University of Dundee

DOCTOR OF PHILOSOPHY

Structure- based inhibitor design for key enzymes of Trypanosoma brucei

Striker, Waldemar

Award date: 2014

Awarding institution: University of Dundee

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 27. Apr. 2019
Structure-based inhibitor design for key enzymes of *Tryposoma brucei*

Waldemar Striker

2014

University of Dundee
STRUCTURE-BASED INHIBITOR DESIGN FOR KEY ENZYMES OF TRYPSANOSOMA BRUCEI

WALDEMAR STRIKER

A THESIS SUBMITTED FOR THE DEGREE OF:

DOCTOR OF PHILOSOPHY
UNIVERSITY OF DUNDEE

29. January 2014
Declarations

I declare that the following thesis is based on the results of investigations conducted by myself, and that this thesis is of my own composition. Work other than my own is clearly indicated in the text by reference to the relevant researchers or to their publications. This dissertation has not in whole, or part, been previously submitted for a higher degree.

Waldemar Striker

I certify that Waldemar Striker has spent the equivalent of at least nine terms in the research work at the College of Life Sciences, University of Dundee, and that he has fulfilled the conditions of the Ordinance General No. 14 of the University of Dundee and is qualified to submit the accompanying thesis in application for the degree of Doctor of Philosophy.

Dr. Ruth Brenk
Acknowledgments

First I want to thank my supervisor Ruth Brenk for giving me the opportunity to do my PhD under her supervision, guidance and never giving up on me.

I would like to thank the whole Brenk-Group for their support and wonderful atmosphere in the office.

Many thanks to Ian Gilbert for his constructive suggestions and corrections of this thesis.

I want to thank all the people who were involved in the projects of this thesis: Raffaella Grimaldi, David Gray, Iva Hopkins Navrati lova, Sabine Kuettel, Michael Ferguson and Daniel Fontaine.

A great support was David Robinson, who introduced me in crystallography, crystal structure-determination and NMR – screening. Thanks a lot!

Bill Hunter deserves my deeply gratitude to always be there for me and guide me through difficult times! I will never forget that!

My parents I want to thank for their support over all these years of studies.

Especially I want to thank Manuel Banzhaf for his major corrections of this thesis and for being a loyal and true friend for so many years. Who really needs more friends if he has already found the best one??

This thesis is dedicated to my wife Milana and my little family. Milana you made all these years of this PhD bearable and I want to thank you for your love and support in every situation.
Table of contents

1 Introduction .. 1
1.1 Drug discovery and drug design.. 1
1.1.1 Drug discovery process ... 1
1.1.2 Experimental screening ... 3
1.1.3 *In silico* (virtual) screening .. 6
1.1.3.1 Docking program DOCK3.5.54 .. 8
1.2 Human African trypanosomiasis (HAT) ... 10
1.3 *T. brucei* 6-phosphogluconate dehydrogenase (*Tb*6PGDH) as a target for HAT 13
1.4 *T. brucei* UDP-glucose pyrophosphorylase (*Tb*UGP) as a target for HAT 17
1.5 Objectives .. 22
1.5.1 Structure-based hit discovery for the key enzymes *Tb*6PGDH and *Tb*UGP. 22
1.5.2 Hit validation, SAR and evaluation of binding mode of discovered hits 22
2 Hit discovery for 6PGDH ... 23
2.1 Material and Methods ... 23
2.1.1 Overexpression and purification of *Gs*6PGDH... 23
2.1.2 NMR fragment screen .. 29
2.1.2.1 NMR analysis .. 30
2.1.3 Kinetic characterisation of *Gs*6PGDH .. 30
2.1.3.1 Assay development .. 31
2.1.4 Crystallisation of *Gs*6PGDH .. 35
2.1.4.1 Data collection, processing and structure modelling 36
2.2 Results .. 38
2.2.1 Structure analysis of 6PGDH enzymes ... 38
2.2.2 Inhibition assay with virtual screening hits ... 44
2.2.3 Determination of binding mode of virtual screening hits using crystallography .. 50
2.2.4 Fragment screening using NMR methods .. 51
2.2.5 Inhibition assay with NMR fragment hits ... 52
2.3 Discussion ... 54
2.3.1 Virtual screening hits ... 54
2.3.2 Crystallisation and crystal structure determination 56
2.3.3 Fragment NMR – screening and hit validation .. 56
3 Hit discovery for UGP ... 58
3.1 Material and Methods ... 58
3.1.1 Homology model .. 58
3.1.2 Virtual screening and molecular docking .. 58
3.1.2.1 Compound database ... 58
3.1.2.2 Pharmacophore filter ... 59
3.1.2.3 Receptor preparation for docking ... 60
3.1.2.4 Small molecule preparation and molecular docking 62
3.1.2.5 Docking analysis ... 63
3.1.3 Protein overexpression and purification of *TbUGP* 64
3.1.4 Kinetic inhibition assay of *TbUGP* .. 70
3.1.5 High throughput screening (HTS) with *TbUGP* .. 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.5.1</td>
<td>Analysis of HTS hits to establish SAR</td>
</tr>
<tr>
<td>3.1.6</td>
<td>NMR fragment screen and analysis</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Testing solubility using a nephelometer</td>
</tr>
<tr>
<td>3.1.8</td>
<td>DNA isolation and manipulation</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Crystallisation of (Tb)UGP G219I-mutant and structure determination</td>
</tr>
<tr>
<td>3.1.9.1</td>
<td>Data collection, processing and structure modelling</td>
</tr>
<tr>
<td>3.2</td>
<td>Results</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Hit discovery by virtual screening</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Virtual screening</td>
</tr>
<tr>
<td>3.2.1.2</td>
<td>Evaluation of virtual screening hits</td>
</tr>
<tr>
<td>3.2.1.3</td>
<td>Binding studies using NMR</td>
</tr>
<tr>
<td>3.2.1.4</td>
<td>Inhibition assay with virtual screening hits</td>
</tr>
<tr>
<td>3.2.1.4.1</td>
<td>Determination of mode of inhibition of compound 16</td>
</tr>
<tr>
<td>3.2.1.4.2</td>
<td>Evaluation of binding mode of compound 16</td>
</tr>
<tr>
<td>3.2.1.5</td>
<td>Inhibition of (h)UGP by compound 16</td>
</tr>
<tr>
<td>3.2.1.6</td>
<td>SAR around compound 16</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Hit discovery using HTS</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Screening of fragment library</td>
</tr>
<tr>
<td>3.3</td>
<td>Discussions of the UGP – project</td>
</tr>
<tr>
<td>4</td>
<td>Summary and Conclusions</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary and conclusions regarding 6PGDH – Project</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary and conclusions regarding UGP – Project</td>
</tr>
<tr>
<td>5</td>
<td>Outlook</td>
</tr>
<tr>
<td>6</td>
<td>Appendix</td>
</tr>
</tbody>
</table>
List of figures

Figure 1.1 The drug discovery pipeline .. 2
Figure 1.2 In silico drug screening flowchart ... 7
Figure 1.3 Drugs currently used for HAT treatment .. 13
Figure 1.4 Oxidative phase of the pentose phosphate pathway 14
Figure 1.5 Mechanism of 6PGDH reaction and intermediate analogues 16
Figure 1.6 Chemical structure of UDP-Glc ... 18
Figure 1.7 Summary of the sugar nucleotide biosynthesis pathway in T. brucei 19
Figure 1.8 Ordered reaction mechanism of TbUGP ... 20
Figure 2.1 Chromatogram of Gs6PGDH on a HisTrap HP 5 ml column 26
Figure 2.2 Chromatogram of Gs6PGDH on a HisTrap HP 5 ml column after TEV – cleavage ... 27
Figure 2.3 Chromatogram of Gs6PGDH on a Superdex 75 16/60 column after TEV – cleavage ... 28
Figure 2.4 Temperature screen of Gs6PGDH .. 32
Figure 2.5 NADP⁺ standard curve with a linear regression fit 32
Figure 2.6 Reaction diagram at different Gs6PGDH concentrations 33
Figure 2.7 Saturation curve of Gs6PGDH with Lineweaver–Burk plot 34
Figure 2.8 Sequence alignment of 6PGDH enzymes from different species 38
Figure 2.9 Gs6PGDH interactions with the substrate 6PG ... 40
Figure 2.10 Overlay of the NADP⁺ binding pocket from h-, Gs- and Tb6PGDH 41
Figure 2.11 Overlay of the NADP⁺ binding pocket from h-, Gs- and Tb6PGDH showing differences of side chains ... 42
Figure 2.12 Dose response curve of 1 ... 45
Figure 2.13 Dose response curve of 2 ... 46
Figure 2.14 Dose response curve of 3 ... 47
Figure 2.15 Dose response curve of 4 ... 48
Figure 3.1 Schematic view of the 3D pharmacophore for potential TbUGP inhibitors 60
Figure 3.2 Matching sphere set generated for UGP ... 62
Figure 3.3 Chromatogram of TbUGP (construct B) on a HisTrap HP 5 ml column 66
Figure 3.4 Chromatogram of TbUGP (construct B) on a HisTrap HP 5 ml column after TEV – cleavage ... 68
Figure 3.5 Chromatogram of TbUGP (construct B) on a Superdex75 column after TEV – cleavage ... 69
Figure 3.6 Detection of phosphate using BiomolGreen .. 70
Figure 3.7 Binding mode of the product UDP-Glc in TbUGP .. 79
Figure 3.8 Surface overlay of TbUGP with hUGP-model (red) with bound UDP-Glc.... 81
Figure 3.9 C-alpha chains overlay of hUGP(red) and hUGP-homology model (white) 82
Figure 3.10 Overlay of active sites of hUGP(red) and G219I-mutant(black) 82
Figure 3.11 Surface overlay of TbUGP with hUGP (green) with bound UDP-Glc in TbUGP. ... 83
Figure 3.12 Virtual screening cascade used to identify potential TbUGP inhibitors 84
Figure 3.13 NMR STD - spectra for 16 showing signal reduction after adding UTP 89
Figure 3.14 NMR wLOGSY - spectra for 16 showing signal reduction after adding UTP 89
Figure 3.15 TbUGP - STD spectra of compound 22 in a mixture 90
Figure 3.16 TbUGP - wLOGSY spectra of compound 22 in a mixture90

