A conserved ATG2-GABARAP family interaction is critical for phagophore formation

Mihaela Bozic1,2,*, Luuk van den Bekerom1,3,†, Beth A Milne1, Nicola Goodman1,3, Lisa Roberston1, Alan R Prescott4, Thomas J Macartney3, Nina Dawe1 & David G McEwan1,5,*,†

Abstract

The intracellular trafficking pathway, macroautophagy, is a recycling and disposal service that can be upregulated during periods of stress to maintain cellular homeostasis. An essential phase is the elongation and closure of the phagophore to seal and isolate unwanted cargo prior to lysosomal degradation. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore elongation and closure, but little mechanistic detail is known about their function. We have identified a highly conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2-WIPI4 interaction site. We show that the ATG2A-GABARAP interaction mutants are unable to form and close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double-knockout cells. In contrast, the ATG2A-WIPI4 interaction mutant fully restored phagophore formation and autophagy flux, similar to wild-type ATG2A. Taken together, we provide new mechanistic insights into the requirements for ATG2 function at the phagophore and suggest that an ATG2-GABARAP/GABARAP-L1 interaction is essential for phagophore formation, whereas ATG2-WIPI4 interaction is dispensable.

Keywords ATG2; autophagosome; autophagy; GABARAP; phagophore

Subject Category Autophagy & Cell Death

DOI 10.15252/embr.201948412 | Received 3 May 2019 | Revised 16 December 2019 | Accepted 23 December 2019 | EMBO Reports (2020) e48412

Introduction

The ability of our cells to deal with a wide variety of cellular stresses depends on two quality control pathways—the ubiquitin–proteasome and the autophagosome-to-lysosome (macroautophagy) pathways. Both act in concert to ensure that homeostasis is maintained in our cells. Macroautophagy (henceforth autophagy) is a multi-step process that requires the initiation and formation of a phagophore that grows and surrounds cargo to be degraded. The phagophore eventually seals to form a double-membraned vesicle, termed autophagosome. The autophagosome is then transported to, and fuses with, the lysosome where the inner autophagosomal membrane along with the cargo contents is degraded and recycled back to the cell (reviewed in [1]). This provides an intracellular pool of amino acids and lipids that the cell can utilize under periods of stress. Autophagy is induced by stresses including amino acid/growth factor starvation (non-selective, bulk autophagy), mitochondrial depolarization [2,3], pathogen invasion [4] and protein aggregate accumulation [5] (selective autophagy). In all cases, the inclusion of the cargo within the growing phagophore, and eventually the autophagosome, serves to isolate potentially cytotoxic material from the surrounding intracellular environment.

The molecular machinery involved in autophagosome formation is extensive and, for the most part, highly conserved. More than 30 ATG (autophagy-related) proteins regulate all stages of autophagosome formation; from initiation, cargo selection, transport and fusion with the lysosome. In higher eukaryotes, several kinase complexes, as well as ubiquitin-like conjugation machinery, are required for the initiation and expansion of the autophagosome. For example, the initiation kinase complex consists of ULK1/ATG13/ATG101/FIP200 and the lipid kinase complex VPS34/Beclin1/ATG14L1/p150 [6-8]. Growth of the autophagosome and cargo recruitment requires the ubiquitin-like conjugation machinery, consisting of ATG7 (E1-like) ATG3 and ATG10 (E2-like) and ATG12-ATG5-ATG16L1 (E3-like complex), which are responsible for the conjugation of ubiquitin-like MAP1LC3 (microtubule-associated protein 1A/1B light chain)/GABARAPs (gamma-aminobutyric acid receptor-associated proteins; mammalian homologues of yeast Atg8) to phosphatidylethanolamine (PE) on the growing phagophore membrane [9]. LC3/GABARAP proteins, once conjugated to PE, can localize to both the inner and outer autophagosomal membranes. This allows the ATG8s to interact with proteins containing an LC3 interaction region (LIR), linking the phagophore to the cargo or the phagophore/autophagosome to the cellular

1 Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
2 Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
3 MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
4 Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
5 Cancer Research UK Beatson Institute, Glasgow, UK

*Corresponding author. Tel: +44 141 330 3953; E-mails: d.g.mcewan@dundee.ac.uk; d.mcewan@beatson.gla.ac.uk
†These authors contributed equally to this work
transport and fusion machinery [10–13]. The majority of LIR motifs contain a core W/Y/F-x-x-L/I/V motif. In addition, acidic and/or phosphorylatable serine/threonine residues N- and C-terminal of the core LIR sequence can contribute to the stabilization of LIR-ATG8 interactions [13–16].

Despite a surge in our understanding of the mechanisms involved in autophagy, there are still questions pertaining as to how the double-membrane phagophore closes and seals to form the autophagosome. In particular, the molecular components and how they interact are relatively unknown. For example, in yeast, Vps21 (Rab5-related GTPase) and Rab5 influence phagophore closure [17,18]. The mammalian ATG8 protein GATE-16 (GABARAP-L2) has been shown to be involved in the later stages of autophagosome biogenesis [19] and its N-terminal extension can promote membrane fusion events, hinting at a possible role during phagophore closure [20]. However, a recent study where LC3 and GABARAPs were knocked out indicated that LC3/GABARAPs were not required for phagophore closure [21]. A mutant form of ATG4B (C74A), the cysteine protease responsible for LC3 and GABARAP priming and removal from the autophagosomal membrane, prevents LC3 and GABARAP lipidation and results in an increased number of unsealed phagophore membranes [22]. In addition to core autophagy proteins, a component of the ESCRT-III (endosomal sorting complex required for transport) endocytic machinery, CHMP2A, regulates the separation of inner and outer phagophore membranes [23].

