in vivo. It also
remains unknown how specific modifications could contrib-
ute to the severe phenotypes observed in Ogt™~ and Oga™/~
null models, as well as human OGT-XLID or chronic
diseases. O-GlcNAcylation has been implicated in a large
spectrum of cellular processes [27,28], including transcrip-
tional regulation [29], signal transduction networks [30,31],
protein folding [32], mitochondrial function [33,34] and
protein degradation [35]. Driven by converging pre-clinical
and pathological insights associated with loss of OGT
function, we sought to identify candidate O-GIcNAc proteins
underlying these phenotypes.

Proteomics studies have suggested the presence of
O-GIcNAc on Collapsin  Response Mediator Protein-2
(CRMP2), one of the most abundant neuronal proteins that
binds to tubulin heterodimers and promotes microtubule
assembly [36]. The C-terminal disordered region of CRMP2
is O-GIcNAcylated at a single position, within a region that
harbours key CDK5/GSK3p regulatory phosphosites [37,38].
These sites are known to be targeted by axon-guiding
Semaphorin3A/PlexinA signalling [39]. O-GlcNAcylation
has been proposed to counteract hyperphosphorylation of
Tau, possibly opposing the formation or propagation of
pathogenic neurofibrillary tangles associated with Alzheimer’s
disease (AD) [40]. CRMP2 hyperphosphorylation has been
observed in neurofibrillary tangles of AD patient brain tissue
[41]. Furthermore, CRMP2 hyperphosphorylation is an
early phenotypic event in pre-clinical mouse models of AD,
occurring prior to the onset of inclusion pathology [41,42].
Elevated levels of phospho-CRMP2 have also been identified
in breast cancer [43] and non-small cell lung cancer (NSCLC)
[44]. Oncogenic potential is regulated by phosphorylation of
the nuclear isoform, CRMP2A, at Ser522 [45], highlighting
the importance of phospho-CRMP2 in chronic disease states.
Given the position of the CRMP2 O-GIcNACc site, it is plausible
that there is interplay with this regulatory phosphorylation, as
has been proposed for other proteins [46-49].

Under normal conditions, CRMP2 controls cellular pro-
cesses involving active rearrangements of microtubules such
as neurite outgrowth, centrosome positioning and motility
[50]. CRMP2 (encoded by DPYSL2) has also been implicated
in anterograde axonal transport of various neuronal proteins
such as TrkB [51] and the Sral/WAVE1l complex [52].
Furthermore, CRMP2 interacts with the Ca?*-binding protein
CaM, the N-type voltage-gated calcium channel (CaV2.2) and
the NMDA receptor (NMDAR) subunits NR2A/2B [53].
Taken together, CRMP2 serves as an important adaptor/
scaffold protein central to neuronal function [53]. Although

viable, Crmp2~"~ mice exhibit aberrant dendritic and synaptic

development, leading to abnormal locomotion and social
behaviour [54-56]. The CRMP2-tubulin interaction is regu-
lated by Cdk5, which phosphorylates CRMP2 at Ser522
[57], allowing for subsequent processive phosphorylation of
CRMP2 at Thr509, Thr514 and Ser518 by GSK3p [57,58].
This multi-site phosphorylation restricts the ability of
CRMP2 to interact with tubulin, leading to growth cone
collapse and neurite retraction [57]. Previous work has
demonstrated that O-GIcNAcylation blocks hyperphos-
phorylation on a peptide derived from the corresponding
C-terminal tail sequence in vitro [38]. Conversely, Thr514
phosphorylation hampers O-GIcNAcylation, thus suggesting
a possible regulatory role for the Ser517 O-GIcNACc site.

Here, we demonstrate that the sole O-GlcNAcylation site
on CRMP2 in vivo is located at Ser517, within the flexible
C-terminal tail of the protein that is unique among the
CRMP family. We reveal that O-GIcNAcylation at Ser517 is
inducible and dynamic, increasing with age in the human
brain. To dissect the physiological role of CRMP2 O-GIcNA-
cylation, we generated Crmp2%5%"" knock-in mice, which
exhibited significant effects on body weight and cognitive
function. Our study highlights the physiological importance
of single O-GIcNAc modifications, establishing a framework
for similar discoveries in the wider O-GIcNAc proteome.

Several neuronal-specific proteins have been found to be modi-
fied by O-GIcNAc at serine and threonine residues, including
CRMP2, an abundant protein involved in axonal guidance
[59-61]. In vitro findings have suggested that CRMP2 is
O-GlcNAcylated on Ser517 [38]. Remarkably, CRMP2
sequences including the O-GIcNAc site are highly conserved
across mammalian species. CRMP2 is 99% identical in sequence
in human, mouse, rat and sheep CRMP2. To investigate the sites
of O-GIcNAcylation on CRMP2 in vivo, full-length CRMP2 was
purified from sheep brain using ion exchange chromatography.
Direct site mapping was not feasible, possibly because of low
O-GlcNAcylation stoichiometry of CRMP2 in biological
samples. However, we have exploited a recently reported
O-GIcNAc protein enrichment method using the non-selective
and high-affinity binding by a mutant version of the bacterial
O-GlcNAcase from Clostridium perfringens (CpOGAPZ8N)
[62,63]. Following this approach, we performed site mapping
of O-GIcNAc by mass spectrometry, leading to the identification
of a single O-GIcNAcylation site at Ser517 (electronic sup-
plementary material, figure S1), which is in agreement with
previous reports [38]. The Ser517 O-GIcNAc site on mammalian
CRMP2 is unique among members of the CRMP family
(figure 1a) and the proximal amino acid sequence matches the
peptide sequon for OGT recognition [61,64,65]. Thus, Ser517
appears to be the bona fide site for CRMP2 O-GlcNAcylation
in vivo.

Overall levels of protein O-GIcNAcylation fluctuate during
development and lifespan in the mammalian brain [15,66].



(@ ® ® e® ®
(<)} < ~ 00 N
o - - (3]
n n n n n
_"’304 H H wnwn wn 52?
hcrMp2 CEVSV[IPKTVIIPABTAKTRAPAKQQ
hCRMP1 YEVPA/.PKYA 'PAP AKSEPSKHQ
hCRMP3 HEVMVPAKPG:/GAPARASCPGKIS
hcRMP4 FDLTT[IPKGG PAGEARGEPTRPN
hCRMP5 KKEMG/.PLADP/JRPVTRHGGMRD
(b) (c) R2=0.3248
100
age 90 .
80 J
2 70 bl
- . o e w v wm == | OG-CRMP2 g 60
g 50 ) ° o
S 40
T 20 M
T s o et it A e v 2 SRS CRMP2 1
-—-—_‘—“*—#._ e L] L] L] L] L] L] L] L] 1
0 2 4 6 8 10 12 14 16
0G-CRMP2/total CRMP2
d (O]
@ s 8 ©)
input 2o X X
kDa o ooo kDa - - — 4+ + + GG
250 : 180 — [ = e D
v | 130 . == G BB
130 ~J=f 95— o=
100 [ O-GIcNAc == O-GIcNAc
=1 Al PSS
55 55 — ===
55 GATA2
43 — — e
34—
IP:Flag
100
we| OG-CRMP2 72 —| = —EE CRMP2
70 | b Flag 72—| ____,i OG-CRMP2