Figure 3.17 Dose response curve of compound 16 ...92

Figure 3.18 Shift in pIC_{50} for 16 at a substrate concentration of 5 times and 10 times the K_m ...94

Figure 3.19 Comparison of docked compound 16 in wild type (a) and mutated (b) TbUGP structure ...96

Figure 3.20 Binding site of G219I–mutant with F_o-F_c electron density97

Figure 3.21 Dose-response curve for substrate like inhibitor UTP-α-S98

Figure 3.22 Dose response curve of 16 with hUGP (measured by Raffaella Grimaldi) 99

Figure 3.23 PI of fragment set ..103

Figure 3.24 Secondary structures of used primers ...107
List of tables

Table 2.1 Sequence of His-tagged Gs6PGDH ...23
Table 2.2 Biochemical properties of His-tagged Gs6PGDH..24
Table 2.3 Sequence of cleaved Gs6PGDH (crystallization construct)24
Table 2.4 Biochemical properties of cleaved Gs6PGDH ...24
Table 2.5 Sequence identity of 6PGDH enzymes from different species39
Table 2.6 Differences in side-chain - amino acids of h-, Tb- and Gs6PGDH at 7 Å around NADP⁺ ..43
Table 2.7 Inhibition data for virtual screening hits published in (Ruda, et al., 2010) ..49
Table 2.8 Inhibition data for high energy intermediate analogue as described by (Dardonville, et al., 2004) ..50
Table 2.9 Active acids found by a fragment screening for Gs6PGDH52
Table 3.1 Amino acid sequence of TbUGP kinetic assay construct A64
Table 3.2 Biochemical properties of TbUGP kinetic assay construct A64
Table 3.3 Amino acid sequence of cleaved TbUGP crystallisation construct B67
Table 3.4 Biochemical properties of TbUGP crystallisation construct B67
Table 3.5 Non-hydrolysable substrate UTP-α-S...73
Table 3.6 Compounds shortlisted for binding assays with TbUGP after virtual screening ...85
Table 3.7 Comparison of K_m values of wild type and G219I-mutant of TbUGP98
Table 3.8 Purchased analogues of compound 16 ..100
List of equations

Equation 1.1 Scoring function used in DOCK3.5.54 ... 9
Equation 2.1 Michaelis – Menten kinetic ... 33
Equation 2.2 Lineweaver-Burk linearization of the Michaelis-Menten equation 34
Equation 2.3 Two parameter fit equation .. 35
Equation 2.4 Four parameter fit equation .. 35
Equation 3.1 Z-factor (Zhang, et al., 1999) ... 72
Equation 3.2 Ligand efficiency .. 72
Equation 3.3 Cheng – Prusoff equation ... 92
Abstract

Human African trypanosomiasis (HAT) also known as sleeping sickness is caused by a subspecies of *Trypanosoma brucei*. These parasites are transmitted by tsetse flies and endanger over 60 million people in Sub-Saharan Africa. Untreated, sleeping sickness is fatal, causing at least 48,000 deaths per year. Its treatment remains complicated since the currently available drugs show high toxicity and are too expensive to be ubiquitously distributed in the affected third world economies. Additionally, emerging drug resistance towards the most clinically relevant anti HAT drugs, drastically limits treatment options and makes it imperative to conduct research to find safer and more efficient drugs to treat this terrible disease.

This thesis describes the hit identification and hit validation for two validated targets for HAT: *Tb*6PGDH and *Tb*UGP. For hit identification different techniques like *in silico* virtual screening, NMR lead-like fragment screening and HTS were used. For *Tb*UGP a very first drug-like, competitive inhibitor with a pIC$_{50}$ of 3.53±0.04 and a Hill slope of 1.1±0.1 was discovered. Additionally this thesis describes the determination and validation of the *in silico* proposed binding mode using mutation studies and crystallisation techniques.
1 Introduction

1.1 Drug discovery and drug design

1.1.1 Drug discovery process

In 7000 years of development of mankind, drug discovery has always played a crucial role (Lindesmith 1968). The more advanced the medicinal knowledge of a community was, the healthier and therefore longer-living and historically influential people were. Although hundreds of years ago many drugs were known, which were isolated from plants, animals and minerals, the knowledge and discovery of new drugs developed very slowly. With the beginning of the modern age, drugs from all over the world became available for trade with the consequence that drug discovery gathered speed. At the end of the 19th century organic-synthetically drugs had a major success. Drugs like sulfonamide (Prodrug Prontosil discovered 1932 by Gerhard Domagk) (Bickel 1988; Schirren 1988; van Miert 1994) or aspirin (isolated in 1897 by Felix Hoffmann)(Sneader 2000; Cheng 2007; Folts 2007; Schror 2009; Wick 2012) are still used ubiquitous. Nowadays, the drug discovery process is an established multibillion dollar project involving thousands of people worldwide. Modern drug discovery must meet many challenges like research and development speed, cost and quality, leadership and management, selecting the right
pharmacologic target and the right chemical lead (Elebring, et al., 2012). The current strategy starts with the search for a suitable target (Figure 1.1).

Figure 1.1 The drug discovery pipeline

This must have a therapeutic value and preferably be suitable to be manipulated with a small molecule to the desired function (Knowles and Gromo, 2003). This is a crucial step, because concentrating on the wrong target is very time and cost intensive. For the selected target an assay must be developed which delivers robust and reproducible results. This assay may then be used in the hit discovery step. There are two possible ways to find hits: *in silico* screening and experimental screening. The *in silico* screening method will be described in detail later (1.1.3).

Nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) are suitable for the hit validation step. Hereby, all hits must be retested to filter out false positives and confirm the other hits. False positive compounds mostly absorb at the wavelength where the assay is carried out, are fluorescent, interfere with the assay setup or are chemically impure and reactive. For this reasons the compounds are tested for purity using LCMS or NMR and are either repurchased or resynthesized for the retest. Usually a dose response curve will be measured in a
biochemical or cell assay to identify the binding mode of the compound (aggregator, allosteric inhibitor, etc.) and to rank the hits by their potency (IC_{50}, EC_{50}) (Alphey, et al., 2012). In the next step, the initial hits need to be improved to leads. Therefore, promising compounds are chemically modified and further tested. Here, not only the potency of the compound can be improved but also other important properties like lipophilicity, solubility, size, ligand efficiency and selectivity. All these modifications help to establish the structure activity relationship (SAR) of the preferred compound series. Subsequently, the candidate reaches the lead optimisation step, where it is further improved to meet the required pharmacokinetic and pharmacodynamics profile. In the preclinical studies the compounds are tested in vivo and in vitro for toxicity. Only if the chemical passes this tests, it will be used for humans in the clinical studies I, II and III. In the very last step, all the studies must be provided to the relevant agency in order to get approval as a new drug, e.g. the Medicines and Healthcare products Regulatory Agency (MHRA) for a UK licence or the European Medicines Agency (EMA) for a Europe wide licence.

1.1.2 Experimental screening

In the experimental screening methods like high throughput screening (HTS), nuclear magnetic resonance (NMR), mass spectrometry (MS) or surface plasmon
resonance (SPR) are used to screen compound libraries for activity against the target.

HTS plays a dominant role in modern drug discovery. The aim is to find active compounds (hits) by screening a large database of chemically diverse compounds against proteins, cells or other targets. This is possible, because HTS consists of multiple automated steps like liquid dispensing, compound transfer and signal capturing. This automation leads to low systematic failures during the screen and can generate highly reproducible and reliable data (Shun, et al., 2011). Unfortunately, HTS often produces also many false positive hits that slow down the process of drug finding (Crisman, et al., 2007; Posner, et al., 2009; Sink, et al., 2010; Bocker, et al., 2011; Liu, et al., 2012; Prummer 2012). Screening by NMR has been established as an alternative method (Bhunia, et al., 2012; Jordan, et al., 2012; Mizukoshi, et al., 2012; Stark and Powers 2012; Wirmer-Bartoschek and Bartoschek 2012). Compared to HTS, it provides a cheap method to detect even weak protein-ligand interactions, dissociation constant, identify a ligand binding site and generate a complex structure (Stark and Powers 2012).

Since Lipinski et al., published the rule of 5 where he discovered, that orally available drugs do not violate more than the following criteria (Lipinski, et al., 1997; 2001):

- Molecular weight (MW) < 500 Daltons
- Logarithmic octanol/water partition coefficient (logP) < 5
• Hydrogen-bond donors ≤ 5
• Hydrogen-bond acceptors ≤ 10

the compound databases could be easily filtered applying these rules (Matter, et al., 2001). Shortly after Lipinski, Hann et al., discovered, that drug-like molecules were still too complex (too high MW, too many heavy atoms, etc.) to be used as a good starting point for drug discovery (Hann, et al., 2001) and suggested to use lead-like compounds instead. These lead-like compounds are less complex (less MW, less number of rings and rotatable bonds) and less hydrophobic (lower CLogP)(Oprea, et al., 2001). The advantage in using lead-like compounds as a starting point for drug discovery is, that these small, active molecules can gain in MW and CLogP while being optimised to become a drug-like candidate. Recently, the screening of fragment-like libraries was established (Badger 2012; Bower and Pannifer 2012; Duong-Thi, et al., 2012; Kumar, et al., 2012). Keeping this in mind, the NMR screen is sensitive enough to detect hits from small, fragment-like libraries. With the low MW of the fragments, the chemical space can be exploited much more effective. These fragment-like compounds are smaller (usually < 18 heavy atoms) and the hits therefore usually less potent. Traditional screening methods such as biochemical assays are often not effective enough to detect such weak binding. To detect weakly bound fragment-like compounds, biophysical screens like X-ray crystallography or NMR are used. The big advantage of X-ray crystallography is that it additionally gives the binding mode of the fragment.
1.1.3 *In silico* (virtual) screening