One intriguing example of the role of ATG proteins during phagophore formation and closure is the poorly understood ATG2 proteins, ATG2A and ATG2B. Mammalian ATG2s are >1,900 amino acids in length and share approximately 40% amino acid sequence homology but are only 13% similar to the single isoform of S. cerevisiae Atg2 and 24–26% to the D. melanogaster Atg2, indicating a potential divergence of function. Indeed, the reconstitution of human ATG2A in yeast Δatg2 cells is not sufficient to restore the autophagy defects [24]. In yeast, Atg2 constitutively interacts with Atg18 at phosphatidylinositol-3-phosphate (PtdIns3P)-rich membrane regions and tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation [25,26]. Mammalian homologues of yeast Atg18 are the WIPI (WD repeat domain phosphoinositide-interacting) proteins (WIPI1–4) that are involved in various stages of autophagosome formation [27–29]. ATG2A and ATG2B preferentially interact with WIPI4 (WDR45) through the presence of a LIR (LC3 interaction region) on the target proteins, using a pan-GABARAP antibody under starvation conditions (Fig 1D). Given the presence of both GABARAP-L1 and LC3B co-localizing with GFP-ATG2A, we were curious as to whether we could co-precipitate an endogenous ATG2A-LC3/GABARAP complex using GFP-ATG2A as bait. Using U2OS WT (control) or GFP-ATG2A U2OS cells under CM and starvation conditions, we immunoprecipitated GFP-ATG2A. WIPI4, a cognate ATG2 interaction partner [29–31], co-precipitated with GFP-ATG2A both under CM and starvation conditions (Fig 1E). We could not detect endogenous LC3B in GFP-ATG2A immunoprecipitates, but we detected increased co-precipitation of GABARAP proteins, using a pan-GABARAP antibody under starvation conditions (Fig 1E). Endogenous ATG2A and ATG2B were able to co-precipitate with GFP-tagged GABARAP, GABARAP-L1 and weakly with LC3A but not with GFP-LC3B, GFP-LC3C or GABARAP-L2 when overexpressed in HEK293T cells (Fig EV1D). Notably, endogenous WIPI4 co-precipitated with GFP-ATG8s only when ATG2A or ATG2B proteins were present, indicating a potential complex between ATG2, WIPI4 and the ATG8s. Given that we could detect endogenous GABARAP proteins co-localizing and co-precipitating with ATG2s, we hypothesize that these form the functionally active complex. However, we cannot rule out a role for LC3A, but we have been unable to confirm an endogenous complex between ATG2, LC3A and WIPI4 proteins.

Results and Discussion

Endogenous GFP-tagged ATG2A co-localizes and co-precipitates with GABARAP/GABARAP-L1

In order to study the function of endogenous ATG2 proteins, we generated GFP-tagged ATG2A knock-in U2OS cells using CRISPR/Cas9 (Figs EV1A and 1C). Under complete, nutrient-rich conditions (CM), GFP-ATG2A showed a dispersed localization, with little overlap with LC3B (Fig 1A, Upper panels). However, upon starvation we observed the formation of punctate and ring-like structures that localized in close proximity to LC3B-positive vesicles (Fig 1A, Lower panels). Endogenous ATG2B co-localized with GFP-ATG2A on both the punctate and ring-like structures observed (Fig 1A, lower panels). Furthermore, endogenous GFP-ATG2A co-localized with early autophagy marker proteins WIPI2 (Fig 1B) and ATG16L1 (Fig 1C) at LC3B-positive structures formed under starvation conditions. In addition, GABARAP-L1 was present on GFP-ATG2A/LC3B-positive structures under starvation conditions (Fig 1D). Given the presence of both GABARAP-L1 and LC3B co-localizing with GFP-ATG2A, we were curious as to whether we could co-precipitate an endogenous ATG2A-LC3/GABARAP complex using GFP-ATG2A as bait. Using U2OS WT (control) or GFP-ATG2A U2OS cells under CM or starvation conditions, we immunoprecipitated GFP-ATG2A. WIPI4, a cognate ATG2 interaction partner [29–31], co-precipitated with GFP-ATG2A under both CM and starvation conditions (Fig 1E). We could not detect endogenous LC3B in GFP-ATG2A immunoprecipitates, but we detected increased co-precipitation of GABARAP proteins, using a pan-GABARAP antibody under starvation conditions (Fig 1E).

Identification of a conserved LC3 interaction region in ATG2A and ATG2B

Direct interaction with Atg8/LC3/GABARAP proteins is mediated through the presence of a LIR (LC3 interaction region) on the target protein [5,13,34–37]. ATG2 proteins have previously been shown to
Figure 1.
be part of the mammalian LC3/GABARAP interactome [38], but no direct link interaction, or consequences, has been shown. Therefore performed an in silico analysis of both ATG2A and ATG2B proteins using the iLIR tool [39], as well as manual annotation, to identify potential LIRs that conform to the [E/D/S/T]-W/F/Y-X1-X2-L/I/V consensus sequence. We excluded potential LIR sequences present on secondary structures or within domains, as LIR sequences are most frequently found within disordered regions between domains [40]. We found that ATG2A contained five, and ATG2B contained six, potential LIRs (Table 1 and Fig EV2A). We then mutated the core sequence of all the potential LIR sequences in both ATG2A and ATG2B to alanine residues (Table 1) and tested then mutated the core sequence of all the potential LIR sequences in both ATG2A and ATG2B to alanine residues (Table 1) and tested the interaction using purified GST (glutathione S-transferase)-tagged ATG8 proteins [5]. Out of the five potential LIRs present within ATG2A (Fig EV2A – E) and six potential LIRs of ATG2B (Fig EV2A, F and G), only a single, highly conserved functional LIR was present in both ATG2A (LIR#5) and ATG2B (LIR#6; Fig EV2A). Mutation of ATG2A-LIR#5 (amino acids 1,362–1,365; SDEVCL; Fig EV2H, mLIR) and ATG2B-LIR#6 (amino acids 1,491–1,494; NDDFCL; Fig EV2H, mLIR) reduced ATG2A/B and GST-ATG8 interaction, compared with WT proteins (Fig EV2H). Overexpression of ATG2A-LIR (Fig 2B) or ATG2B-LIR mutants (mLIR; FCIL/AAAA; Fig 2C) with GFP alone, GFP-LC3B or GFP-GABARAP abolished co-presentation with GFP-GABARAP, compared with WT proteins. No interaction with GFP only and only weak interaction with LC3B were detected (Fig 2B and C), consistent with previous results (Fig EV1D).

Alignment of the amino acid sequences of ATG2 proteins from multiple species revealed that the ATG2A/2B LIR sequence is highly conserved in multiple vertebrates and invertebrates (Fig 2A, orange box). This includes organisms with a single ATG2 isoform: Droso-

\[\text{philina melanogaster (DmAtg2), Caenorhabditis elegans (CeAtg2), and species with two ATG2 isoforms: D. rerio (DrAtg2a/DrAtg2a) and Xenopus tropicalis (XtAtg2a/XtAtg2b). However, the LIR does not appear to be present in Saccharomyces cerevisiae or Saccha-

\[\text{romyces pombe, indicating a potential divergence in Atg2 function (Fig 2A, orange box). Taken together, both ATG2A and ATG2B contain a single, highly conserved LIR motif that preferentially inter-

acts with the GABARAP and GABARAP-L1 proteins. Since the first LC3 interaction region was identified in the prototyp-

ic autophagy receptor protein, p62/SQSTM1 (Sequestosome-1) [10], the number of functional LIR-containing proteins identified to date has grown considerably. The interaction between mammalian ATG8s and LIR-containing proteins serves to control all aspects of the autophagy pathway, from cargo selection to formation, transport and fusion of the autophagosome. Not only are these interaction sequences present in mammalian, plant, fungi and invertebrate species, but they are also present in a number of viral [41] and bacterial [42] proteins, potentially to aid pathogen survival and subversion of the pathway. We have identified a highly conserved LIR within both ATG2A and ATG2B that differ only in a few amino acids both N- and C-terminal of the core LIR sequence (FCIL; Fig 2A). This raises an ongoing question as to how specificity within the system is achieved, particularly in mammalian systems that are complicated by the expression of six mammalian systems that are complicated by the expression of six LC3/GABARAP isoforms. We, and others [13,43,44], have attempted to decipher the code that dictates whether a protein with a particular LIR sequence will preferentially interact with LC3 over GABARAP.