Figure 1. CRMP2 undergoes dynamic O-GIcNAc post-translational modification at Ser517 in vivo. (a) Sequence alignment shows that the O-GIcNAcylation modi-
fication site on the C-terminal tail is unique to CRMP2 among other members of the CRMP family. The Ser517 O-GlcNAcylation site is in close proximity to several
phosphorylation sites targeted by Cdk5 (dark green) and GSK3[ (light green) kinases. (h) Western blotting for 0-GlcNAc-CRMP2 (OG-CRMP2) on post-mortem human
hippocampus samples (n = 14, age range 17-89 years). (c) Correlation analysis reveals that the Pearson correlation coefficient for the 0G-CRMP2 level versus age is
0.57, indicating a positive correlation. (d) O-GlcNAcylation of CRMP2 is post-translational. Neuro2A cells expressing Flag-tagged CRMP2 were treated with cyclo-
heximide (CHX), a protein translation inhibitor, and subsequently supplemented with GlcNAcstatin G (GG) OGA inhibitor. Blocking translation did decrease CRMP2
protein levels, but it did not inhibit induction of 0-GlcNAcylation on CRMP2. (g) 0-GlcNAcylation of CRMP2 is inducible in vivo. Mice were infused (osmotic pump
implant) with 10 mg mI™* GG (n = 3) or dose vehicle alone (n=3) at 8 ul h™" for 24 h. Brain lysates were probed with site-specific 0G-CRMP2 antibody on

western blot. GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

Although overall protein O-GIcNAcylation tends to increase
with age in rodents, our temporal knowledge of site-specific
O-GlcNAcylation events in mammalian tissues has remained
largely obscure. To define and clarify the dynamics of a
single O-GlcNAcylation modification in vivo, we generated
anti-CRMP2 Ser517 O-GIcNAc site-specific antibody for this
purpose (electronic supplementary material, figure S2). To
investigate this selective O-GIcNAcylation event in a more
human context, we profiled CRMP2 O-GIcNAcylation in
healthy ageing and neurodegeneration using human post-
mortem brain samples (electronic supplementary material,
figure S2). Experiments with this antibody revealed that
O-GIcNAcylation on CRMP2 gradually increases during the
ageing process (figure 1b,c; Pearson correlation coefficient
0.57). We also found an increased trend of CRMP2 O-

GlcNAcylation in post-mortem brain samples from AD
patients compared with aged-matched controls; however,
this did not reach significance in the samples tested (elec-
tronic supplementary material, figure S3). Taken together,
these data show that CRMP2 O-GIcNAcylation increases as
a function of the ageing process in humans.

O-GIcNACc glycosylation is a reversible and inducible post-
translational modification [27,67-69]. For a limited subset
of proteins, O-GIcNAcylation has been suggested to be
co-translational, preventing premature degradation of nascent



polypeptides [70]. We next assessed the post-translational or
co-translational nature of O-GIcNAcylation on CRMP2, by
probing cycling of the O-GIcNACc site using chemical inhibition
of protein synthesis. We treated murine neuroblastoma Neuro-
2a cells expressing Flag-CRMP2 with cycloheximide and
subsequently with GIcNAcstatin G, a highly selective OGA
inhibitor that enhances cellular O-GIcNAc levels [71,72].
Although blocking protein translation diminished CRMP2
protein levels, it did not alter induction of O-GlcNAcylation
on CRMP2 (figure 1d).

We next sought to determine the dynamic nature of this
modification in vivo. The most potent and selective OGA inhibi-
tor currently available is GIcNAcstatin G [72]. This molecule is
able to raise O-GIcNAc levels in cells by disrupting the balance
between O-GIcNAc transfer and hydrolysis, yet it has not been
explored whether this enhancement can occur in the context of
a whole organism. We infused (8 pl h™) female NMRI mice
(n=7) over a 24h period with GIcNAcstatin G (n=4,
10 mg ml™Y) or dose vehicle only (n=23) using Alzet osmotic
pumps implanted subcutaneously with jugular vein cannula-
tion. Pharmacokinetics was assessed in one mouse, with
blood samples taken at 15, 30 min, 1, 2, 4, 6 and 21 h, then term-
inal blood and brain collected at 24 h. At 24 h, a terminal blood
sample was also taken from all remaining mice (n=6), and
brains were harvested for biochemical analysis. GICNAcstatin
G concentrations in blood and brain were determined by
ultra-performance liquid chromatography-tandem mass spec-
trometry (UPLC-MS/MS) following a suitable extraction
procedure (electronic supplementary material, table S1). In the
single animal assessed for pharmacokinetics, the brain : blood
ratio was 0.07 at 24 h, with a brain concentration of GIcNAcstatin
G of 99 ng mI™? (258 nM) (electronic supplementary material,
table S1). Comparatively, the half-maximal effective concen-
tration for GlcNAcstatin G determined in cultured HEK293
cells is 20 nM [72].

Brain lysates were probed with the pan-specific O-GIcNAc
antibody RL2, revealing increased levels of protein O-GIcNA-
cylation, confirming inhibitor delivery to the brain (figure 1e).
Immunoblotting using our site-specific Ser517 O-GIcNAc anti-
body (electronic supplementary material, figure S2) revealed
elevated levels of this modification (figure 1e). These data pro-
vide evidence that site-specific O-GIcNAcylation of CRMP2 is
both post-translational and dynamic.

We next sought to clarify the physiological significance of
CRMP2 O-GIcNAcylation in the vertebrate nervous system.
To this effect, we generated a constitutive knock-in mouse
model expressing endogenous CRMP2 that cannot be
O-GlcNAcylated at Ser517 (Crmp25°174) (electronic supplemen-
tary material, figure S4). Homozygous Crmp25St7A/SST7A mijce
are viable, survive to adulthood and appear healthy, showing
no gross differences in physical characteristics from wild-type
animals. Consistent with our targeting strategy, western blot
analysis confirmed that endogenous CRMP2 O-GIcNAcylation
on Ser517 was abolished in mouse brain lysate (figure 2a and
electronic supplementary material, figure S2B). Furthermore,
mutant CRMP2 Ser517Ala protein is expressed at a similar
level to the wild-type CRMP2 (figure 2b,c), indicating the
mutation does not influence protein stability.