Modern drug discovery would not be possible without using computational methods. These can be applied for hit-discovery using virtual screening of small molecule libraries, hit to lead optimisation and also to improve the psychochemical properties in the lead optimisation (Bernardo and Tong 2012; Cheng, *et al.*, 2012; Ma, *et al.*, 2012). There are several advantages of *in silico* screening compared to experimental screening methods. It is both, much cheaper and much faster compared to any experimental screening approach. Using computational power, the chemical space can be exploited more effectively by screening a large number of molecules. Even for a small compound with 12 heavy atoms, the number of potential drug-like molecules (not including 3- and 4-membered ring structures) has been estimated to be 10^7 (Fink, *et al.*, 2005). This number is raising to 10^{60} considering a compound with 30 heavy atoms (Bohacek, *et al.*, 1996). Considering this large number, the only way to manage, screen and evaluate such datasets is by using *in silico* methods. The two major approaches of *in silico* drug screening are structure-based and ligand-based screening (Figure 1.2). Ligand-based screening is usually used if a set of structurally diverse ligands is available. The assumption is, that compounds found with a similarity search, will have a similar activity as the lead compound (Sheridan and Kearsley 2002; Bender, *et al.*, 2009; Vilar, *et al.*, 2012). The method used in this thesis was a structure-based virtual screening (SBVS). This method is applied when a 3D structure of the biological target or a
homology model is available. When a binding site/pocket of the target is known, libraries of small molecules can be screened and the compounds will be predicted to bind into this site/pocket (Hurko 2012) using molecular docking programs like Gold (Jones, et al., 1997), DOCK (Lorber and Shoichet 1998), Glide (Friesner, et al., 2004; Halgren, et al., 2004), FlexX (Kramer, et al., 1999), Fred (McGann, et al., 2003) and LigandFit (Venkatachalam, et al., 2003).

![Figure 1.2 In silico drug screening flowchart](image)

Figure 1.2 In silico drug screening flowchart

How strong a compound binds into the active site is dependent on what kind of interactions the compound forms with the protein, how many interactions it makes, its desolvation energy and ultimately what the free energy of binding is. This is predicted using a mathematical algorithm, also called the “scoring function”. Each docked compound can be ranked and compared by the docking score (Coupez and Lewis 2006). Each docking program has its own calculation of the score (Feher and
Williams 2010; Pencheva, et al., 2010; Abreu, et al., 2012). The hits with the best score will then be either synthesized or bought for biological testing. The same principle can be used for the lead optimization process. The modified lead compounds are docked into the active site and then scored and ranked. Only the modification which gave a higher score will then be tested in a biological screen.

The disadvantages of in silico screening are certainly the many false positives and negatives (Ekins, et al., 2007; 2007). It is still not possible to predict protein flexibility, molecule conformation and promiscuity perfectly due to the accurate calculation of the binding energy. The other problem is, that not all molecules, that could be found by in silico screening are available for testing. For this reason mostly only compounds, which are already commercially available are screened.

1.1.3.1 Docking program DOCK3.5.54

In this thesis mainly the docking program DOCK3.5.54 (Lorber and Shoichet 2005) was used for SBVS. It is a variation of DOCK, which was initially created in the 1980s by the Kuntz group and was the first docking program available (Kuntz, et al., 1982).

Placing a ligand into an enzyme is a challenging task considering the degree of freedom of the ligand and the enzyme. Even when the ligand is considered to be rigid, it has already a degree of freedom of 6. And if the flexibility of ligand and protein is considered additionally with every rotated bond, the degree of freedom
increases exponentially, so therefore the systematic exploitation of all possible
binding modes is computationally not feasible for a docking review.

The docking program would have to be able to dock all possible orientations and
conformations of the ligand, considering translation and rotation. To simplify this
task, DOCK3.5.54 considers the protein as static. The pre-generated conformers (for
example using OMEGA (Hawkins, et al., 2010)) are then superimposed on a
common ring fragment (usually an aromatic ring system)(Lorber and Shoichet
1998). Next, matching spheres are placed into the binding site of the protein.
Subsequently, DOCK3.5.54 places the fragments onto the sphere centre, so that the
fragment atoms are as close as possible to the sphere centres. Together they are
used to generate a translational-rotational matrix which allows the fragment to be
oriented in the binding site and with it the pre-calculated conformers.

DOCK3.5.54 uses a force-field-based scoring function (Equation 1.1), which contains
terms of electrostatic Energy (E_{elec}), van der Waals (E_{vdw}) and the correction for
ligand desolvation energy (ΔG_{desolv}) (Wei, et al., 2002; Graves, et al., 2005; Lorber
and Shoichet 2005).

$$E = E_{elec} + E_{vdw} + \Delta G_{desolv}$$

Equation 1.1 Scoring function used in DOCK3.5.54
1.2 Human African trypanosomiasis (HAT)

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a pandemic parasitic disease found in the sub-Saharan Africa where it threatens millions of people in 36 countries. This fatal disease belongs to one of the most neglected diseases and is mostly prevalent in rural areas (Balasegaram, et al., 2008; Simarro, et al., 2011). Its prevalence has changed in the last 100 years. In the 1960s, transmission was practically interrupted in all endemic areas because of control and intervention programs (Brun, et al., 2010). The rarity of cases led to lower interest in surveillance and caused the disease to re-emerge in 1980s (Simarro, et al., 2011). For this reason a non-profit drug research and development organization DNDi (Drugs for Neglected Diseases Initiative) was established (Balasegaram, et al., 2008; Chatelain and Ioset 2011) to develop new treatments for the most neglected diseases like leishmaniasis, chagas disease, malaria and HAT.

HAT is transmitted by the tsetse fly (Glossina spec.) and is caused by two subspecies of Trypanosoma brucei (T. brucei or Tb), the T. brucei gambiense (West Africa) and T. brucei rhodesiense (east Africa) (Fevre, et al., 2008). The symptoms of HAT depend on the subspecies and the stage of infection. Initially it starts with fever, headache, joint pains and itching and later listlessness, disordered sleep and neuromuscular dysfunction (Stich, et al., 2002; Checchi and Barrett 2008; Courtin, et al., 2008; Fevre, et al., 2008; Brun, et al., 2010; Malvy and Chappuis 2011). There are two stages of infection, firstly the haemolymphatic stage, where T. brucei enters
the blood stream and the lymph system, where it replicates. The second stage is the meningo-encephalitic stage, where the parasite invades the central nervous system. In addition, *T. brucei gambiense* is characterized by a chronic progression with an average duration of around 3 years and can be mistaken for a chronic haemopathy condition (Malvy and Chappuis 2011). *T. brucei rhodesiense* disease on the other hand presents usually in an acute illness and leading to death within months. Most non-endemic cases of HAT are *T. brucei rhodesiense* diseases (Migchelsen, *et al.*, 2011; Simarro, *et al.*, 2012). With 94 reported cases from 2000 to 2010 outside the endemic areas, HAT represents also a risk for travellers and migrants (Simarro, *et al.*, 2012).

Untreated HAT always leads to coma and death. There are four main drugs, which are currently used for HAT treatment (Figure 1.3). All of them have significant limitations due to toxicity, administration and treatment regimes. No new chemical drug has been approved since eflornithine in 1990 (Jacobs, *et al.*, 2011). The only breakthrough so far was a combination treatment with nifurtomox/eflornithine (NECT) which was less toxic than eflornithine alone and easier to administer. Pentamidine and suramin are available for early-stage *T. brucei gambiense* disease. None of the drugs can cross the blood-brain barrier and are therefore useless for second stage treatment. Pentamidine reduces the mitochondrial membrane potential and binds to nucleic acids. It must be given intramuscularly and can cause hypotension (low blood pressure), hypoglycemia (diminished levels of glucose in blood), leukopenia (decreased number of white blood cells), hepatitis (liver
inflammation), nephrotoxicity (kidney poisoning) and pancreatitis (inflammation of the pancreas) (Kappagoda, et al., 2011). Suramin inhibits multiple trypanosome metabolic enzymes. Due to its toxicity it is only given as a second-line treatment. Suramin can cause exfoliative dermatitis (erythema and scaling of the skin), neuropathy (damage to nerves) and fatal hypersensitivity reaction (body reacts with an exaggerated immune response). For the second stage only eflornithine and melarsoprol are used. Eflornithine inhibits ornithine decarboxylase. It is less toxic than melarsoprol but also less reliable against T. brucei rhodesiense. The side effects could be fever, rash, peripheral neuropathy and diarrhoea. The mostly used drug against the second HAT stage is melarsoprol, despite its highest toxicity. Melarsoprol causes in 5 – 10% of the patients an encephalopathy which is in half of the cases fatal. It also causes fever, thrombocytopenia, abdominal pain and vomiting.
Figure 1.3 Drugs currently used for HAT treatment

The insufficiency of the current drugs and treatment of HAT shows clearly, that new, safer and more effective drugs are badly needed.

1.3 *T. brucei* 6-phosphogluconate dehydrogenase (*Tb*6PGDH) as a target for HAT

The pentose phosphate pathway (PPP) (Figure 1.4 oxidative part) is present in most species (also humans) and is another key pathway of glucose metabolism (Duschak 2011; Leroux, *et al.*, 2011; Maugeri, *et al.*, 2011; Stern, *et al.*, 2011). The enzyme
6PGDH catalyse the conversion of 6-Phosphogluconate (6PG) to Ribulose-5-phosphate (Ru5P) by generating NADPH and CO₂.

Using a drug target that is present in parasite and mammalian cells seems at first glance not to be a good choice. Nevertheless, it has been demonstrated in case of the key glycolytic enzyme glyceraldehyde-3-phosphatedehydrogenase (GAPDH) that differences in the binding site of coenzyme NAD⁺ are sufficient to selectively inhibit trypanosomatid enzymes (Aronov, et al., 1999).