Table 1. Potential LC3 interaction region sequences identified in human ATG2A and ATG2B protein sequences.

<table>
<thead>
<tr>
<th>LIR number</th>
<th>Gene</th>
<th>Potential LIR sequence</th>
<th>Amino acid position (WxxL)</th>
<th>Mutant LIR interaction with GST-LC3/GABARAPs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATG2A</td>
<td>GTSEPEYTIELT</td>
<td>536–539</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>ATG2A</td>
<td>SLHQSTFSTLVT</td>
<td>926–929</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>ATG2A</td>
<td>GQPCGLFYFCELA</td>
<td>981–984</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>ATG2A</td>
<td>HSQKLEFLDVLDD</td>
<td>1,092–1,095</td>
<td>+++</td>
</tr>
<tr>
<td>5</td>
<td>ATG2A</td>
<td>TLDSEFDCLDAP</td>
<td>1,362–1,365</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>ATG2B</td>
<td>SSDDFWPRIVL</td>
<td>845–848</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>ATG2B</td>
<td>LPNKSEYKLYN</td>
<td>954–957</td>
<td>Present on alpha helix</td>
</tr>
<tr>
<td>3</td>
<td>ATG2B</td>
<td>PSPVETFENSV</td>
<td>979–982</td>
<td>Not expressed</td>
</tr>
<tr>
<td>4</td>
<td>ATG2B</td>
<td>EETLQYTSTDP</td>
<td>1,026–1,029</td>
<td>++</td>
</tr>
<tr>
<td>5</td>
<td>ATG2B</td>
<td>INLSRDYVVRMD</td>
<td>1,306–1,309</td>
<td>Not expressed</td>
</tr>
<tr>
<td>6</td>
<td>ATG2B</td>
<td>PTENDDFCILFAP</td>
<td>1,491–1,494</td>
<td>–</td>
</tr>
</tbody>
</table>
Figure 2.
Interestingly, ATG2A and ATG2B do not conform to the recently identified GABARAP interaction motif consensus sequence (W/F-I/V-X-I/V) [13] despite preferring GABARAP and GABARAP-L1 over LC3 in co-immunoprecipitation from cells (Figs EV1D, 1E and 2B and C). Surprisingly, both ATG2A and ATG2B can also interact with LC3A (Fig EV1D); however, we have been unable to confirm an endogenous interaction. The high degree of conservation of the ATG2A/B LIR sequence throughout vertebrates and invertebrates (Fig 2A) potentially indicates a conserved function, even in species with only a single ATG2 isoform, such as D. melanogaster and C. elegans. Therefore, understanding the role of ATG2-LC3/GABARAP interaction during autophagy will provide insights into ATG2s mechanism of function in multiple species.

WIP4 can negatively regulate the ATG2A-GABARAP interaction

Intriguingly, the recently described WIP4 interaction region that contains an essential Y/HFS motif [30,31] is approximately 30-amino acid C-terminal of the newly identified LIR sequence in both ATG2A and ATG2B (Fig 2A, purple box). Therefore, we wanted to test whether the interaction between ATG2, GABARAP and WIP4 was co-dependent, or whether they represented independent interactions. The YFS motif found in ATG2A (amino acids 1,395–1,397; YFS/AA; mYFS) was mutated, and HA-tagged ATG2A-WT, ATG2A-mLIR or ATG2A-mYFS variants were stably expressed in ATG2A/B double-knockout cells (DKO; Fig EV2I), immunoprecipitated from cell lysates and probed for the presence of GFP-tagged GABARAP and endogenous WIP4. ATG2A-WT co-precipitated both WIP4 and GFP-GABARAP under complete media (CM) and starvation conditions (Fig 2D and quantified in 2E). ATG2A-LIR mutant failed to co-precipitate GFP-GABARAP, whereas the ATG2A (mLIR)-WIP4 interaction was slightly enhanced (Fig 2D and quantified in 2E; mLIR). Conversely, mutation of the ATG2A-YFS motif resulted in the loss of WIP4 interaction and increased interaction with lipidated GABARAP (GABARAP-ii; Fig 2D and quantified in 2E; mYFS). Immunoprecipitation of GFP-GABARAP resulted in WIP4 co-precipitation only in the presence of ATG2A-WT, indicating that WIP4 interacts only with ATG2A and not GABARAP directly (Fig 2F and quantified in 2G). Next, we overexpressed GFP alone, GFP-GABARAP alone or GFP-GABARAP with increasing concentrations of mCherry-WIP4, immunoprecipitated the GFP-tag and asked whether we could outcompete the binding of GABARAP to ATG2A/2B. Increasing expression of mCherry-WIP4 resulted in a steady decline in endogenous ATG2A/ATG2B immunoprecipitation with GFP-GABARAP alone or GFP-GABARAP in HEK293T cells for 24 h, lysed and GFP-TRAP beads were used to immunoprecipitate HA-tagged ATG2A and processed for Western blot. Blots were then probed with antibodies against HA-tag (ATG2A), anti–WIP4 and anti–GFP for their presence/absence in immunoprecipitated samples. All blots are representative of at least n = 3 independent experiments.

Source data are available online for this figure.
during autophagy flux. Considering the close proximity of both GABARAP and WIPI4 interaction motifs on ATG2A, we wanted to dissect the individual roles of ATG2A-GABARAP and ATG2A-WIPI4 interactions during autophagy. Stable expression of the tandem-tagged LC3B autophagy reporter (mCherry-GFP-LC3B; [45]) in ATG2A/B DKO cells was used to assess LC3B transition from autophagosomes (GFP+/ve/mCherry+/ve) to autolysosomes (GFP−/ve/mCherry+/ve) due to GFP quenching at low pH [45]. Using confocal imaging and flow cytometry to quantify, tandem-tagged LC3B puncta in ATG2A/2B DKO cells under complete medium (CM) or starvation conditions were both GFP- and mCherry-positive (Fig 3A and quantified in 3B). This indicated that the ATG2A/B DKO U2OS cells had impaired autophagy flux, consistent with previous work [46]. Stable reconstitution of tandem-LC3B expressing ATG2A/B DKO cells with ATG2A-WT resulted in more mCherry-only-positive cells/puncta in CM conditions that were increased upon starvation and was nullified using bafilomycin A1 (to prevent lysosome acidification and quenching of GFP signal) (Fig 3A and quantified in 3B). Surprisingly, expression of ATG2A-mLIR resulted in a complete lack of mCherry-only puncta/cells, resembling the ATG2A/B DKO cells, and unexpectedly, the ATG2A-mYFS (WIPI4 mutant) was able to fully restore autophagy flux similar to ATG2A-WT (Fig 3A and quantified in 3B).