Driven by the hypothesis that O-GlcNAcylation obscures

phosphorylation on overlapping phosphosite motifs (figure 1a),
we assayed the phosphorylation status of endogenous CRMP2
in wild-type and mutant brain lysates using mass spec-
trometry. CRMP2 protein was purified via a two-step ion
exchange chromatography protocol from wild-type and
Crmp2%°YA mouse brain lysate, digested and phospho-
peptides enriched prior to LC-MS/MS analysis. Samples
were isolated from two independent mouse cohorts: young
mice aged 45-46 days (wild-type n=4 and Crmp2%51"A n =24)
and a mature adult group aged 178-182 days (wild-type n=3
and Crmp2%%*"A n =2). We detected phosphorylated peptides
in both groups, with phosphorylation on Ser522 observed in
young mice and on Thr509, Thr514, Ser518 and Ser522 in
samples from mature adult animals. Since more single and
multi-phosphorylated peptides were detected on CRMP2 in
the mature adults than in young mice (electronic supplemen-
tary material, table S2) we further profiled the
phosphorylation status of CRMP2 in six-month-old mice. As
previous in vitro studies indicated that GSK3pB-mediated phos-
phorylation of Thr514 is influenced by O-GIcNAcylation [38],
we employed antibodies that recognize the triphospho-
(P509/514/522, P509/514 antibody) or tetraphospho- (P509/
514/518/522, 3F4 antibody) forms of CRMP2. Contrary to
our hypothesis, there was no detectable change in poly-
phosphorylation on CRMP2 at sites for GSK3B Kkinase
(figure 2¢—f). Our findings suggest that CRMP2 phosphorylation
by GSK3p is unchanged in Crmp2%51™4 mice.

Animal weight is a well-established indicator of homeostasis
and can reliably predict abnormal development, metabolism
and neurological function. Decreased body weight was
observed in conditional knock-out Crmp2~~ mice [56], yet
this was not phenocopied in an independent Crmp2~'~ knock-
out study [54]. As part of our overall characterization, we
monitored longitudinal body weight in a cohort of gender-
matched, littermate wild-type and Crmp25°1™2 animals from
mixed 50-50% C57BL/6NTac and C57BL/6J genetic back-
grounds. Interestingly, we observed a consistent incidence
of decreased body weight in Crmp25°Y"A mutants (repeated
measures of ANOVA, p=0.005) compared with their
gender-matched siblings (figure 3a,b). Crmp2%°*"A homozy-
gous mice exhibited on average a 3-5% reduction in weight
compared with their wild-type siblings at 12, 16, 20 and 24
weeks old (paired Student’s t-test, parametric two-tailed
p-value =0.0007, n=13, at 24 weeks of age) (figure 3b; elec-
tronic supplementary material, table S3). In a separate
experiment, body weight measurements were repeated on
male animals only, prior to behavioural characterization.
For these tests we used a littermate mouse cohort from a
mixed genetic background with a higher proportion of
C57BL/6] (12.5% C57BL/6NTac and 87.5% C57BL/61J). In
this group, body weight was not significantly different
between wild-type and homozygous knock-in animals at
age 15 weeks (electronic supplementary material, figure S5).
We anticipated that the metabolic characteristics of the gen-
etic backgrounds of the mice probably influenced the
contribution of CRMP2 signalling to overall body weight
[73]. Our findings indicate that loss of CRMP2 O-GIcNAcyla-
tion potentially influences the regulation of mammalian body
weight in a context-dependent fashion.
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2.6. Crmp2™'™ mice reveal normal gross brain
development

Loss of Crmp2 in mice has been reported to result in abnormal
brain development, characterized by enlarged lateral ventri-
cles and aberrant dendrite development [56]. We evaluated
gross neuroanatomy in Crmp2%51"A and wild-type littermate
animals at eight months old from mixed (50%/50%) C57BL/
6NTac and C57BL/6J genetic background (figure 3c-e).
Conventional histological profiling of Crmp255™ brains did
not reveal any obvious defects in overall neuroanatomy
(figure 3c). Next, we investigated neuronal and glial cell num-
bers in the hippocampus using stereological methods. Mutant
animals exhibited parameters that were indistinguishable
from those of their wild-type control counterparts (electronic
supplementary material, figure S6A-C), indicating that
CRMP2 O-GlcNAcylation does not affect cell viability in the
mammalian nervous system.

CRMP2 is abundant in neurons of the central nervous
system and is enriched in axons and synapses [56,74,75].
O-GIcNAcylated proteins, including CRMP2, have been ident-
ified on numerous proteins involved in organization and
mobilization of synaptic vesicles at nerve termini [60,61,76].
We explored whether O-GIcNAcylation on CRMP2 is

ubiquitous or specific to a cellular compartment or part of the
brain. O-GlcNAcylated CRMP2 was detected in fractions of
both cytosol and synaptosomes in all sub-dissected regions of
the brain, suggesting this modification is ubiquitous (figure 3f,
g). Our data demonstrate that site-specific CRMP2 O-GIcNAcy-
lation at Ser517 is a widespread modification in the nervous
system, and is dispensable for gross brain development.

2.7. Crmp2°>*™A mutant mice exhibit selective defects in
short-term memory

Missense mutations in Ogt lead to intellectual disability, poss-
ibly due to changes in the O-GIcNAc proteome [22-26,77].
CRMP?2, as one of the most abundant brain O-GIcNAc pro-
teins and a node in axonal guidance signalling, is a
candidate effector of this phenotype. To determine whether
loss of O-GIcNAc on CRMP2 function affects neuronal func-
tion, we conducted comprehensive behavioural profiling of
our Crmp2%°"A mice. Previous studies have demonstrated
that Crmp2~"~ knock-out mice exhibit increased locomotor
activity, impaired spatial memory formation and abnormal
social behaviour [54,56]. Here, we performed novel object rec-
ognition (NOR), open-field and spontaneous alternation tests
to assess short-term recognition memory, anxiety and spatial
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Figure 3. Characterization of Crmp2***™ mice reveals bodyweight phenotype (a,b). () Comparison of the body weights of WT and Crmp2*>*™ mice at 1225 weeks
old. Data are expressed as the mean + se.m. (WT, n=8; Crmp2™ n=10) (male, n = 9; female, n = 9). Repeated measures ANOVA for the whole dataset, test
of between-subject effect, genotype, F = 11.026, p = 0.005. (b) Comparison of the body weights of WT and Crmp2%:* mice at 20 weeks old. Data are expressed as
the mean = s.d.; paired, two-tailed t-test (female, p = 0.0199; WT, n = 6; Crmp2®'™ n = 7; male, p = 0.0125; WT, n = 6; Crmp2*>*", n = 6). Histological analysis
of brain samples from WT and Crmp2*>*" mice (c—g). Mean % s.d.. WT, n=5; Crmp2***" n'=6. (c) Representative photomicrographs (left panels) show coronal
sections stained with cresyl-violet (Niss! staining) in WT and Crmp2%™ mice. NeuN immunolabelling (right panels) reveals Crmp2*>*" has no effect on neuronal
viahility in the dentate gyrus. (d) Ventricular volume (mm®) for left and right lateral ventricles and third ventricle. WT (3.592 # 1.155) and Crmp2**'™ (4.160 +
1.252); ns. (e) Cortical thickness (1m), measurement was taken at four points along the cortex in each animal. WT (1197 % 175.4) and Crmp2%1™ (1127 + 93.24);
n.s. (f) Western blot shows comparable levels of 0-GIcNAc CRMP2 (OG-CRMP?2) in several brain regions in WT and Crmp2*>*" mice relative to total CRMP levels. (g)
Western blot indicates presence of CRMP2 0-GlcNAcylation in cytoplasmic and synaptic cellular fractions.
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Figure 4. Crmp2*>*" mice exhibit impaired short-term recognition memory. (d)—(f) Novel object recognition (NOR) test (male, WT, n = 12; Crmp2*>*" n=10;