Figure 1.4 Oxidative phase of the pentose phosphate pathway
In italic are the enzymes involved in the reaction and in bold the sugar educts and products.
Two NADP⁺ dependent enzymes of PPP, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) have a major function in most organisms. They generate the reduced coenzyme NADPH which protects the organism against oxidative stress and is essential for a variety of reductive biosynthetic reactions, such as lipid production. A G6PD deficiency in humans causes haemolytic anaemia, an abnormal breakdown of red blood cells. The PPP was also determined to be present in both cultured procyclic and bloodstream forms of *T. brucei* (Cronin, *et al.*, 1989). Sequence analysis has shown, that the enzyme 6PGDH had an unusual evolution in *T. brucei* and was only distantly related to the one in mammals (Barrett and Le Page 1993). The differences were evident by the fact, that trypanocidal drugs melarsoprol, cymelarsan and suramin were more potent against *Tb6PGDH* than against the mammalian enzyme (Hanau, *et al.*, 1996). The enzyme *Tb*6PGDH was validated as a drug target using RNA interference technology (Bastin, *et al.*, 1998; Craig, *et al.*, 1998; Fire, *et al.*, 1998) to switch off the gene encoding 6PGDH (Hanau, *et al.*, 2004). This led to an accumulation of the substrate 6-phosphogluconate (6PG) which itself is an inhibitor of the key glycolytic enzyme phosphoglucose isomerase in the second step of the Embden-Meyerhof glycolytic pathway (Rovere and Gastaldi 1967; Marchand, *et al.*, 1989). As a consequence more 6-phosphate enters the PPP and increases the production of 6PG even more. This positive feedback loop is fatal for *T. brucei*, because of its dependence on the glycolysis pathway for energy production. Furthermore, the parasite would not produce enough NADPH to protect itself against oxidative stress.
and to generate carbohydrate intermediates used in nucleotide and other biosynthetic pathways. *Tb*6PGDH was chemically validated using analogues of high-energy intermediates and transition-state analogues. Both were able to selectively inhibit this drug target (Dardonville, *et al.*, 2004) (Figure 1.5).

Figure 1.5 Mechanism of 6PGDH reaction and intermediate analogues
Mechanism was adopted from (Wang and Li 2006). Lysine serves as a base and glutamine as acid in this reaction mechanism (Karsten, *et al.*, 1998).

A number selective inhibitors for *Tb*6PGDH were found and optimized (Bertelli, *et al.*, 2001; Pasti, *et al.*, 2003; Ruda, *et al.*, 2007; Ruda, *et al.*, 2010). A virtual fragment screening which addressed the phosphate binding site of 6PGDH identified several fragments with high ligand efficiencies and IC$_{50}$ values in the low micro molar range (Ruda, *et al.*, 2010). However, the binding modes of the
compounds have not been determined. Therefore, it is unclear how they bind to the enzyme, hindering their optimization. The crystal structure of 6PGDH is currently known for fourteen different organisms including *Tb* (Phillips, *et al.*., 1998), *Geobacillus stearothermophilus* (Gs) (Cameron, *et al.*, 2009), *Lactococcus lactis* (Sundaramoorthy, *et al.*, 2007) and recently from *homo sapiens* (PDB 2JKV)(to be published).

1.4 **T. brucei** UDP-glucose pyrophosphorylase (*TbUGP*) as a target for HAT

It was shown, that glycoproteins are crucial for the survival, infectivity and *de novo* biosynthesis of sugar nucleotides of the parasites (Turnock and Ferguson 2007). The sugar nucleotides uridine-diphosphate galactose (UDP-Gal) (Roper, *et al.*, 2002; Roper, *et al.*, 2005; Urbaniak, *et al.*, 2006), UDP-N-acetylglucosamine (UDP-GlcNAc)(Stokes, *et al.*, 2008) and GDP-fucose (GDP-Fuc) (Turnock, *et al.*, 2007) have been shown by mutation studies to be essential for parasites growth. The nucleotides are the primary source of sugar for most glycosylation reactions. They can be formed either in the salvage pathway, by recycling existing sugar/sugar nucleotides that were formed during degradation of RNA/DNA or in *de novo* by biosynthesis of complex molecules from simple molecules like sugar or amino acids.
The sugar nucleotide UDP-Glc (Figure 1.6) is the donor of glucose in many different pathways and in *Tb* crucial in the synthesis of several glucose containing glycolipids, glycoproteins and a variety of secondary metabolites (Flores-Diaz, *et al.*, 1997).

Figure 1.6 Chemical structure of UDP-Glc

Furthermore it plays an important role for the “quality control” of newly synthesized glycoproteins in the endoplasmic reticulum (Hammond and Helenius 1995).
Figure 1.7 Summary of the sugar nucleotide biosynthesis pathway in *T. brucei*

Sugar nucleotide biosynthesis pathway for Tb adopted from (Turnock and Ferguson 2007). The sugar nucleotides used for glycoconjugate biosynthesis in bold. Salvage pathways are in italics. Glc = Glucose; Glc6P = Glucose-6-Phosphate; F6P = Fructose-6-Phosphate; GlcN6P = Glucoseamine-6-Phosphate; GlcN = Glutamine; GlcNAc6P = N-Acetyl-Glucosamine 6-Phosphate; GlcNAc1P = N-Acetyl-Glucosamine 1-Phosphate; UDP-GlcNAc = UDP-N-acetyl-Glucosamine; M6P = Mannose-6-Phosphate; M1P = Mannose-1-Phosphate; GDP-Man = Guanosine Diphosphate Mannose; GDP-Fuc = Guanosine Diphosphate Fucose; Glc1P = Glucose-1-Phosphate; UDP-Glc = UDP-Glucose; UDP-Gal = UDP-Galactose. The numbers stand for the following enzymes: 1 = Hexokinase; 2 = Glucose-6-phosphate isomerase; 3 = Glucosamine-fructose-6-phosphate aminotransferase; 4 = Glucosamine-phosphate N-acetyltransferase; 5 = Phosphoacetylglucosamine mutase, 6 = UDP-N-acetylglucosamine pyrophosphorylase; 7 = Phosphomannose isomerase; 8 = Phosphomannomutase; 9 = Mannose-1-phosphate guanylyltransferase; 10 = GDP-mannose 4,6-dehydratase; 11 = GDP-L-fucose synthetase; 12 = Phosphoglucosaminate; 13 = UDP-glucose pyrophosphorylase; 14 = UDP-galactose 4-epimerase.

Moreover, UDP-Glc is presumably a donor for the modified DNA base β-D-glucosylhydroxymethyluracil, called J. The base J has been found in *Tb* in the 70-basepair
repeats and variant surface glycoprotein (VSG) gene of the telomeric FSG gene expression sites (van Leeuwen, et al., 1997; van Leeuwen, et al., 1998). This VSG is a protective coat of 5x10^6 GPI-anchored homodimers that helps the parasite to undergo the immune attack of the host by replacing the VSG coat by antigenetically different VSG molecules (Borst, et al., 1996; Cross 1996). As shown by Urbaniak, Turnock et al., (2006) knockout studies, the galactose metabolism is essential for the survival of Tb. The only way for Tb to synthesise galactose is by epimerisation of UDP-Glc to UDP-Gal by UDP-galactose 4-epimerase (Figure 1.7, enzyme 14). By interrupting the production of UDP-Glc by inhibiting TbUGP (EC 2.7.7.9), the parasite dies after 96 hours.

Biosynthesis of UDP-Glc in Tb follows an ordered mechanism (Figure 1.8). First UTP binds to TbUGP and is stabilised by Mg^{2+} followed by the binding of Glc-1P and the reaction into UDP-Glc and pyrophosphate (PP\textsubscript{i}). This was confirmed by SPR, where the binding of Glc-1P could only be measured, when UTP was added into the running buffer (Hopkins, Navratilova et al., unpublished results).

![Figure 1.8 Ordered reaction mechanism of TbUGP](image)

Figure 1.8 Ordered reaction mechanism of TbUGP
Unfortunately still no drug-like inhibitors are known for *Tb*UGP. The only inhibitor known for *Tb*UGP is the non-hydrolysable UTP-analogue UTP-α-S (compound 7 from Table 3.5). However, this compound is not drug-like.
1.5 Objectives

1.5.1 Structure-based hit discovery for the key enzymes *Tb*6PGDH and *Tb*UGP

The aim of this thesis was it to use *in silico* and experimental methods to identify novel, active, fragment-like compounds for two validated targets, *Tb*6PGDH and *Tb*UGP (1.3 and 1.4), against HAT. To achieve this, fragment-libraries were screened for hit compounds using NMR. Further, structure-based virtual screening was used to screen a large library of commercially available compounds for *Tb*UGP inhibition. To cover more chemical space, hit-discovery for *Tb*UGP was complemented by a biochemical screen of a lead-like library with over 72 000 compounds.

1.5.2 Hit validation, SAR and evaluation of binding mode of discovered hits

Potential hits, discovered by *in silico* screening and experimental screening efforts, were further validated using biophysical methods such as SPR and NMR. These methods were used in order to characterize potency, competitive binding and selectivity of the preselected hits. Furthermore, the aim was to unravel the binding mode of the inhibitors and SAR using mutation studies and crystallography.
2 Hit discovery for 6PGDH

2.1 Material and Methods

All chemicals and reagents were purchased from Sigma-Aldrich, unless otherwise stated. Virtual screening compound 1 was purchased from Chembridge, 2 from LABOTEST and 3 from Enamine.