Next, we analysed the effect of ATG2A-WT, ATG2A-mLIR and ATG2A-mYFS expression on both p62/SQSTM1, LC3B and GABARAP protein levels, as these are autophagy substrates and are good indicators of flux [47]. Stable expression of HA-tagged ATG2A-WT in ATG2A/2B DKO cells resulted in decreased p62/SQSTM1 and LC3B-II levels, compared with DKO alone, indicating rescue of the pathway and restoration of autophagy flux (Fig 3C-E, WT lane). Consistent with the tandem-tagged LC3B reporter assay (Fig 3A and B), expression of ATG2A-mYFS was able to fully restore autophagy flux under nutrient-rich (CM, complete medium), starvation and bafilomycin treatment (Fig 3C–E). However, GABARAP proteins did not show clear changes in flux as LC3B and p62, indicating that these may not be the best measure of autophagy flux (Fig 3C). Interestingly, the expression of ATG2A-mLIR failed to rescue the defect in p62/SQSTM1 and LC3B-II (Fig 3C–E). In DKO plus ATG2A-WT and DKO plus ATG2A-mYFS expressing cells, LC3B was present within LAMP2-positive vesicles (lysosomes) after starvation plus bafilomycin A1 treatment (Fig 4C), indicating autophagosome maturation defect and consistent with the tandem-LC3B reporter assay (Fig 3A and B). One aspect of mammalian ATG2 function is the regulation of the size and distribution of lipid droplets (LDS) [33]. ATG2A localizes to the limiting membrane of LDS [33,46]. Importantly, both HA-tagged ATG2A-mLIR and ATG2A-mYFS, as well as HA-ATG2A-WT, are able to localize to lipid droplets induced by oleate, a fatty acid supplement that induces the accumulation of neutral lipids into LDS (Fig EV3B and C). Therefore, disruption of either the ATG2A-GABARAP or ATG2A-WIPI4 interaction does not affect ATG2A localization to LDS. Taken together, our data show that mutation of a conserved GABARAP/GABARAP-L1 interaction motif on ATG2A fails to restore the autophagy defect of ATG2A/ATG2B double-knockout cells, whereas the interaction with WIPI4 is dispensable for autophagy flux.

Mutation of the ATG2A-GABARAP interaction impairs phagophore closure

The mammalian ATG2 proteins have been suggested to function at either the initial formation of phagophores [32,33] or the transition from phagophore to autophagosome, the closure step [48]. Therefore, in order to address the functional significance of the ATG2 interaction with GABARAP, we used two assays to distinguish between phagophores and autophagosomes—a protease K protection assay (Fig 4A(ii)) and Syntaxin 17 (STX17) translocation (Fig 4A(iii)). Firstly, using the protease K limited proteolysis assay, which degrades proteins not protected within a membrane compartment (Fig 4A (i)), we tested whether the expression of ATG2A-LIR mutant resulted in defective phagophore closure. ATG2A/B DKO cells and DKO cells reconstituted with ATG2A-WT, ATG2A-mLIR or ATG2A-mYFS (Fig 4B) were left in CM or starved for 4 h in the presence of bafilomycin A1 (Starve+BafA1) to accumulate autophagosomes. Cells were then permeabilized using digitonin and incubated in buffer only, protease K or protease K plus Triton X-100 (to permeabilize membranes). Under CM conditions, the majority of the autophagosome substrate p62 was degraded in all samples (Fig 4B, upper panel). After starvation plus bafilomycin A1 treatment, DKO cells reconstituted with ATG2A-WT and ATG2A-mYFS showed a large proportion of p62 resistant to protease K degradation (Fig 4B, lower panel; 38 and 56%, respectively). However, p62 in both DKO and DKO plus ATG2A-mLIR cells was sensitive to protease K digestion (Fig 4B, lower panel; 18 and 17%, respectively), which is indicative of immature/unsealed autophagosomes.

Next, STX17 translocation to LCB3-positive vesicles in the ATG2A-WT and mutant-expressing cells was tested. STX17 translocates from the ER to fully formed autophagosomes, but not phagophores, prior to their fusion with the lysosome [49–51]. Stable expression of GFP-Syntaxin 17 in the reconstituted ATG2A/B DKO cells revealed that STX17 can efficiently localize to, and surround, LC3B-positive structures in both ATG2A-WT and ATG2A-mYFS expressing cells after starvation plus bafilomycin A1 treatment (Fig 4C, open arrows and quantified in Fig 4D). Conversely, in ATG2A/B DKO and DKOs plus ATG2A-mLIR cells, GFP-STX17 localized mainly to ER and punctate structures with few GFP-STX17+ve/LC3B+ve vesicles observed (Fig 4C, closed arrows and quantified in Fig 4D). Taken together, our data suggest that a conserved GABARAP interaction motif in both mammalian ATG2A is essential for phagophore formation and/or closure and surprisingly that the WIPI4 interaction is dispensable for this function during starvation-induced autophagy.

ATG2A-LIR is essential for autophagosome formation

To gain a better understanding of the impact the ATG2A-LIR mutation has on phagophore formation and/or closure, we used super-resolution confocal microscopy to assess autophagosome formation under starvation conditions. In ATG2A/2B DKO and DKO cells expressing ATG2A-mLIR, the cells exhibited large LC3B-positive/p62-positive structures (Fig EV4A). Moreover, these structures showed WIPI2 staining throughout (Fig 5A) and accumulated ATG9A (Fig 2B), GABARAP (Fig 5C) and GABARAP-L1 (Fig EV4B). Interestingly, despite their accumulation, little difference was observed in the total protein levels of ATG9A, WIPI2 and slight changes in lipidated
Figure 3.
Figure 3. ATG2A LIR domain is essential for autophagy flux.
A. U2OS ATG2A/B double-knockout (DKO) CRISPR/Cas9 cells stably expressing tandem-tagged LC3B (mCherry-GFP-LC3B) were retrovirally transduced to express vector, or HA-tagged ATG2A-WT, ATG2A-mLIR (FC1i/AAA) or ATG2A-mYFS (YFS/AAA). Cells were grown in complete medium (CM) or starved for 2 h (EBSS) or treated with CM plus bafilomycin A1 (200 nM, 4 h), fixed and analysed by confocal microscopy. Merged images of GFP (green) and mCherry (red) channels show the presence of autophagosomes/phagophores (GFP- and mCherry-positive, yellow puncta) or autolysosomes (mCherry only, red puncta) Scale bar 10 μm. Images are representative of n = 3 independent experiments.