mean +5.d.). (a) NOR task. (b) Distance travelled during familiarization and test phase. Crmp2%:™ mice (9.4 + 2.0 m) travelled less distance during the test
phase than WT control (12.8 + 3.4 m) animals; p =0.0099, unpaired t-test. (c) Maximum speed reached during the test phase. Crmp2%'™ animals (0.124 +
0.017 m s™%) showed slower maximum speed than WT (0.145 % 0.027 m s™%); p = 0.0327; unpaired t-test. (d) Discrimination index (D3) for WT (0.21 % 0.11)
and Crmp2***™ mice (0.09 + 0.12); p = 0.0338; unpaired t-test. (¢) Positive correlation between D3 and distance travelled during the test phase; Pearson r =
0.5344; p=0.0104; n = 22. (f) Correlation analysis between D3 and body weight; Pearson r = —0.2950; n.s.; n =11,

working memory, respectively. In addition, locomotor
activity was evaluated to identify a possible link to the
observed mild weight phenotype. Male Crmp25°Y™* knock-
in mice and wild-type littermate controls (n=10-12 per
group) from mixed 125% C57BL/6NTac and 87.5%
C57BL/6] genetic background were used at 10-13 weeks
old at the start of behavioural testing, reaching 22-25 weeks
old at the end of the tests.

First, we performed open-field tests to measure anxiety
and simultaneously assess locomotor activity (electronic
supplementary material, figure STA-C). Here, there was no
significant difference between Crmp25°*" knock-in mice and
wild-type controls in the time spent in the inner/outer zone
(electronic supplementary material, figure S7B) and time
spent moving in the outer zone (electronic supplementary
material, figure S7C), indicating that neither anxiety nor
locomotor function of the Crmp25%*7A animals are affected.

We next performed an NOR test to assess short-term
hippocampal and entorhinal cortex cognitive function
(figure 4a—f). This test is based upon the natural instinct of
mice to explore novelty, measuring the time the mice explore
a novel object versus a familiar object. A calculated discrimi-
nation index (D3) of greater than 0.2 indicates that the animal
is able to distinguish between the familiar and the novel
object. The Crmp2%%*"A mice, however, completed the NOR
task with D3 <0.2 (figure 4d), significantly lower than wild-
type controls (Student’s t-test, p <0.05), indicating that they
were less able to differentiate between new and previously
experienced objects. The NOR test also revealed that the
Crmp25°Y7A mice were less mobile during the test phase (Stu-
dent’s t-test, p <0.01), travelling shorter distances with lower

maximal speed (figure 4b,c), thus pointing to a possible effect
on motivation to explore. Of note, there was a significant
positive correlation between the D3 index and distance tra-
velled (r=0.53, p<0.05) (figure 4e). In contrast, there was
no correlation between the D3 index and body weight
(figure 4f), suggesting that the cognitive phenotype was
independent from the weight phenotype.

The observed memory deficit in the NOR task prompted
us to investigate memory-related behaviour further. To
probe possible deficits in hippocampus-dependent spatial
working memory in the Crmp2%°Y™ knock-in mice, we
subjected the mice to spontaneous alternation tests in an
enclosed plus maze (electronic supplementary material,
figure S7D). Individual mice were placed in the centre of the
maze and allowed to explore for 15 min. The Crmp25°'’A and
wild-type mice performed a similar number of total arm
entries (electronic supplementary material, figure S7E) and
similar percentages of spontaneous alternation (electronic
supplementary material, figure S7F), indicating that hippo-
campus-related spatial memory is not affected but that the
observed object recognition memory impairment is likely to
be specific to parahippocampal cortical region. Taken
together, our study reveals an important association between
CRMP2 O-GIcNAcylation status and short-term memory.

Our study sought to decipher the in vivo significance of a
single site-specific O-GIcNAc modification on CRMP2.
Despite the considerable functional redundancy between



members of the CRMP protein family [54,78-80], with
multiple post-translational modifications regulating CRMP2
function, we uncovered selective metabolic and neural phe-
notypes associated with the loss of CRMP2 O-GIlcNAcylation.

The phenotypes observed in Crmp25°1* are more modest
and selective than those of both the Crmp2 knock-out and the
Crmp25°22A knock-in models that are deficient in Cdk5/
GSK3B-mediated phosphorylation. While Crmp2~'~ knock-out
mice have increased lateral ventricles [56], gross brain develop-
ment appeared normal in both Crmp25°??A [81] and our
Crmp2%°YA mutant mice reported here. In terms of motor
function and cognition, there was little overlap between those
observed in Crmp2%°YA Crmp2~/~ and Crmp2%°%?A models.
Crmp2~/~ mice showed increased locomotion [55,56], while
locomotion was not affected in Crmp25°22A mice [82]. Interest-
ingly, our Crmp2%*' mutant animals exhibited signs of
altered locomotion during the NOR task, exhibiting less
movement at lower speed specifically in the test phase. Despite
this selective phenotype, such defects were not present in the
plus maze and open-field tests.

Intriguingly, learning and short-term memory were
selectively impaired in Crmp2%°*"A mice, as revealed in the
NOR task, which requires orchestrated input from several
brain regions including insular cortex, perirhinal cortex,
ventromedial prefrontal cortex and hippocampus [83]. In con-
trast to our knock-in observations, cognitive impairments in
Crmp2~/~ mice are primarily hippocampus-centric, where
CRMP2 is highly expressed [84]. Spatial and contextual learn-
ing abilities were also reduced in Crmp2™/~ mice, yet such a
direct comparison with these previous studies is challenging,
owing to background and experimenter variability.

We detected a reduction in body weight in our first cohort
of Crmp2%51" mice, but not in the second cohort with a
higher (87.5%) contribution of the C57BL/6J background.
The C57BL/61] variant mice contain a deletion within the
nicotinamide nucleotide transhydrogenase (Nnt), a nuclear
gene that encodes a mitochondrial inner membrane protein
that maintains intramitochondrial redox homeostasis.
Loss of Nnt is associated with numerous phenotypic
consequences, including altered glucose homeostasis [85]
and weight gain in male mice [86]. Moreover, loss of Nnt is
known to modify behavioural and neuroendocrine regulation
in mice [87] and also influences the severity of phenotypes
arising from pathological mutations [88]. Similarly to our
observation, the brain-specific Crmp2™~ knock out mice
showed a reduction in weight [55,56] whereas the total
Crmp2™~ deficient mice did not [55], suggesting that
this phenotype might manifest only in certain genetic
backgrounds.