2.1.1 Overexpression and purification of Gs6PGDH

Table 2.1 Sequence of His-tagged Gs6PGDH

HHHHHHSSGLEVLFGPQGHMAKHQIGVGILAVMGKNLALNIESKGYSVAVYNRLREKTF
QEAKGKIVGTYSIEEFVNALEKPRKILLMVKAGAPTIEQKLKPHELKGDIVIDGGNTYFKDT
QRRNKELAEIHIHGFTGV spheresGEGALKGPSIMPQGKEAHELVRPIEAEIAAKVDGEPCTTYIG
PDGAGHYVMVHNGIEYGDMQSLAEYFLKHHGLMDAAELHEVFADWNKHELNSYLIEITA
DIFTKIDEETGKPLVDILDKAGQKGKTGWTSQNALDLGVPIITESVFAKRSAMKDERVKAS
KVLAPAVKPFEGDRAFIEAVYRALMSKICAQGFAQMAASEEYNWNLRYGDIAMIFR
GGCIIRAFLQKIKEAYDRDPALSNLDSYFDIVERQDALREIIVATAAMRIPvPGSASALAY
YDSYRTAVLPANLIAQRDYFGAHTYERVTKAIPHTEWLK
Table 2.2 Biochemical properties of His-tagged Gs6PGDH

Number of amino acids: 488

Molecular weight: 54017.9

Theoretical pI: 6.44

Abs 0.1% (=1 g/l): 0.989 at 280 nm (Artimo, et al., 2012)

Table 2.3 Sequence of cleaved Gs6PGDH (crystallization construct)

<table>
<thead>
<tr>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IESKGYSVAVYNRLREKTDEFLQEAKGKNIVGTYSIEEFVNALEKPRKILLMVKAGAPTDAIJEQL</td>
</tr>
<tr>
<td>KPHLEKGDIVIDGGNYFKDTQRNKELAELGIHFIGTGVSGGEEALKGPSIMPQGKEAHEL</td>
</tr>
<tr>
<td>VRPIFEAIKVDGEPCTTYIGPDGAGHYVKMVHNGIEYGDMLQIAEAYFLKHLGMDAAEL</td>
</tr>
<tr>
<td>HEVFADWNKHELNSYLIEITADIETFKIDDEETKGPLVDVILDKAGQKGTGKWTSQNALDLGVPLPI</td>
</tr>
<tr>
<td>ITESVFARFLSAMKMERVKASKVLAGPAVKPFEGDRAHFIEAVRRALYMSKICSYAQGFAQMK</td>
</tr>
<tr>
<td>AAASEYNWNLRYGDAMIFRGGCIIARAOFLQIKEAYDRDPALSNLLLDLYFKDIVERYQDALREI</td>
</tr>
<tr>
<td>VATAAMRGIPVPGSASALAYDSYRTAVLPANLIQAQRDYFGAHTYERVTKKAIPEHTEWLK</td>
</tr>
</tbody>
</table>

Table 2.4 Biochemical properties of cleaved Gs6PGDH

Number of amino acids: 448

Molecular weight: 49724.9

Theoretical pI: 6.01

Abs 0.1% (=1 g/l): 1.074 at 280 nm (Artimo, et al., 2012)
Procedure

Gs6PGDH was overexpressed and purified as described by (Cameron, et al., 2009). In brief, a Gs6PGDH full length ORF, cloned into a modified pET15b vector with N-terminal hexa-histidine tag coupled to a Tobacco Etch Virus (TEV) protease recognition site was used. The expression was performed in BL21(DE3)pLysS cells. Therefore, a single colony was grown with constant shaking (200rpm) in auto-induction media (see Recipe for auto-induction media, page 115, appendix) supplemented with 50 mg/l carbenicillin, for approximately 2 h at 37 °C, followed by a second incubation step for 22 h at 22 °C. Cells were harvested by centrifugation (3500 g, 20 min, 277 K on BECKMAN J6-MC) and subsequently resuspended in resuspension buffer A (50 mM Tris-HCl pH 7.4, 250 mM NaCl, 50 µg Dnase, 50 µg lysozyme and EDTA-free protease inhibitor cocktail (Roche) according to manufactures instructions). In the next step the cells were disrupted by sonification and centrifuged (50,000 g, 30 min, 277 K on BECKMAN Avanti-J25) to separate the cell extract and the membrane pellet. The Supernatant was filtered and applied to a HisTrap HP 5 ml column using an ÄKTA-purifier.
Figure 2.1 Chromatogram of Gs6PGDH on a HisTrap HP 5 ml column

The chromatogram displays the UV absorbance on the y-axis in blue in mAU, volume on the x-axis in ml, in green a gradient of imidazole in buffer A, in brown is the conductivity of the solution and in red the collection tubes. The SDS-page gel on the right shows the following from left to right: ft = flow through HisTrap with buffer A, protein ladder in kDa (SeeBlue), samples from tubes A5, B12, B3. Protein collected from A5-B3 for further purification.

Retained His-tagged protein was eluted by a gradient of imidazole starting from 0 to 1 M buffer B consisted of buffer A with 1 M imidazole. The eluted protein was cleaved for 2 h at 30 °C by adding 1 mg TEV protease (lab produced) per 15 mg 6PGDH and dialysed in buffer A overnight at 4 °C. Next, 6PGDH was applied to a His-Trap column to remove uncleaved protein.
Figure 2.2 Chromatogram of Gs6PGDH on a HisTrap HP 5 ml column after TEV – cleavage

The chromatogram displays the UV absorbance in blue, in green a gradient of imidazole in buffer A, on the y-axis in brown is the conductivity of the solution in mS/cm and in red the collection tubes. Fractions that were analyzed by SDS-page are labeled in the chromatogram accordingly. The SDS-page gel on the right shows the following from left to right: ctrl = defrosted, TEV - cleaved and purified 6PGDH enzyme as a control; samples from tubes A6, A10, C5 which were eluated without imidazole; protein ladder in kDa (SeeBlue) in the middle; D5 = uncleaved protein; TEV = cleaved TEV - Tag

The elution containing cleaved protein in the resuspension buffer was subsequently purified using a Superdex 75 16/60 column.
Figure 2.3 Chromatogram of Gs6PGDH on a Superdex 75 16/60 column after TEV – cleavage

The chromatogram displays the UV absorbance on the y-axis in blue in mAU, volume on the x-axis in ml, the conductivity of the solution in brown and in red the collection tubes. Fractions that were analyzed by SDS-page are labeled in the chromatogram accordingly. The SDS-page gel on the right shows the following from left to right: ctrl = defrosted, TEV - cleaved and purified 6PGDH enzyme as a control; sample from tube B5; protein ladder in kDa (SeeBlue)

Next, the pure protein was dialysed into crystallisation buffer C (50 mM Tris-HCl pH 7.4, 20 mM NaCl) and concentrated up to 12 mg/ml using VIVASPIN20 10,000 MWCO (from SartoriusStedim biotech). Aliquots were flash frozen in liquid nitrogen and stored at -20 °C.

Absorbance was measured at 280 nm to determine the enzyme concentration using a NanoVue Spectrophotometer. Enzyme concentration was calculated using the Beer-Lambert law:

\[A = \varepsilon \cdot l \cdot c \]
where \(A = \text{Absorbance} \), \(\varepsilon = \text{molar extinction coefficient} \) \([L \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}]\) ,

\(l = \text{path length} = 1\text{cm} \) and \(c = \text{molar concentration} \)

The molar extinction coefficient was calculated based on the enzyme sequence (Table 2.3) using the ExPASy server (Table 2.4) (Artimo, et al., 2012).

2.1.2 NMR fragment screen

The NMR fragment screen was carried out in collaboration with Daniel Fountaine (honours Student) who prepared the samples for screening. All spectra were acquired using a Bruker Avance 500 MHz Spectrometer with a 5 mm TXi cryoprobe at 298 K. For saturation transfer difference (STD) experiments (Meyer 1999; 1999) the sample was irradiated at 0.5 ppm. Water suppression was achieved by excitation sculpting (T.L. Hwang 1995). The wLOGSY experiment was carried out using ePHOGSY-NOE, a selective excitation with a 180° shaped pulse at the H\(_2\)O position or at another frequency based on a sequence written by Claudio Dalvit (Dalvit and Böhlen 1996; 1996; Dalvit, et al., 2000; Dalvit 2009). The sample volume was a 500 µl aqueous suspension of 10 µM protein in phosphate buffer (10 mM Na\(_2\)PO\(_4\), 1.76 mM KH\(_2\)PO\(_4\)) pH 7.5, 50 mM NaCl, 0.5 mM compound (dissolved in DMSO-d6) and 50 µl D\(_2\)O. In total 12 fragment compounds were mixed per tube and tested at once. As controls the reference spectra of the compounds were compared to the spectrum from the compound-mix in each tube. Subsequently, to test for
competition, the substrate 6PG was added in excess (1.25 mM) to the mixture and the spectra were recorded again.

2.1.2.1 NMR analysis

The spectra were analysed manually using TOPSPIN 2.1. First, the 1H – spectrum was compared with each compound’s reference 1H - spectrum to ensure every compound added was present. Then the 2D spectrum from the STD experiment was separated into two 1H – spectra (in-house script) and analysed. Every signal found was compared to the 1H reference spectrum. If a compound signal was present in the STD experiment, it was further analysed if it was shown as a binder in the wLOGSY spectrum. A compound was only considered a hit if:

- It had a signal in STD experiment
- It was shown to bind in the wLOGSY experiment
- It had a signal reduction in both experiments when 6PG was added

2.1.3 Kinetic characterisation of Gs6PGDH

All kinetic assays were carried out on a SPECTRA max 340PC (Molecular Devices). For all kinetic studies the His-Tag cleaved crystallisation construct (Table 2.3) was used.
For kinetic characterisation of Gs6PGDH a colorimetric assay was used, where the absorption of product NADPH at 340 nm was measured over time. The buffer was an aqueous mixture of 50 mM Tris – HCl at pH 7.4, 1 mM DTT, 250 mM NaCl and 0.02% CHAPS. The slope of the linear phase of each absorption curve was measured using a linear regression curve from Microsoft Excel where R^2 was > 0.9.