B. Quantification of (A) using flow cytometry of measuring GFP and mCherry fluorescence. Cells were gated based on GFP and mCherry fluorescence and % mCherry-positive cells gated used as an indication of autolysosome formation due to GFP quenching. Each symbol represents 1 independent experiment with 10,000 cells analysed per condition. A total of n = 3 independent experiments were performed, and horizontal bar indicates mean ± SD.

C. U2OS ATG2A/B DKO cells reconstituted with vector only, HA-ATG2A-WT, HA-ATG2A-mLIR and HA-ATG2A-mYFS were stimulated with complete medium (CM), 2-h starvation (EBSS) or 4-h bafilomycin A1 (BafA1, 200 nM), lysed in total cell lysis buffer and subjected to Western blot analysis. Blots were probed for the presence of HA-tag (ATG2A), p62/SQSTM1, LC3B, pan-GABARAP (GABARAP, GABARAP-L1) and GABARAP-L2 and vinculin (loading control).

D. E p62/SQSTM1 (D) and LC3B-II (E) levels were normalized to loading control and quantified as fold change of DKO proteins levels. Each symbol represents an independent experiment. Quantification of at least n = 3 independent experiments is shown. Horizontal bar represents mean ± SD.

GABARAP and GABARAP-L1, compared with p62 and LC3B (Fig EV4C). In contrast, ATG2A/B DKO cells reconstituted with ATG2A-WT or ATG2A-mYFS resulted in vesicular LC3 and punctate p62/SQSTM1 structures (Fig EV4A), punctuate WIPI2 (Fig 2A), juxtanuclear ATG9A localization (Fig 2B) and vesicular GABARAP (Fig 2A) and GABARAP-L1 (Fig EV4B) consistent with restoration of efficient autophagosome biogenesis and autophagy flux.

In cells expressing ATG2A-mLIR, LC3B is lipidated (LC3B-ii; Figs 3C and EV4C), early phagophore-associated proteins are present (ATG9A, Fig 5B), GABARAP and GABARAP-L1 are also associated (Figs 5C and EV4B, respectively) and the membranes contain PI3P (inferred by the presence of WIPI2, Fig 5A). This indicates that the observed structures (Figs 5A–C and EV4A and B) are most likely immature phagophore membranes. Indeed, the structures observed in ATG2A/DKO and DKO+ATG2A-mLIR expressing cells resemble small, clustered vesicles as shown for GABARAP-L1 (magenta) and LC3B (green) in Movie EV1 (DKO) and Movie EV2 (DKO+ATG2A-mLIR). Lastly, we used transmission electron microscopy to ascertain the nature of the membrane clusters we observed (Figs 5A–C and EV4A and B). Notably, in both ATG2A/B DKO and DKO+ATG2A-mLIR expressing cells, we observed small, clustered vesicles interlaced with endoplasmic reticulum that were not evident in ATG2A-WT or ATG2A-mYFS expressing cells that contained double-membraned autophagosomes/phagophores (Fig 5D). Taken together, we show that an ATG2A-GABARAP/GABARAP-L1 interaction is essential for efficient phagophore formation and eventual closure.

The formation of the autophagosome and its subsequent trafficking and fusion with the lysosome is a tightly controlled pathway with a number of essential components that allows it to progress in an orderly fashion. This enables the cell to liberate amino acid and lipid stores during periods of stress, target and remove intracellular pathogens or remove cytotoxic protein aggregates from the cell. Critical to this process is the ability of the cell to form a double-membraned phagophore that grows, surrounds and isolates the material to be removed. Despite recent advances in our knowledge, the mechanisms involved in phagophore closure are poorly understood. Recent work has shown that the ESCRT-III component CHMP2A regulates the separation of inner and outer phagophore membranes [23], and more recently, VPS37A is essential for phagophore closure [52]. In addition to the ESCRT-III machinery, TRAPPC11, a member of TRAPP complexes involved in membrane trafficking, has been shown to recruit ATG2B-WIPI4 to phagophores in an ATG9A-dependent manner [53]. The depletion of TRAPPC11 results in a phenotype similar to that of ATG2A/B DKO and ATG2A-mLIR [53]. The mammalian ATG2 proteins, ATG2A and ATG2B, have been shown to be essential for phagophore formation and closure [32,33,46], and depletion of WIPI4, a constitutive interaction partner of mammalian ATG2s, also negatively impacts on phagophore closure [29]. Herein, we have described a hitherto unidentified GABARAP/GABARAP-L1 interaction region on both ATG2A and ATG2B that is essential for phagophore formation.

These results shed new light on the role of ATG2 during autophagosome biogenesis, and in particular, the interactions that are necessary for this process. Perhaps most surprisingly was the effect, or rather lack thereof, that the ATG2A-WIPI4 interaction mutant had on phagophore closure and autophagy flux. From yeast...
A

(i) Phagophore → Autophagosome

Degraded

LC3B

(ii) Syntaxin 17

STXN17 → ve

STXN17 + ve

B

<table>
<thead>
<tr>
<th></th>
<th>ATG2A/B DKO</th>
<th>DKO + ATG2A</th>
<th>mLIR</th>
<th>mYFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrtK</td>
<td>- + +</td>
<td>- + +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>TX-100</td>
<td>- + +</td>
<td>- + +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>HA-ATG2A</td>
<td>+ + + +</td>
<td>+ + + +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>p62/SQSTM1</td>
<td>17 4.4 8.9 6.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