The Crmp2%°*"A mice displayed behavioural phenotypes
distinct from those observed in Crmp2™~ or Crmp2552%4
mice, suggesting the Ser517Ala mutation neither blocks
CRMP2 function severely nor affects Ser522 phosphorylation.
Owing to the close proximity of Ser517 to Cdk5/GSK3p
phosphosites and previous peptide-based studies predicting
phosphorylation/O-GIcNAcylation interplay, we hypoth-
esized that the Ser517Ala mutation would alter CRMP2
phosphorylation, with potential effects on microtubule inter-
actions and downstream neuronal phenotypes. However,
neither behavioural nor biochemical characterization has pro-
vided evidence that the observed phenotypes are
underpinned by altered phosphorylation status in vivo. It is
conceivable that compensatory alterations in expression and

activity of other CRMP family members [55,82] could mask “

any direct effects of the Ser517Ala mutation.

Ser517 resides in the structurally flexible C-terminal tail of
CRMP2 required for stabilizing homo/hetero CRMP tetra-
mers [89,90]. A crystal structure of the CRMP2 tetramer
with a partially truncated C-terminal tail (CRMP2 1-525)
revealed extensive intermolecular interactions involving the
C-terminus [89]. It has also been shown that the C-terminal
tail mediates binding to the microtubule network [89]. There-
fore, a possible molecular mechanism underpinning the
behavioural phenotypes is that O-GIcNAcylation on the
CRMP2 C-terminal tail could affect tetramer formation,
stability and microtubule-lattice binding, which will require
further investigation. Taken together, our data support a
robust regulatory network for CRMP2 function and a fine-
tuning role for O-GlcNAcylation on Ser517 that plays an
important role in memory formation and neuronal plasticity
in mammals.

Altered protein O-GIcNAcylation has been proposed as a
possible contributing factor to the development of AD.
Hyperphosphorylation of CRMP2 has been observed in
neurofibrillary tangles in AD brains [41]. Studies on mouse
models of AD have demonstrated that CRMP2 hyper-
phosphorylation is an early event during the development of
AD and occurs prior to plaque and tangle formation [41,42].
This inspired us to study how O-GIcNAcylation potentially
regulates phosphorylation on CRMP2 and whether the stoi-
chiometry of O-GIcNAcylated versus unmodified CRMP2 is
reduced in AD. We did not find a significant increase of O-
GlcNAcylation on CRMP2 in AD compared with age-matched
individuals. In addition, no large global changes in CRMP2
phosphorylation were detected in vivo owing to the absence
of O-GIcNAcylation. However, detection of such changes is
challenging because of the potentially low stoichiometry of
CRMP2 O-GIcNAcylation in tissue.

For over 30 years, functional dissection of protein
O-GIcNAcylation has been mostly limited to genetic and
pharmacological manipulation of OGT and OGA, key
enzymes responsible for O-GIcNAc cycling. These studies
have highlighted the role of O-GIcNAc in several physiologi-
cal contexts. Importantly, research on cell culture models has
also uncovered the function of O-GIcNAc on a few defined
target proteins in specific cellular processes. Despite this
large body of work, research on the significance of O-GIcNA-
cylation on discrete sites of specific proteins in vivo is scarce.
Such data are ultimately required for a complete mechanistic
understanding of the phenotypes observed in Oga™~ or Ogt™~
models and human disease states associated with disrupted
O-GIlcNAc homeostasis. Our findings constitute an important
advance towards a protein-specific understanding of O-
GlcNAcylation in the mammalian nervous system. Future
studies will be essential to decipher the complex interplay
between O-GIcNAcylation and other post-translational
modifications.

Rabbit anti-gSer517 OG-CRMP2 (1:1000) raised for this
study by the van Aalten laboratory
Rabbit anti-CRMP2 (1:2000) Millipore



Rabbit anti-CRMP2 (1 :2500) Cell Signalling 9393

Rabbit anti-pan-TUC (CRMP) (1:10000) Millipore
ABN108

Sheep anti-P-T509/514 CRMP2 (1:2000) with dephos-
pho-peptide [58]

Mouse anti-O-GIcNAc /RL2 (1:2000) Abcam ab2739

Mouse anti-FLAG (M2) (1:5000) Sigma

Mouse anti-PSD95 (SAP90, DLG4) (108E10) SYSY

Rabbit anti-GAPDH (FL-335) (1:1000) Santa Cruz
sc-25778

Goat anti-GATA-2 (0.5 pg mI™) R&D Systems AF2046

Mouse 3F4 (1 pg ml™) Takara 29060

Mouse NeuN (A60) (1:2000) Millipore MAB377

Licor 680, Licor 800

CRMPs were purified from sheep brain by employing three
rounds of ion exchange chromatography protocol as pre-
viously described [91]. Briefly, sheep brain tissue (100 g) was
homogenized in three volumes of DEAE buffer (25 mM
sodium phosphate (pH 7.8) containing 2 mM dithiothreitol
(DTT) and 1 mM phenylmethylsulfonyl fluoride) using an
Emulsiflex continuous flow cell disruptor (Constant). The
tissue lysate was centrifuged at 100 000g for 45 min at 4°C.
The supernatants from two centrifugations were combined
and applied to a 10 ml DEAE-Sephadex column (Sigma) equi-
librated with DEAE buffer. After several washes with DEAE
buffer, bound proteins were eluted with a 100, 200 and
300 mM NaCl step gradient in DEAE buffer. Peak CRMP-con-
taining fractions in the 200 mM NaCl elution were combined,
diluted 10-fold with S buffer (25 mM sodium phosphate (pH
6.0) containing2 MM DTT) and applied to a5 ml SP-Sepharose
column equilibrated with S buffer. After washing, proteins
were eluted with 150 mM NacCl in S buffer. Peak CRMP-con-
taining fractions were pooled and diluted fivefold with HA
buffer (10 mM potassium phosphate (pH 7.0) containing
2 mM DTT). The diluted sample was applied to a 3 ml hydro-
xyapatite column (Bio-gel HTP; Bio-Rad) and eluted with a
linear gradient of 10-100 mM potassium phosphate (pH 7.0)
containing 2 mM DTT, and peak CRMP-containing fractions
were pooled. All steps were performed on ice or at 4°C.
CRMP protein purification was monitored by anti-CRMP
immunoblotting.