2.1.3.1 Assay development

To be able to accurately determine the inhibition of compounds the dose-response curve must be linear over the observed time frame. Because Gs6PGDH is from a thermophilic organism, all biochemical assays were performed at 30° C. At this temperature the reactivity of Gs6PGDH gave a sufficient signal to noise ratio (Figure 2.4) and the assay was easier to handle on the available instrument than at higher temperatures.
Figure 2.4 Temperature screen of Gs6PGDH
Time in minutes on x-axis versus absorbance at 340nm in atomic units (AU) on the y-axis is plotted at different temperatures. The blue curve was recorded at 30 °C, red at 35 °C, green at 40 °C and purple at 45 °C.

First, a NADP\(^+\) standard curve was measured (Figure 2.5) to make sure that the measured signals linearly depends on the NADP\(^+\) concentration.

Figure 2.5 NADP\(^+\) standard curve with a linear regression fit
NADP\(^+\) concentration curve from 0 -100 μM on the x-axis versus absorbance at 340 nm on the y-axis and standard deviation as error bars (N = 2) with an R\(^2\) for the linear regression of 0.99.

Further, the optimal Gs6PGDH concentration was determined by measuring the absorbance over time at different Gs6PGDH concentrations at fixed concentrations of 60 μM NADP\(^+\) and 400 μM 6PG (Figure 2.6).
Figure 2.6 Reaction diagram at different Gs6PGDH concentrations
Reaction diagram at different enzyme concentration with time in minutes on the x-axis versus absorbance at 340 nm on the y-axis.

A Gs6PGDH concentration of 130 nM (Figure 2.6, green triangle) was found to result in a linear change in UV absorbance for 5 minutes and gave a sufficient signal to noise window for further measurements. Next, Michaelis-Menten kinetic was carried out to measure the affinity (K_m) of the substrate 6PG and the velocity (V_{max}) of the enzyme Gs6PGDH.

$$v = \frac{V_{max} [S]}{K_m + [S]}$$

Equation 2.1 Michaelis–Menten kinetic
Where v = reaction rate, $[S]$ = substrate concentration, V_{max} = maximum rate of enzyme at saturated substrate concentration, K_m = Michaelis constant at which reaction rate is half maximum (substrate affinity).
\[\frac{1}{v} = \frac{K_m}{V_{\text{max}} [S]} + \frac{1}{V_{\text{max}}} \]

Equation 2.2 Lineweaver-Burk linearization of the Michaelis-Menten equation

Figure 2.7 Saturation curve of Gs6PGDH with Lineweaver–Burk plot

Average saturation curve of Gs6PGDH from four measurements (N = 4) with substrate (6PG) concentration in μM on the x-axis and the reaction rate on the y-axis. As an insert a Lineweaver-Burk linearization (Equation 2.2) plot is shown. The x-intercept obtained by extrapolation of the positive experimental data is \(\frac{1}{K_m' V_{\text{max}}} \) is the y-intercept (\(\frac{1}{[6PG]} = 0 \)) and \(\frac{K_m}{V_{\text{max}}} \) is the slope of the line.

The blue arrows indicate where

As a result a \(K_m \) of 25 ± 4 μM was determined for the substrate 6PG with an \(V_{\text{max}} \) of 0.024 ± 0.0009 μM/min. The value for \(K_m \), \(V_{\text{max}} \) and their associated errors are the mean values from four independent measurements (N = 4).
For the inhibition assay the following concentrations were used: 130 nM Gs6PGDH, 25 µM 6PG (∼ Kₘ) and 120 µM NADP⁺ (in excess). The assays were carried out at 30 °C measuring absorption every 4 seconds until reaction was complete.

For the dose response curves two equations were used to fit the data points (both equations as implemented in GraFit from Erathacus Software Limited):

\[y = \frac{100\%}{1 + \left(\frac{x}{IC_{50}}\right)^s} \]

Equation 2.3 Two parameter fit equation
Where \(s = \) slope factor (gradient), \(x = \) cpd concentration, \(y = \) response.

\[y = \frac{Range}{1 + \left(\frac{x}{IC_{50}}\right)^s} + \text{Background} \]

Equation 2.4 Four parameter fit equation
Where \(s = \) slope factor (gradient), \(x = \) cpd concentration, \(y = \) response, \(Range = \) the fitted uninhibited value minus the Background. Background = the minimum y value multiplied by 0.95.

Equation 2.3 was used to fit data points which did not reach saturation at high inhibitor concentration or when not enough data points were available at high concentration. Otherwise, Equation 2.4 was used to fit the sigmoidal curve through the data points.

2.1.4 Crystallisation of Gs6PGDH

Crystals of Gs6PGDH were grown using the hanging drop method in 24-well plates on VDX slides (Hampton Research).
His-tag cleaved Gs6PGD (Table 2.3) was crystallised in two days in hanging drops consisting of 2.5 mM compound 1.(compound number 12 from the following paper (Ruda, et al., 2010)), 1 µl protein solution (12 mg/ml) and 1 µl reservoir (crystallisation buffer at pH = 7: 0.2 M sodium chloride, 2.5 mM NADP⁺ and 2 M ammonium sulphate as a precipitant) equilibrated against 500 µl of reservoir at 20 °C as previously described (Cameron, et al., 2009). The compound had to be dissolved in water at pH = 7 and added to the crystallisation buffer in order for the crystals to grow. Any DMSO impurities prevented crystal growth. Crystals were flash-cooled in crystallisation buffer with 20% glycerol.

2.1.4.1 Data collection, processing and structure modelling

X-ray diffraction data for the Gs6PGDH enzyme were collected at beamline ID14-1 in the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), equipped with an ADSC Q210 CCD detector. A full data set of 720 images were collected from 321 ° - 141 ° with φ = 0.25 and 3 s exposure time. Crystal orientation, cell parameters and possible space group were determined using HKL2000 (Otwinowski and Minor 1997). Generated reflection lists and integrated reflections from the images were scaled and merged using SCALA (Evans 2006; 2011) from the CCP4 suite of programs (Potterton, et al., 2003). Resolution data less than 38.8 or greater than 2.7 Å were excluded to produce an Rmerge of 0.131.
Model generation was done using PHASER (McCoy 2007; McCoy, et al., 2007). As a model enzyme the coordinates from Gs6PGDH (PDB 2W90) dimer were used as a starting point with a sequence identity set to 0.95 and a sequence file of the model enzyme 2W90. A solution was found with a rotation function score (RFZ) = 7.8 and a translation function score (TFZ) = 13.2. The structure was refined using REFMAC5 (Murshudov, et al., 2011) from the CCP4 package. Refinement was using automatic weighting and local NCS restraints. Iterative model building was carried out using the interactive graphics program WinCOOT (v. 0.7.1-pre) (Emsley and Cowtan 2004; Emsley, et al., 2010). At first, all amino side chains with no electron density were mutated as stubs and after a refinement with REFMAC5 the amino side chains were mutated back and the occupancy of the atoms without electron density were set to 0.01. The structure was refined using the validation steps available in WinCoot and checked using web-based validation server MolProbity (http://molprobity.biochem.duke.edu/) (Chen, et al., 2010) and RCSB PDB (http://validate.rcsb.org/).
2.2 Results

2.2.1 Structure analysis of 6PGDH enzymes

In the protein databank only one structure of Tb6PGDH (PDB 1PGJ) (Phillips, et al., 1998) can be found (updated December 2013). This is due to its instability and therefore difficulties of overexpression and purification. For this reason the homologue enzyme Gs6PGDH was used for hit discovery due to its stability and binding site similarity. The binding sites of 6PGDH are highly conserved among species (Figure 2.8, Table 2.5).

Figure 2.8 Sequence alignment of 6PGDH enzymes from different species

Sequence alignment from top: Homo sapiens (h6PGDH), Geobacillus stearothermophilus (Gs6PGDH) and Trypanosoma brucei (Tb6PGDH). Identical amino acids are marked with a red background. Residues, which form a hydrogen bond to 6PG in the crystal structure 2W90 are marked with a green box and the ones that form a hydrogen bond to NADP⁺ with a blue box.
Sequences were aligned using the web-based program ClustalW2 from the EMBL-EBI webpage (http://www.ebi.ac.uk/Tools/msa/clustalw2/)(Larkin, et al., 2007). Similarity colouring was done using the web-based program ESPript 2.2 (http://espript.ibcp.fr)(Gouet, et al., 2003).

Table 2.5 Sequence identity of 6PGDH enzymes from different species

<table>
<thead>
<tr>
<th>Name</th>
<th>Length amino acids</th>
<th>Name</th>
<th>Length amino acids</th>
<th>Identity in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gs6PGDH</td>
<td>470</td>
<td>Tb6PGDH</td>
<td>478</td>
<td>36</td>
</tr>
<tr>
<td>Gs6PGDH</td>
<td>470</td>
<td>h6PGDH</td>
<td>483</td>
<td>56</td>
</tr>
<tr>
<td>Tb6PGDH</td>
<td>478</td>
<td>h6PGDH</td>
<td>483</td>
<td>32</td>
</tr>
</tbody>
</table>

Comparison of Gs6PGDH and Tb6PGDH sequences revealed residues conservation for the N-terminal, central and tail domains to 49 %, 26 %, 44 % respectively. The N-terminal and the tail domain contribute to the creation of the active site and show the highest level of conservation. The central domain contributes to dimer formation and is less well conserved. All structures of 6PGDH that are currently found in the protein database are dimers. The substrate 6PG does make defined hydrogen-bond interaction in the conserved binding site. The 6PG phosphate is accepting hydrogen bonds from Tyr190, Lys260 and Arg287. The hydrogen-bond interactions with Asn186, Thr262 (water mediated), Asn102, Ser128, Gly129 and Gly130 are holding the ligand in place. Two amino acids, which are important for the enzyme mechanism, Lys182 (Zhang, et al., 1999) and Glu189 (Karsten, et al., 1998), are also important for ligand binding (Figure 2.9).
Figure 2.9 *Gs6PGDH* interactions with the substrate 6PG

In pink are the interacting *Gs6PGDH* amino acids making hydrogen bonds (white dots) to 6PG (lightblue carbon atoms). For clarity water mediated interactions are not shown.