GFP-STX17/LC3B/DAPI

ATG2A/B DKO

STX17

LC3B

Starve + BafA1

DKO + ATG2A mLIR

STX17

LC3B

DKO + ATG2A mYFS

STX17

LC3B

D

% cells with GFP-STX17/LC3%

% positive vesicles

ATG2A/B DKO | WT | mLIR | mYFS

DKO + ATG2A

Figure 4.
Figure 5.
to fruit flies to humans, the ATG2-ATG18 (WIPI) interaction is highly conserved. In yeast, Atg2-Atg18 interaction occurs independently of Atg18 binding PI3P [26], much like the ATG2A/B interaction with WIPI4 [29–31]. Yeast Atg2 has been shown to contain both N- and C-terminal membrane binding domains that help tether Atg2 to membrane contact sites [25], and yeast Atg9-Atg2-Atg18 complex is important to establish phagophore-ER contact sites for phagophore expansion [54]. Human ATG2A has several domains that determine its ability to localize to membranes. Firstly, ATG2 has an N-terminal membrane binding region that is essential for autophagosome formation [46] that has now been shown to be a lipid transport domain [55,56]. This N-terminal lipid transport domain is thought to be essential for the transport of PE and phosphatidylserine from the ER/omegasome to the growing phagophore [55,56], potentially at mitochondrial-ER contact sites [57]. This N-terminal lipid transport domain is homologous to the Vps13 lipid transport domain involved in organelle isolation membranes and is essential for autophagy flux [46]. In addition, ATG2 has a C-terminal region (aa1,830–1,938 HsATG2A) that is involved in localization to lipid droplets but is dispensable for autophagy [46]. This raises an interesting question as to the role of the ATG2-WIP4 interaction, as this was previously thought to be involved in ATG2 autophagy function. However, we have shown that ATG2-WIP4 is dispensable for autophagosome formation and autophagy flux. Given that the ATG2A-LIR mutant we identified has impaired autophagy flux (Fig 3) but can still localize to lipid droplets (Fig EV3B and C), we suggest that both the ATG2A-AH and ATG2A-LIR are essential to define the target membrane, allowing tethering and lipid transfer and driving efficient phagophore formation and autophagosome maturation (Fig 5E).

Materials and Methods

Antibodies

The antibodies used in this study are as follows: anti-GFP (Santa Cruz, clone B-2, sc9996), anti-FlagM2 (Sigma, F3165), anti-p62 (MBL, M162-3), anti-LC3B (clone 5F10 Nanotools, 0231-100/LC3-1,938 HsATG2A), anti-GABARAP (Abcam, ab109364), anti-GABARAP (IF, Western blotting; Abgent, AP1821a), anti-GATE-16 (MBL, PM038), anti-GABARAP-L1 (WB, IF, Proteintech, 11010-1-AP), anti-vinculin (Sigma, V9131-100UL), anti-ATG2A (ProteinTech, 23226-1-AP) and ATG2B (ProteinTech, 25155-1-AP), LAMP-2 (DSHB, clone H4B4) and c-Myc (DSHB, clone 9E10).

Cell culture and reagents

HEK293T and U2OS or U2OS ATG2A/B double-knockout cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen 10313021) supplemented with 10% foetal bovine serum (FBS), 5 U/ml penicillin and 50 μg/ml streptomycin, 1 mM l-glutamine and 1% sodium pyruvate. For starvation in nutrient-depleted medium, the cells were incubated 2 h in Earl’s balanced salt solution (EBSS; Gibco, 24010-043). Bafilomycin A1 (BafA1; Enzo, BML-CM110-0100) was used at 200 nM. ATG2A/2B DKO cells were stably transfected by retroviral transduction of pMSCV-Flag-HA (ITAP) vectors. Briefly, HEK293T cells were transfected with ITAP vectors with pCG-GagPol and pCG-VSVG (retrovirus) packaging vectors. Virus-containing media was harvested 48 h post-transfection, centrifuged at 300× g, passed through a 0.45-μm filter and added to ATG2A/B DKO cells in the presence of 10 μg/ml polybrene (Sigma, H9268-5G). Transduced cells were selected by addition of 1 μg/ml puromycin (ITAP and GFP-STX17) 48 h after addition of viral media.

CRISPR/Cas-9 gene editing

CRISPR/Cas9-mediated deletion of ATG2A (NM_015104.3) and ATG2B (NM_018036.7) in osteosarcoma cells (U2OS) was performed by using the Cas9 D10A “nickase” mutant, and paired gRNA approach [59] was used to target exon 1 of both ATG2A (5′-CCATGCTAAAACCTGTGTGAAAGA-3′ and 5′-TACTTGGGCACCCAC TACATTAGG-3′) and ATG2B (5′-CCGTTTTCGGAGTCCATCAAGAA-3′ and 5′-CCTGGCGGTACCTCCGTAGAGG-3′). ATG2A- and ATG2B-targeting gRNAs were transcribed into 1 × 106 U2OS cells followed by selection with 1 μg/ml puromycin for 48 h, re-transfection, recovery (in puromycin-free media) and single-cell sorting to isolate clone candidates with the gene deletion. Endogenous GFP-tagged ATG2A knock-ins were generated using a modified “nickase” strategy (as above). Optimal sgRNA pairs were identified and chosen on the basis of being as close as possible to the point of GFP insertion while having a low combined off-targeting score (ATG2A-sgRNA1: 5′-GCTAAACTCTGTGAAAGAGC-3′ and sgRNA2: 5′-AGATGTCACGATGTCGGTCG-3′). Complementary oligos with BbsI compatible overhangs were designed for each.
and these dsDNA guide inserts ligated into Bbsl-digested target vectors; the antisense guide (sgRNA2) was cloned onto the spCas9 D10A expressing pX335 vector (Addgene plasmid no. 42335) and the sense guides (sgRNA1) into the puromycin-selectable pBABED P U6 plasmid (Dundee-modified version of pBABE-puro plasmid). A donor construct consisting of GFP flanked by approximately 500-bp homology arms was synthesized by GeneArt (Life Technologies); each donor was engineered to contain sufficient silent mutations to prevent recognition and cleavage by Cas9 nuclease. Both sgRNA and donor constructs were transfected into U2OS cells, selected in puromycin-free complete media. When confluent, cells were single-cell-sorted for GFP-positive populations and homozygous in puromycin-free complete media. When confluent, cells were transferred into SDS

Western blot and immunoprecipitation

Cells (HEK293T, U2OS) were lysed in NP-40 lysis buffer (50 mM Tris, pH 7.5, 120 mM NaCl, 1% NP-40) supplemented with Complete protease inhibitor (Roche) and phosphatase inhibitor cocktail (Roche). Lysates were passed through a 27G needle, centrifuged at 21,000× g and incubated with either anti-GFP agarose (Chromotek, gta-20) or anti-HA agarose (Sigma, A2095), washed three times in lysis buffer and subjected to SDS–PAGE and Western blot. For total cell lysis (TCL), cells were lysed in 50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM MgCl₂, 1% SDS. TCL buffer was supplemented with Complete protease inhibitor (Roche), phosphatase inhibitor cocktail (Roche) and Benzonase (VWR/Fisher Scientific) at 1 μg/ml puromycin for 48 h, re-transfected and allowed to recover in puromycin-free complete media. When confluent, cells were single-cell-sorted for GFP-positive populations and homozygous clones selected for further analysis.