GST-CpOGAPZEN was expressed in BL21(DE3)pLysS Escher-
ichia coli and cells were suspended in 25 mM Tris/250 mM
NaCl, pH 7.5 buffer containing 0.1 mgml™* DNAse,
1 mg ml™! lysozyme and protease inhibitors 1 mM benzami-
dine, 0.2 mM PMSF and 5puM leupeptin, and lysed by
homogenization with an EmulsiFlex-C3 (Avestin). After cen-
trifugation at 40 000g for 20 min, the supernatant containing
GST-CpOGAP?8N \was bound to Glutathione Sepharose 4B
beads for 45 min at 4°C and washed with 25 mM Tris/
250 mM NaCl, pH 7.5. Purified sheep CRMP2 (6 mg) was
exposed to GST-CpOGAP?%EN pound to beads for 90 min at
4°C in 1ml of phosphate-buffered saline (PBS), 0.01%
CHAPS. O-GIcNAcylated protein was eluted with 0.2 ml
0.75 M GIcNACc for 2 x 5 min. A total output of approximately
1 ug glyco-enriched CRMP2 was obtained.

Sample preparation for mass spectrometry: 500ng of
glyco-enriched CRMP2 was subjected to 10% sodium dodecyl-
sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) in a
concentrated band of 0.5 cm, followed by manual enzymatic
digestion as previously reported [92] with minor modifications.
Briefly, excised bands were rinsed three times with AmBic buffer
that consisted of 50 mM ammonium bicarbonate in 50% metha-
nol (high-performance liquid chromatography (HPLC) grade;
Merck) following a reduction step with 10 mM DTT (Sigma-
Aldrich). Subsequently, the gel pieces were rinsed twice with
AmBic buffer and dried in a SpeedVac before alkylation with
55 mM iodoacetamide (Sigma-Aldrich) in 50 mM ammonium
bicarbonate. The gel pieces were rinsed with AmBic buffer
before being dehydrated by addition of acetonitrile (HPLC
grade; Merck) and drying in a SpeedVac. Trypsin (Promega,
Madison, WI1) was added to the dry gel pieces at a final concen-
tration of 20 ng pI™* in 20 MM ammonium bicarbonate, and
then incubating them at 37°C for 16 h. Peptides were extracted
three times by 20 min incubation in 40 pl of 60% acetonitrile in
0.5% HCOOH. The resulting peptide extracts were pooled, con-
centrated in a SpeedVac and stored at —20°C until analysis by
mass spectrometry.

Identification of the O-GIcNAcylated proteins and mapping
of O-GIcNAc sites was performed by electrospray ion trap elec-
tron transfer dissociation (ESI-IT-ETD) mass spectrometry
coupled to a nano-LC system (Ultimate 3000 RSLC; Dionex,
Netherlands). Dried peptides were resuspended in 30 ul of
0.5% HCOOH and 10 ul was injected for mass spectrometric
analysis. Tryptic peptides were concentrated on a trap column
(2 cm x 100 um, Dionex) at 10 pl min~* and separated on a
15cm x 75 um Pepmap C18 reversed-phase column (Thermo
Fischer Scientific). Peptides were eluted by a linear 60 min gradi-
ent of 95% A/5% B to 90% B (A: H,0, 0.1% HCOOH; B: 80%
acetonitrile, 0.08% HCOOH) at 300 nl min~t into an LTQ Velos
ETD (Thermo Fisher Scientific). Mass spectrometry spectra
were acquired in positive mode: firstly mass spectrometer full
scans were acquired followed by MS/MS in ETD mode. Up to
10 of the most intense precursors were selected for ETD fragmen-
tation with an activation time of 300 ms and non-dynamic
exclusion. Proteome Discoverer v 1.4.0.288 software (Thermo
Scientific) was used to process raw LC-MS/MS data, applying
the Mascot (version 2.4; Matrix Science, Boston, MA, USA)
search engine algorithm against the SwissProt database with
the following Mascot parameters: 2+, 3+, 4+ and 5+ ions; precur-
sor mass tolerance 10 ppm; Da; fragment tolerance 0.6 Da and up
to two missed cleavages. The variable modifications included
were: oxidation (M) (15.99 Da), dioxidation (M) (31.98 Da) and
HexNAc (ST) (+203.0794 Da). All MS/MS data and database
results were manually inspected to verify accurate assignment
of fragment ions using the above software. Peptides with E-
value < 0.1 are considered as a precise O-GIcNAc site assignment.

CRMPs were purified from single mouse brain samples one by
one by employing two rounds of ion exchange chromato-
graphy. We followed the same protocol as for CRMP
purification from sheep brain described earlier without carry-
ing out the third chromatography step on the hydroxyapatite



column. For phosphopeptide analysis, purified CRMP2 was
first reduced and alkylated by addition of 10 mM TCEP
and 40 mM chloroacetamide. CRMP2 was then digested by
addition of LysC (1:100 ratio LysC:CRMP2) followed
by trypsin (1:25 ratio trypsin: CRMP2) at 37°C overnight.
The resulting peptides were desalted using Sep-Pak cartridges
(Waters) and phosphopeptides enriched using Fe-IMAC
according to a previously described procedure [93]. LC-MS/
MS analysis was performed on an Agilent 1290 UPLC
system (Agilent) coupled to an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Fisher Scientific). The phosphopeptides
were trapped and eluted using a gradient of 8-44% B over
70 min where buffer A was H,O containing 0.1% formic acid
and buffer B was 80% acetonitrile with 0.1% formic acid.
EThcD was used to fragment the peptides with 40%
supplemental activation set and an activation time of 50 ms.
Raw data were analysed using Byonic software (Protein
Metrics Inc.) using the following parameters: precursor ion
tolerance 10 ppm, product ion mass tolerance 20 ppm. Cys
carbaminomethylation was set as a fixed modification and
Met oxidation and STY phosphorylation as variable modifi-
cations. The number of mis-cleavages was set to 5. The
phosphosites identified were manually confirmed to ensure
100% confidence for phosphosite localization.

A polyclonal O-GIcNAc-specific antibody against Ser517 on
CRMP2 was generated using a previously described approach
[94] with some modifications. The O-GIcNAc peptide
CKTVTPA[O-GIcNAC]SSAKTSPA and the matching unmodi-
fied peptide corresponding to residues 511-524 of human
CRMP2 were synthesized on a Liberty microwave-assisted
peptide synthesizer (CEM) using MBHA Rink-amide low-
load resin (Novabiochem) with standard protocols of Fmoc
SPS chemistry. 4Ac-GIcNAcSerFmoc was synthesized in-
house following a published procedure [95]. The peptides
were purified using HPLC and conjugated to keyhole limpet
haemocyanin (KLH) prior to injection into rabbits. Antibodies
from the serum were purified following a two-step affinity
purification protocol, first over a non-GIcNAcylated peptide
column, then subsequently over a GIcNAcylated peptide
column (Dundee Cell Product). The non-GIcNAc-CRMP?2 anti-
body fraction was retained on the first column and the
GlcNAc-CRMP2-specific antibodies were collected in the
flow through. This fraction was then loaded onto a GIcNAc-
CRMP2 peptide column to purify the GIcNAc-CRMP2-specific
antibody from other immunoglobulins. We probed antibody
specificity using recombinant CRMP2, where it recognized
the in vitro O-GIcNAcylated CRMP2 but not the non-glycosy-
lated or the Ser517Ala point mutant CRMP2 (electronic
supplementary material, figure S2A). Gratifyingly, this anti-
body was also able to recognize O-GIcNAc CRMP2 as a
single band on western blot in mouse brain lysate (electronic
supplementary material, figure S2B). We further explored anti-
body specificity on mouse brain lysate treated with CpOGA, a
bacterial O-GIcNAcase from Clostridium perfringens, possessing
a high-level hydrolytic activity on eukaryotic O-GIcNAc pro-
teins. The antibody did not react with naked CRMP2 as
removal of all O-GIcNAc modification from proteins abolished
its detection.