For a better comparison of the NADP⁺ binding sites of *Gs6PGDH*, *Tb6PGDH* and *h6PGDH*, homology models of the enzymes were created using the online pipeline SWISS MODEL (http://swissmodel.expasy.org/)(Arnold, et al., 2006). As a result of the algorithm in the underlying homology building program, whenever possible, the backbone of the build homology models traces exactly that of the template and positions of conserved amino acid side chains are not optimized in the models. For the purpose of analysing the NADP⁺ binding sites this has the advantage that differences in the amino acid residues can be easily spotted by visual examination (Figure 2.11).
Figure 2.10 Overlay of the NADP⁺ binding pocket from h-, Gs- and Tb6PGDH
Carbon atoms of h6PGDH are marked in grey, of Gs6PGDH in light blue and of Tb6PGDH in green. The carbon atoms of cofactor NADP⁺ is showed in yellow with hydrogen bonds (shown as white dots) to h6PGDH residues (shown as grey text). For clarity the overlay shows only part of the pocket at 7 Å around NADP⁺ and only side chains of h6PGDH are shown.

The overlay of h6PGDH and the homology models of Gs6PGDH and Tb6PGDH show a perfect conservation of the backbone chain but reveal several differences in the side chains of the enzymes. All the different amino acids around NADP⁺ are shown in Figure 2.11 and listed in detail in Table 2.6. The NADP⁺ phosphate is accepting hydrogen bonds from Thr35, Lys38 and Arg34. The hydrogen-bond interactions with Phe84, Leu11, Val75, Met14, Val13, Asn103 and Gly451 are holding the co-ligand in place.
Figure 2.11 Overlay of the NADP$^+$ binding pocket from h-, Gs- and Tb6PGDH showing differences of side chains.
Carbon atoms of h6PGDH are marked in grey, of Gs6PGDH in light blue and of Tb6PGDH in green. For clarity the overlay shows the same orientation as Figure 2.10 but without NADP$^+$ and only the different side chains of h6PGDH are shown. For the corresponding amino acids of Gs- and Tb6PGDH see Table 2.6

All amino acids with side chains oriented to NADP$^+$ and which are different among the species can cause selectivity. For example the positively charged Lys76 in h6PGDH is Gln77 in Tb6PGDH which means, that a positive charged group is replaced by an uncharged side chain. The polar side chain of Gln79 in h6PGDH is a hydrophobic Ala80 of Tb6PGDH. Especially interesting is the difference of Phe84 in h6PGDH to Thr85 in Tb6PGDH. Here not only a hydrophobic side chain is changed to
a polar one, but also the aromatic ring system of Phe84 can do stacked interaction with the selective inhibitor.

Table 2.6 Differences in side-chain - amino acids of h-, Tb- and Gs6PGDH at 7 Å around NADP⁺

<table>
<thead>
<tr>
<th></th>
<th>h6PGDH</th>
<th>Gs6PGDH</th>
<th>Tb6PGDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile9</td>
<td>Ile11</td>
<td>Val7</td>
<td></td>
</tr>
<tr>
<td>Ala12</td>
<td>Ala14</td>
<td>Gly10</td>
<td></td>
</tr>
<tr>
<td>Gln16</td>
<td>Lys18</td>
<td>Ala14</td>
<td></td>
</tr>
<tr>
<td>Phe32</td>
<td>Tyr33</td>
<td>Phe30</td>
<td></td>
</tr>
<tr>
<td>Thr35</td>
<td>Leu36</td>
<td>Thr33</td>
<td></td>
</tr>
<tr>
<td>Val36</td>
<td>Arg37</td>
<td>Tyr34</td>
<td></td>
</tr>
<tr>
<td>Leu73</td>
<td>Leu73</td>
<td>Ile74</td>
<td></td>
</tr>
<tr>
<td>Lys76</td>
<td>Lys76</td>
<td>Gln77</td>
<td></td>
</tr>
<tr>
<td>Gln79</td>
<td>Ala79</td>
<td>Ala80</td>
<td></td>
</tr>
<tr>
<td>Ala80</td>
<td>Pro80</td>
<td>Ala81</td>
<td></td>
</tr>
<tr>
<td>Val81</td>
<td>Thr81</td>
<td>Thr82</td>
<td></td>
</tr>
<tr>
<td>Asp83</td>
<td>Ala83</td>
<td>Ser84</td>
<td></td>
</tr>
<tr>
<td>Phe84</td>
<td>Thr84</td>
<td>Thr85</td>
<td></td>
</tr>
<tr>
<td>Gly101</td>
<td>Gly101</td>
<td>Thr102</td>
<td></td>
</tr>
<tr>
<td>Ser104</td>
<td>Thr104</td>
<td>Ala105</td>
<td></td>
</tr>
<tr>
<td>Val128</td>
<td>Val128</td>
<td>Ile129</td>
<td></td>
</tr>
</tbody>
</table>
Considering the fact, that the hydrogen-bond pattern of 6PG is conserved among species and that the cofactor site show several differences, the strategy was:

1. To find compounds that bind into the 6PG binding site using Gs6PGDH as the thermo stable Model-enzyme

2. To chemically modify the compound found by the first stage so that it will expand into the NADP\(^+\) pocket and bind selectively to Tb6PGDH exploiting the differences in the NADP\(^+\) binding site.

It was previously shown that homologue enzymes can be used to study binding modes of Tb6PGDH inhibitors (Sundaramoorthy, et al., 2007). Sundaramoorthy et al., (2007) used Ll6PGDH to determine the binding mode of a HEI inhibitor (4) by using crystallisation methods.

The substrate binding site conservation between Gs6PGDH and Tb6PGDH and its increased stability made Gs6PGDH a good model enzyme for hit discovery. Additionally, it was further shown, that Gs6PGDH can be crystallized and therefore used for X-ray binding mode determination of potential inhibitors.

2.2.2 Inhibition assay with virtual screening hits

A virtual screening was carried out previously (Ruda, et al., 2010) and from this, 18 Tb6PGDH inhibitors were identified. The binding modes of these inhibitors were not determined, which would be a great help to establish a SAR and produce lead compounds. Therefore, the homologue enzyme Gs6PGDH was used to determine a
binding mode for the virtual screening hits. Additionally, the virtual screening hits should be kinetically tested for activity. Therefore, all virtual screening hits were tested against Gs6PGDH and the active compounds were planned to be tested against Tb6PGDH. As a control compound a high energy intermediate hydroxamate 4 (Dardonville, et al., 2004) was chosen due of its low K_i of 0.01 µM for Tb6PGDH.

![Figure 2.12 Dose response curve of 1](image)

Figure 2.12 Dose response curve of 1
Dose-response curve with error bars for each data point from two experiments (each with $n=2$), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a two parameter equation (Equation 2.3). Analysis from two experiments returns a $pIC_{50} = 3.69\pm0.02$ and a Hill slope of 1.0 ± 0.1 (mean ± SD; N=2).

Only three compounds out of 18 were found to inhibit Gs6PGDH (Table 2.7; compound 1 see Figure 2.12, compound 2 see Figure 2.13 and compound 3 see Figure 2.14). Except for compound 2, the pIC_{50} values were lower as the published ones for Tb6PGDH (Ruda, et al., 2010). For 1 a pIC_{50} of 3.69 ± 0.02 (published 4.29 for
Tb6PGDH), for 2 a pIC$_{50}$ of 4.37±0.05 (published 4.28 for Tb6PGDH) and for 3 a pIC$_{50}$ of 3.43±0.04 (published 4.36 for Tb6PGDH) (Figure 2.15). The largest discrepancy was found for the control compound 4. The published K_i of 4 for Tb6PGDH was 0.01 µM, but the calculated K_i based on the measured IC$_{50}$ value (Equation 3.3) for Gs6PGDH was 4.2±1.2 µM which is about four hundred times higher.

![Dose response curve of 2](image)

Figure 2.13 Dose response curve of 2
Dose-response curve with error bars for each data point from three experiments (each with n=2), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a two parameter equation (Equation 2.3). Analysis from three experiments returns a pIC$_{50}$ = 4.37±0.05 and a Hill slope of 1.0 ± 0.15 (mean ± SD; N=3).
Figure 2.14 Dose response curve of 3
Dose-response curve with error bars for each data point from two experiments (each with n=2), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a two parameter equation (Equation 2.3). Analysis from two experiments returns a pIC$_{50}$ = 3.43±0.04 and a Hill slope of 0.8 ± 0.00 (mean ± SD; N=2).
Figure 2.15 Dose response curve of 4
Dose-response curve with error bars for each data point from two experiments (each with n=2), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a four parameter equation (Equation 2.4). Analysis from two experiments returns a pIC$_{50}$ = 5.07±0.02 and a Hill slope of 0.8 ± 0.02 (mean ± SD; N=2).
Table 2.7 Inhibition data for virtual screening hits published in (Ruda, et al., 2010)

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>published Tb6PGH IC<sub>50</sub> converted to pIC<sub>50</sub></th>
<th>published Tb6PGH Hill slope</th>
<th>published G<sub>s</sub>6PGDH pIC<sub>50</sub></th>
<th>G<sub>s</sub>6PGDH Hill slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>4.29</td>
<td>1.7</td>
<td>3.69±0.02</td>
<td>1.0±0.1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>4.28</td>
<td>4.8</td>
<td>4.37±0.05</td>
<td>1.0 ± 0.15</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4.36</td>
<td>1.8</td>
<td>3.43±0.04</td>
<td>0.8 ± 0.00</td>
</tr>
</tbody>
</table>
Table 2.8 Inhibition data for high energy intermediate analogue as described by (Dardonville, et al., 2004)

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>published $Tb6PGH$ K_i [µM]</th>
<th>published $Tb6PGH$ Hill slope</th>
<th>G_6-PDH^a K_i [µM]</th>
<th>G_6-PDH Hill slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>0.01</td>
<td>N/A</td>
<td>4.2±1.2</td>
<td>0.8±0.02</td>
</tr>
</tbody>
</table>

a K_i was based on the determined IC$_{50}$ value (Equation 3.3) for a better comparison to the published data.