Autophagy flux by flow cytometry assay

U2OS ATG2A/2B DKO cells were transfected with mCherry-EGFP-LC3B tandem-tagged reporter construct [45,60], grown in G418/neomycin selection (800 μg/ml) and single-cell-cloned. U2OS-ATG2A/2B DKO-tandem LC3B cells were then transduced with retrovirus containing iTAP ATG2A constructs and selected for in G418 + 1.5 μg/ml puromycin and stable cells generated. These were treated as indicated, scraped into PBS and fixed in 4% PFA for 15 min, washed and then subjected to flow cytometry analysis. All flow cytometry experiments were carried out at least three times using 10,000 cells per cell line per treatment. The cells were then analysed and sorted on an LSR Fortessa (Becton Dickinson) flow cytometer. Cells were gated according to forward scatter and side scatter, and dead cells were excluded from analysis. GFP fluorescence measured by excitation at 488 nm and emission detected at 530 ± 30 nm and mCherry fluorescence measured by excitation at 561 nm and emission detected at 610 ± 20 nm. Flow data were analysed using FlowJo software.

Immunofluorescence and confocal microscopy

Cells grown on 18-mm glass coverslips were treated as described and subsequently fixed in 4% paraformaldehyde/PBS (PFA; Santa Cruz, 30525-89-4) for 10 min at room temperature and washed 3× in PBS. Cells were then washed in PBS/0.1% saponin twice and primary antibodies incubated for 1 h at room temperature in 5% BSA/PBS/0.1% saponin. DAPI (Molecular Probes) was added during primary antibody incubation. Coverslips were then washed twice in PBS/0.1% saponin, and secondary antibodies (Invitrogen donkey anti-mouse, anti-rabbit, anti-rat) and Alexa dyes (488, 555 and 647) were used in combination depending on the primary antibody species and incubated in PBS/5% BSA/0.1% saponin. For detection of endogenous GFP-ATG2A, nanobody boosters towards GFP (anti-GFP, Atto-488 Coupled, Chromotek; gba488-100) were used to enhance the signal. Secondary antibodies were then washed twice in PBS/0.1% saponin, once in PBS and once in ddH₂O to remove the residual saponin prior to mounting in ProLong Diamond Antifade containing Mowiol (Invitrogen, p36965). Cells were imaged using a Zeiss 710 confocal microscope with a 63× objective lens. Super-resolution microscopy images were taken on Zeis 880 AiryScan, and image processing was carried out using built-in-software (Zen Software AiryScan Processing). Subsequent image analysis was performed using FIJI (ImageJ) [61].

Transmission electron microscopy

Cells were treated as indicated, media removed and fixed in 0.1 M sodium cacodylate buffer (pH 7.2) containing 4% paraformaldehyde and 2.5% glutaraldehyde for 30 min at room temperature on the plate, scraped into fixative and left for a further 30 min at room temperature. Samples were then spun at 500× g for 15 min and the pellet washed twice in cacodylate buffer. For post-fixation, samples were incubated in 1% OsO₄ with 1.5% sodium ferrocyanide in 0.1 M cacodylate buffer for 60 min. Samples were subsequentlyfixed with 1% tannic acid in 0.1 M cacodylate buffer for 1 h and washed in sodium acetate buffer (pH 5) overnight. Samples were then stained with 1% uranyl acetate in acetate buffer for 1 h and dehydrated in alcohol solution series from 50 to 100% with 10-min incubation in each alcohol. Samples were then dehydrated in alcohol solution series from 50 to 100% with 10-min incubation in each alcohol. Samples were then dehydrated in alcohol solution series from 50 to 100% with 10-min incubation in each alcohol. Samples were then fixed in 100% propylene oxide with two times 10-min incubations. Samples were then fixed in 50% propylene oxide, 50% Durcupan resin (Sigma; mix: A—5 g, B—5 g, C—6 drops, D—6 drops—invert to mix and avoid bubbles) and left overnight in rotator. The propylene oxide was then allowed to evaporate, and samples changed into 100% Durcupan resin in specimen embedding moulds, polymerized at 60°C overnight and sections cut on ultramicrotome at 70–100 nm thickness (Leica Ultracut UCT). Sections were stained with 3% aqueous uranyl acetate followed by Reynolds lead citrate. Grids were then imaged on JEOL 1200EX TEM using SIS camera and processed using FIJI (ImageJ).

Lipid droplet induction and imaging

Cells were set up on glass coverslips and incubated with either complete medium plus 2% BSA or complete media plus 2% BSA/500 μM oleic acid for 16 h. Cells were then fixed in 4% PFA/PBS for 10 min and permeabilized using the saponin method detailed above. Coverslips were incubated with anti-HA primary antibody and donkey anti-rat Alexa 657 secondary antibody. Lipid droplets were stained using 5 μM BODIPY 493/503 (Thermo Fisher Scientific). Lipid droplets were stained using 5 μM BODIPY 493/503 (Thermo Fisher Scientific)
Scientific) to stain neutral lipids. Samples were mounted, imaged and analysed as detailed above.

Protein expression and purification

GST-tagged mammalian ATG8 fusion proteins were cloned into pGEX-4T-1 (GE Healthcare) and expressed in GST-tagged mammalian ATG8 fusion proteins were cloned into pGEX-4T-1 (GE Healthcare) and expressed in *Escherichia coli* BL21 (DE3) cells in LB medium as previously described [5]. Expression was induced by addition of 0.5 mM IPTG, and cells were incubated at 16°C overnight. Harvested cells were lysed using sonication in a lysis buffer (20 mM Tris–HCl pH 7.5, 10 mM EDTA, 5 mM EGTA, 150 mM NaCl), and the supernatant was subsequently applied to Glutathione Sepharose 4B beads (GE Healthcare). After several washes, fusion protein-bound beads were used directly in GST pull-down assays.

Proteinase K protection assay

Proteinase K assay was performed as previously detailed [60]. Briefly, U2OS ATG2A/B DKO or DKO plus ATG2A-WT, ATG2A-mLR or ATG2A-mYFS cells were grown in complete media or starved (EBSS) in the presence of bafilomycin A1 (200 nM) for 4 h.

Table 2. Plasmids used in this study.