C-terminally truncated CRMP2 1-536 was inserted into
pGEX6P1 vector, containing an ampicillin resistance cassette,
for recombinant protein production in E. coli and into pRK-
Flag plasmid for transfection of mammalian cells. The
Ser517Ala mutation in CRMP2 was introduced following the
QuickChange method (Stratagene) using KOD Hot Start Poly-
merase (Novagen) and verified by sequencing. Constructs for
CpOGA and GST-CpOGAP?®N  (amino acids 31-618)
expression were described before [62,96].

GST-tagged CRMP2 (amino acids 1-536) was expressed in BL21
E.coli and purified on a Glutathione Sepharose 4B column and
cleaved using PreScission Protease. Recombinant OGT was pro-
duced as previously described [65]. Expression of CpOGA and
GST-CpOGAP?%8N \was reported previously [62,96].

Purified recombinant CRMP2 was O-GIcNAcylated invitroina
reaction mixture containing 250 nM recombinant human OGT,
1 pM CRMP2, 100 uM UDP-N-acetylglucosamine incubated
for 60 min at 37°C. Aliquots of 100 pg of mouse brain lysates
were incubated with 15 pg of CpOGA for 60 min at 30°C in
order to remove O-GIcNAc modification and to elucidate the
specificity of the gSer517-CRMP2 antibody.

The Neuro-2a mouse neuroblastoma cell line was maintained in
Dulbecco’s modified minimal essential medium (DMEM) (Life
Technologies, Inc., Burlington, ON) supplemented with 10%
(v/v) fetal calf serum (Life Technologies, Inc.), L-glutamine
(2mM), penicillin (100 unitsml™) and  streptomycin
(100 pg ml™%; Life Technologies, Inc.) at 37 °C, under 5% CO,.
Cells were transfected using polyethylenimine (PEI) using a
3:1 ratio of PEI to DNA (w/w) diluted in serum-free DMEM.
After 48 h of transfection, the cell culture medium was changed
and cells were treated with 25 pug mi~* cycloheximide (CHX)
alone for 6 h then supplemented with 1 uM GIcNAcstatin G
(GlycoBioChem) for an additional 16 h.

Cell lysates obtained from Neuro2a cells expressing Flag-
CRMP2 were incubated with anti-Flag M2 agarose beads
(Sigma, A2220) overnight in the cold room. Beads were
washed with cold PBS three times and Flag-CRMP2 was
eluted with SDS sample buffer; 1% 2-mercaptoethanol was
added prior to running the samples on SDS-PAGE gels.

Mouse brain tissue was rapidly dissected, rinsed in cold PBS,
snap frozen in liquid nitrogen and stored at —80°C. For immu-
noblotting cells/tissue were lysed in 50 mM Tris-HCI pH 7.4,
0.1 mM EGTA, 1 mM EDTA, 1% Triton-X100, 1 mM sodium
orthovanadate, 50 mM sodium fluoride, 5mM sodium
pyrophosphate, 0.27 M sucrose, 0.1% 2-mercaptoethanol
supplemented with protease inhibitors (1 mM benzamidine,



0.2 mM PMSF and 5 uM leupeptin) and 10 um GlcNAcstatin
G. For CpOGA treatment GIcNAcstatin G was omitted from
the lysis buffer. Cell lysate was centrifuged at 14 000 rpm for
20 min at 4°C and the protein concentration was determined
with the Pierce 660 nm protein assay. A total of 20-30 ug of
protein was denatured in SDS loading buffer containing 1%
2-mercaptoethanol or 200 mM DTT. Proteins were separated
on precast 8% NUPAGE Bis-Tris Acrylamide gels (Invitrogen)
by SDS-PAGE and transferred to nitrocellulose membrane.
Membranes were incubated with primary antibodies in block-
ing buffer, 5% bovine serum albumin in TBST (Tris-buffered
saline with 0.1% Tween-20) overnight at 4°C and next with
IR680/800-labelled secondary antibodies at room temperature
for 1 h. Blots were imaged using the Li-Cor Odyssey infrared
imaging system (Li-Cor) and Image Studio Lite software.

Human post-mortem tissue samples (control n=10 hippo-
campus, age range 17-89, AD n =5 hippocampus, age range
75-80) were obtained from the MRC London Neurodegenera-
tive Disease Brain Bank and the MRC Sudden Death Brain and
Tissue Bank, University of Edinburgh, UK. Frozen tissue was
hand-homogenized in a glass Dounce homogenizer in ice-
cold standard tissue lysis buffer (50 mM Tris-HCI pH 7.4, 1%
Triton X-100, 0.1 M EGTA, 1 mM EDTA, 1 mM NazVO,,
50 mM NaF, 5 mM Na PyroP, 0.27 M sucrose, 0.1% B-mercap-
toethanol containing Complete Protease Inhibitor Cocktail),
followed by centrifugation at 20000g (15 min, 4°C) and the
supernatant collected.

Alzet osmotic pumps (model: 2001D) loaded with GIcNAcsta-
tin G (200 ul formulated in 50% DMSO, 25% PEG400, 25%
sterile water; 10 mg ml~%; n=4 mice) or vehicle alone (200 pl
formulated in 50% DMSO, 25% PEG400; 25% sterile water;
n=3 mice) were implanted subcutaneously between the
shoulder blades of anaesthetized female NMRI mice. A can-
nula from the pump was inserted into the jugular vein. Mice
were housed in standard holding cages with water and food
available ad libitum and 12 h/12 h light/dark cycle through-
out the study. At 24 h post implant a terminal blood sample
was taken from each mouse and brain was harvested for
biochemical analysis. One mouse from the GlcNacstatin
G-infused group was used for pharmacokinetics analysis
only. Spot blood samples (10 pl) were taken from this mouse
at 15, 30 min, 1, 2, 4, 6 and 21 h, followed by a terminal
blood sample at 24 h and harvesting of brain for bioanalysis
(electronic supplementary material, table S1).

Crmp25°YA mice were generated by TaconicArtemis GmbH

(electronic supplementary material, figure S4). Briefly, the
CRMP2 coding sequence spanning exons 12-14 was targeted
by homologous recombination in C57BL/6NTac (Art B6 3.6)
mouse embryonic stem cells. The construct coding for the
Ser517Ala also contained an FRT-flanked puromycin resist-
ance cassette in the intronic region between intron 13 and
14, allowing for selection for recombination events (electronic

supplementary material, figure S4). A total of 10-15 cells

from selected ES colonies bearing the Ser517Ala mutation
were injected into 3.5-day-old blastocyst embryos of BALB/
¢ mice. After recovery, embryos were transferred to pseudo-
pregnant NMRI female mice. Chimeric progenies were
crossed with Flp deleter C57BL/6-Tg(CAG-Flpe)2 Arte mice
and heterozygous pups carrying the Ser517Ala mutation
but lacking the puromycin resistance cassette were selected.
These founder heterozygous mice were crossed with
C57BL/6 ] wild-type animals. The line was initially bred by
inter-crossing heterozygous animals, then maintained by
backcrossing to the C57BL/6 ] genetic background.

Genotyping was performed by diagnostic polymerase
chain reaction using KOD Hot Start DNA polymerase
(EMD Millipore) on genomic DNA isolated from tissue
biopsy with forward 5-TTGTTAAAGAATGTGGAACTGGG-3
and reverse 5'-AAGTGTTCCTCATTCCTCATGG-3' primers
that amplified a 385bp fragment of the knock-in or a
310 bp fragment of the wild-type allele. All animal studies
and breeding were performed in accordance with the
Animal Scientific Procedures Act of 1986.

Eleven animals, five wild-type and six homozygous
Crmp2%°Y™® mice, were sacrificed for assessing gross brain
development. Mice under terminal anaesthesia (Euthatal
9 mg kg™?) were subjected to cardiac perfusion firstly with
PBS and then with 4% paraformaldehyde. Brains were
quickly dissected and post-fixed by immersion in 4% parafor-
maldehyde in 200 mM phosphate buffer pH for overnight
fixation. Following a brief wash in PBS, they were placed
in 25% sucrose. We ensured an approximately 20-fold
volumetric excess of solution to tissue at all stages.

In order to eliminate bias, samples were blinded and then
processed and scored by an independent researcher. A 1:12
series of sections was used for Nissl staining using cresyl
violet. A further 1:12 series was processed for immunohis-
tochemistry with mouse NeuN (A60, Millipore, MAB377,
1:2000) primary antibody specific to neurons and visualized
with horseradish peroxidase-linked secondary antibody
(1:200).

The synaptoneurosome fraction was purified as previously
described [97]. Briefly, mouse brain tissue samples were
collected and snap frozen in liquid nitrogen. The tissue was
later homogenized in a pre-chilled Dounce homogenizer
with 2ml ice-cold buffer A (25mM HEPES (pH 7.5),
120 mM NacCl, 5 mM KCI, 1 mM MgCl, and 2 mM CacCl,)
supplemented with 2 mM DTT, protease inhibitors (1 mM
benzamidine, 0.2 mM PMSF and 5 uM leupeptin) and phos-
phatase inhibitors (1 mM NazVO,, 50 mM NaF and 5 mM
Na PyroP). The lysate was cleared by passing it through
two layers of 80 um nylon filters (Millipore, NY8002500) to
remove tissue debris. Total extract sample was prepared at
this stage. The synaptoneurosomes fraction was purified by
passing the homogenate through a 5 um Supor membrane
filter (Pall Corp., Port Washington, NY) and then spinning
down at 1000g for 5 min. This yielded the supernatant used
for obtaining the cytosol fraction and a pellet containing syn-
aptoneurosomes. The supernatant was subjected to a 1h



centrifugation at 100000g to clear the cytosol fraction. The
synaptoneurosome pellet was further washed once with
buffer A and centrifuged. The pellet was resuspended in
0.5 ml buffer B (50 mM Tris pH 7.5, 1.5% SDS, 2 mM DTT),
and boiled for 5 min.

Heterozygous pairs of CRMP2551"~* animals on a 50%/50%
C57BL 6 J/6NTac mixed genetic background were used to
obtain experimental animals for body weight measurements.
Wild-type and homozygous Crmp2%%*"A mice were housed
together in the same cage in groups and fed with standard
chow. Body weights of approximately 13 male and approxi-
mately 13 female mice were followed weekly between three
and six months of age. Data collection was performed by
an independent observer in a blinded manner.

One out of seven wild-type male mice had an unusually
low body weight compared with the wild-type dataset
(20.39 g at 12 weeks, 22.66 g at 16 weeks, 23.38 at 20 weeks
and 24.14 g at 24 weeks of age), otherwise no illness was
reported. We have excluded this mouse from our data
analysis.

Prior to any behavioural testing, all animals experienced daily
handling by the experimenter for two weeks. This process
ensured that the animals were accustomed to being picked
up and handled by the experimenter and vice versa. All hand-
ling took place in the experimental room at the same time each
day. Male Crmp2%®"® knock-in and wild-type littermate
control (n=8-12 per group) animals from 12.5% C57BL/
6NTac and 87.5% C57BL/6 J genetic background participated
in the study. All animals were housed in groups. Animals were
10-13 weeks old at the start of behavioural testing, reaching
22-25 weeks old at the end. The experiment was performed
blind, with the experimenters unaware of genotype while
performing the test and analysing the data.

Cognition was assessed by the NOR test. During the familiar-
ization phase, the animal is exposed to two identical objects
for 10 min. Following an inter-phase interval for 10 min, the
animal is exposed to a single copy of the familiar object
and a novel object (test phase). Discrimination index (D3)
was calculated [98]:

D3..

(time spent exploring novel object  time spent exploring)
total time spent exploring '

The activity of mice in an open-field maze was recorded.
Time spent in the centre and periphery and time moving in

the periphery were analysed to investigate parameters of

locomotion and anxiety. The test started by placing the
mice in the middle of the open-field cage and each animal
was allowed to explore for 15 min.

The spontaneous alternation test performed in an enclosed
plus maze was used to assess spatial working memory. Indi-
vidual mice were placed in the centre of the maze and
allowed to explore for 15 min. Each arm entry was recorded
to calculate the percentage of spontaneous alternation. Mice
that were able to remember which arms they had entered
most recently would choose a different one to explore,

total no: alternations

% of alternations ... (total entries  5)

Statistical analyses were performed with Prism 6 and SPSS
software packages. For pairwise comparisons of wild-type
and Crmp25°17A data the Student’s t-test was used. Unpaired
t-tests were calculated for independent samples; paired t-tests
were used when littermate correlation was apparent. For
body weight data, ANOVA with repeated measures was per-
formed. Test of between-subject effects indicated the
significant effect of genotype on body weight.

All animal studies and breeding in Dundee were approved by
the University of Dundee ethics review committee, and further sub-
jected to approved study plans by the Named Veterinary Surgeon
and Compliance Officer (Dr Ngaire Dennison) and performed
under a UK Home Office project licence in accordance with the
Animal Scientific Procedures Act (ASPA, 1986).

This article has no additional data.
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