<table>
<thead>
<tr>
<th>Plasmid epitope tag</th>
<th>Gene/mutation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDONOR223-hATG2A</td>
<td>Human ATG2A</td>
<td>This study</td>
</tr>
<tr>
<td>pDONOR223-hATG2B</td>
<td>Human ATG2B</td>
<td>This study</td>
</tr>
<tr>
<td>(TAP) pMSCV-Flag-HA-ATG2A</td>
<td>ATG2A-WT</td>
<td>This study</td>
</tr>
<tr>
<td>(TAP) pMSCV-Flag-HA-ATG2A-mLIR</td>
<td>ATG2A aa1,362–1,365 FCIL/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>(TAP) pMSCV-Flag-HA-ATG2A-mYFS</td>
<td>ATG2A aa1,395–1,397 YFS/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2A-WT</td>
<td>ATG2A-WT</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2A-mLIR#1</td>
<td>ATG2A aa536–539 YTEI/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2A-mLIR#2</td>
<td>ATG2A aa926–929 FSTI/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2A-mLIR#3</td>
<td>ATG2A aa981–984 YFCL/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2A-mLIR#4</td>
<td>ATG2A aa1,092–1,095 FLDV/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2A-mLIR #5</td>
<td>ATG2A aa1,362–1,365 FCIL/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDONOR223-hATG2B</td>
<td>Human ATG2B</td>
<td>This study</td>
</tr>
<tr>
<td>pDONOR223-hATG2B</td>
<td>Human ATG2B</td>
<td>This study</td>
</tr>
<tr>
<td>(TAP) pMSCV-Flag-HA-ATG2A</td>
<td>ATG2A-WT</td>
<td>This study</td>
</tr>
<tr>
<td>(TAP) pMSCV-Flag-HA-ATG2A-mLIR</td>
<td>ATG2A aa1,362–1,365 FCIL/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>(TAP) pMSCV-Flag-HA-ATG2A-mYFS</td>
<td>ATG2A aa1,395–1,397 YFS/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2B-WT</td>
<td>ATG2B-WT</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2B-mLIR#1</td>
<td>ATG2B aa845–848 WPR1/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2B-mLIR#3</td>
<td>ATG2B aa979–982 FEN1/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2B-mLIR#4</td>
<td>ATG2B aa1,026–1,029 FSTV/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2B-mLIR#5</td>
<td>ATG2B aa1,306–1,309 YVRV/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-CMV-Myc-ATG2B-mLIR#6</td>
<td>ATG2B aa1,491–1,494 FCIL/AAAA</td>
<td>This study</td>
</tr>
<tr>
<td>pGEX-4T1 alone</td>
<td>GST only</td>
<td></td>
</tr>
<tr>
<td>pGEX-4T1-LC3A-ΔG</td>
<td>MAP1LC3A deletion of c-term Gly</td>
<td>[5]</td>
</tr>
<tr>
<td>pGEX-4T1-LC3B-ΔG</td>
<td>MAP1LC3B deletion of c-term Gly</td>
<td>[5]</td>
</tr>
<tr>
<td>pGEX-4T1-LC3C-ΔG</td>
<td>MAP1LC3C deletion of c-term Gly</td>
<td>[5]</td>
</tr>
<tr>
<td>pGEX-4T1-GABARAP-ΔG</td>
<td>GABARAP deletion of c-term Gly</td>
<td>[5]</td>
</tr>
<tr>
<td>pGEX-4T1-GABARAP-L1-ΔG</td>
<td>GABARAP-L1 deletion of c-term Gly</td>
<td>[5]</td>
</tr>
<tr>
<td>pGEX-4T1-GABARAP-L2-ΔG</td>
<td>GABARAP-L2 deletion of c-term Gly</td>
<td>[5]</td>
</tr>
<tr>
<td>pEGFP-C1 empty</td>
<td>GFP only</td>
<td></td>
</tr>
<tr>
<td>pEGFP-C1-LC3A</td>
<td>GFP-tagged MAP1LC3A</td>
<td>[5]</td>
</tr>
<tr>
<td>pEGFP-C1-LC3B</td>
<td>GFP-tagged MAP1LC3B</td>
<td>[5]</td>
</tr>
<tr>
<td>pEGFP-C1-LC3C</td>
<td>GFP-tagged MAP1LC3C</td>
<td>[5]</td>
</tr>
<tr>
<td>pEGFP-C1-GABARAP</td>
<td>GFP-tagged GABARAP</td>
<td>[5]</td>
</tr>
<tr>
<td>pEGFP-C1-GABARAP-L1</td>
<td>GFP-tagged GABARAP-L1</td>
<td>[5]</td>
</tr>
<tr>
<td>pEGFP-C1-GABARAP-L2</td>
<td>GFP-tagged GABARAP-L2 (GATE-16)</td>
<td>[5]</td>
</tr>
<tr>
<td>pmCherry-C1-GABARAP</td>
<td>mCherry-tagged GABARAP</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-mCherry-WIPI4</td>
<td>mCherry-tagged WIPI4 (WDR45)</td>
<td>This study</td>
</tr>
<tr>
<td>pDEST-EGFP-WIPI4</td>
<td>GFP-tagged WIPI4 (WDR45)</td>
<td>This study</td>
</tr>
<tr>
<td>pMRXIP-EGFP-Stx37WT</td>
<td>GFP-tagged Syntaxin 17</td>
<td>[51]</td>
</tr>
</tbody>
</table>
scraped in PBS and centrifuged at 500× g. The cells were then resuspended in PBS/6.5 mg/ml digitonin incubated for 5 min at room temperature and then for a further 30 min on ice. Samples were subsequently centrifuged at 13,000× g and the supernatant removed. The membrane fractions were then resuspended with either buffer only, buffer + 100 ng/ml protease K (PK) or PK + 0.1% Triton X-100 (PK+TX) for 10 min at 30°C. The reaction was stopped by addition of 3× Laemmli sample buffer and boiled at 95°C.

Cloning and plasmid generation

pDONOR-ATG2A and pDONOR-ATG2B were kind gifts from C. Behrends. These were used in conjunction with Gateway cloning system (Invitrogen) pDEST-CMV-Myc and pMSCV-Flag-HA-IRESPuro (iTAP) to generate plasmids expressing either ATG2A or ATG2B. Site-directed mutagenesis was carried out to mutate the wild-type gene for the required amino acid substitutions. For a full list of plasmids used in this study, see Table 2.

Expanded View for this article is available online.

Acknowledgements

We would like to acknowledge P. Crocker, I. Gaal, A. Cubas, I. Dikic and K. Ryan for critical reading of the manuscript and valuable insights and discussions. We are grateful to Prof. Sharon Tooze for providing a kind gift of WIP2 and WIP4 antibodies as well as WIP1 expression plasmids. The anti-LAMP-2 (H484) and anti-c-Myc (BE10) antibodies were obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at the University of Iowa. We gratefully acknowledge the support from Tenovus Scotland (T16/44) and a Wellcome Trust Seed Award (202061/216/2).

Author contributions

MB, LVDG, NG and ND performed experiments; BAM and LR characterized ATG2 KO cells; TJM designed and synthesized CRISPR/Cas9 guides; and ARP assisted in confocal imaging and prepared samples for TEM. DGM designed, performed and analysed experiments and wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

protective autophagy to non-canonical caspase-8 activation and apop-
51. Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-
anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151: 1256 – 1269
52. Takahashi Y, Liang X, Hattoni T, Tang Z, He H, Chen H, Liu X, Abra-
establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Biol 217: 2743–2763

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.