2.2.3 Determination of binding mode of virtual screening hits using crystallography

The crystal structure of G_6-PDH was crystallised with the inhibitors as described previously (Cameron, et al., 2009). The crystals only grew if compound 1 and NADP$^+$ were present. Diffraction was calculated in-house on a Rigaku X-ray instrument with R-AXIS IV++ imaging plate with a resolution of 2.7 Å. Data for same crystal were collected at ESRF in Grenoble with a resolution of 1.8 Å (Table 6.3). After refinement, no electron density for the ligand was found.

Virtual screening compound 1 was the only one that was suitable to further optimisation. Every attempt to crystallise G_6-PDH without a ligand or just with
NADP+ was unsuccessful, so therefore no apo-crystals could be produced for ligand soaking. When compound 1 was dissolved in DMSO, no crystals could be grown under the same conditions as published by Cameron, S. et al., 2009. Only by adjusting the pH to 7, compound 1 could be solubilised in crystallisation buffer without DMSO. This adjustment allowed Gs6PGDH to crystallise in presence of 2.5 mM 1 and 2.5 mM NADP+.

2.2.4 Fragment screening using NMR methods

The in-house fragment library containing 652 fragment-like compounds was screened for binding to Gs6PGDH as described (2.1.1). From this library 36 compounds showed binding in both NMR experiments (STD and wLOGSY) and showed a signal reduction after adding 1.25 mM 6PG for competition. None of the 36 compounds had a carboxylate group, which is surprisingly considering that all virtual screening hits found by Ruda, G.F. et al., (2010) were acids. Therefore, two acids (5 and 6) from the screen were also short-listed for further studies (Table 2.9). Acid 5 was a binder in STD and wLOGSY experiment, but a signal reduction after adding 6PG could not be seen in STD. The second acid 6 showed only binding in STD without a signal reduction with 6PG. Despite these hits, 100 other compounds showed binding in at least one of the experiments. That means that 20.9\% (136 out of 652) of all screened compounds bound to Gs6PGDH, indicating a high false positive rate. This high rate can be explained in parts by the weak binding of 6PG to
Gs6PGDH ($K_m = 25 \mu M$) which makes it problematic to achieve competition with a potential inhibitor. An inhibitor in nM range would have been a more reliable indicator for the hit identification, but was unfortunately not available.

Table 2.9 Active acids found by a fragment screening for Gs6PGDH

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

2.2.5 Inhibition assay with NMR fragment hits

All 38 NMR hits were tested for Gs6PGDH inhibition at 1 mM compound concentration in a biochemical assay which was previously described (2.1.3). Due to no or only weak inhibition at this concentration, it was not possible to measure a dose response curve for either of the compounds. Only 5 (PI = 50% at 1 mM) and 6 (PI = 32% at 1 mM) were active at the chosen concentration (Table 2.9). All of them
were acids. The reason for this is unclear. However, this result is consistent with the published data (Ruda, et al., 2010). All compounds found by Ruda, et al., 2010 in a virtual screening were acids, too. Crystallisation trials with acids found by NMR fragment screening

Two active acids (5 and 6) were set up for crystallization trials as previously described (2.1.4). Unfortunately none of the acids crystallised under the previous conditions.
2.3 Discussion

2.3.1 Virtual screening hits

Most virtual screening hits found by Ruda, G.F. et al., 2010 were not active against Gs6PGDH (Table 2.7). Unfortunately the publication does not mention important details on how the inhibition screen was carried out. This fact makes it difficult to evaluate Gs6PGDH as a model enzyme for Tb6PGDH. The following important questions should have been addressed:

- At which temperature was the screen carried out? This is especially important to know, because of the instability of the Tb6PGDH enzyme as mentioned before (Phillips, et al., 1998; Sundaramoorthy, et al., 2007).
- How many replicates were carried out (N = ?) and how was the error calculated?
- What model was used to fit the parameters and how were they normalised?
- Why the Hill slopes of all compounds, except for compound 13 (paper), were higher than 1?
- Some of the compounds do absorb at 340 nm or interact with the assay. How was inhibition tested for such compounds?
- What was used as a positive control for the inhibition?

Here, for inhibition studies of Gs6PGDH the high energy intermediate 4 was used as a positive control. The published potency for this compound (Dardonville, et al.,
2004) could not have been confirmed. The paper does as well not mention important points:

- How was the stability of Tb6PGDH at 20°C ensured while the inhibition assay was carried out?
- How many replicates were carried out (N = ?) and what is the error of Ki and ICso?

As a conclusion two scenarios could be possible.

1. The conserved 6PG binding site is not enough to translate the binding affinity of the compounds from Tb6PGDH to Gs6PGDH. It is also plausible that the compounds bind into the less conserved NADPH binding site instead of the 6PG site. Consequently there must be other structural factors than the hydrogen-bond interaction pattern, which causes the differences in binding affinities. While difficult to rationalise, such a behaviour has already been observed for other enzymes (Baba, et al., 2003; Cleghorn, et al., 2011; Teng, et al., 2013). Nevertheless, compounds 1, 2, 3 and 4 were confirmed as inhibitors, even though not as active as for Tb6PGDH.

2. The published data on which this study was based on is not correct and needs to be reanalysed considering the questions addressed above.
2.3.2 Crystallisation and crystal structure determination

The crystals diffracted at 2.7 Å in-house and at 1.8 Å at the synchrotron. The analysis of the X-ray structure showed no ligand in the active site. All previous crystallisation experiments have shown that crystals only appear in the present of the ligand or the substrate. One reason, that the ligand was not present in the crystal structure could be the transfer of the crystal from the mother liquor to 20% glycerol for cryo protection. Every direct transfer of the crystal to the cryoprotectant caused the crystal to dissolve. Therefore, a step-wise transfer to 10%, 15% and 20% glycerol was necessary. Even though the ligand was present in each reservoir during the transfer, the low binding affinity may have caused the ligand to diffuse away from the crystal, especially as the cry-buffers are more hydrophobic than the buffer used for determining the affinity of the compounds. This reduces the contribution of the hydrophobic effect to binding affinity and is likely to result in weaker binding affinity in the cryo-conditions.

2.3.3 Fragment NMR – screening and hit validation

Our in-house compound library consisting of 652 diverse compounds was screened for binding affinity to Gs6PGDH using NMR. This approach identified 36 compounds able to bind the target protein in both experiments (STD and wLOGSY) with a decreasing signal after the addition of 6PG. From 38 selected compounds, only two acids were active at 1 mM in biochemical colorimetric assays which were selected
on a rational basis. One reason why 36 compounds were not confirmed by this method could be that they are all weak binders with an IC_{50} over 1 mM.

Both actives compounds were acids (5 -> PI 50% and 6-> PI 32%). At concentrations $\geq 500 \mu M$ the absorbance of the reaction solution with compound 5 increased, suggesting that either the compound absorbs at 340 nm or does react with NADP$^+$ producing more NADPH.

In summary, despite of all efforts, no binding mode could be determined of the virtual screening hits.

The high polarity of the active site and the lack of confirmed, competitive inhibitors questions 6PGDH as a druggable enzyme, at least for a rational hit discovery approach.
3 Hit discovery for UGP

3.1 Material and Methods

All reagents, unless otherwise stated were purchased from Sigma Aldrich.

Screening compounds 8, 9, 10 and 15 were purchased from Sigma Aldrich, 11 and 13 from Apollo Scientific and 20, 21, 22 from (Otava, Ltd).

3.1.1 Homology model

Sequence alignments between TbUPG and hUGP were generated using ClustalW (Thompson, et al., 1994). Subsequently, Modeller 9.2 (Sali and Blundell 1993) was used to build homology models of hUGP, whereas the TbUGP crystal structure (PDB code 3GUE) served as a template. Modeller was run with default settings, and only the highest-scoring structure was used for further analysis and modelling.

3.1.2 Virtual screening and molecular docking

3.1.2.1 Compound database

From an in-house database of 5.2 million commercial available compounds with precalculated physiochemical properties (Brenk, et al., 2008), only compounds which had the following properties were selected for virtual screening:
• Number of heavy atoms < 24
• Rotational bonds ≤ 4
• Number of hydrogen-bond acceptors ≥ 2
• Number of hydrogen-bond donors ≥ 1

3.1.2.2 Pharmacophore filter

The compounds selected for virtual screening were further filtered by a 3D pharmacophore defined using Unity (Tripos Inc., St. Louis, MO). The compounds were first converted to a 3D UNITY database using default parameters and macro files. The 3D pharmacophore was derived based on the interactions of the uracil moiety of the substrate as found in the crystal structure TbUGP-substrate complex (PDB code 3GUE, Figure 3.1). Spheres with a 1.5 Å radiuses were placed around the positions of the nitrogen atom of the uracil moiety and the carbonyl groups to indicate locations of hydrogen donor and acceptor groups, respectively. To consider the directionality of the hydrogen bonds the groups were connected with spheres placed around the amino group of Gly189 (donor), the carbonyl group of Gln161 (acceptor) and the amino group Gly83 (donor). Additionally to the hydrogen bond interactions a sphere indicating an aromatic group was placed at the centre of the uracil ring.
Figure 3.1 Schematic view of the 3D pharmacophore for potential \textit{TbUGP} inhibitors

Acceptor groups are deciphered as red cycles, donor groups as blue cycle, the aromatic feature is marked as a yellow circle and dotted lines indicate interactions between acceptor and donor groups.

The hydrophobic feature and at least two out of the possible three hydrogen bond interactions were required to fulfil the pharmacophore.

3.1.2.3 Receptor preparation for docking

For docking, the software DOCK 3.5.54 (Lorber and Shoichet 1998; Wei, \textit{et al}., 2002; Mysinger and Shoichet 2010) was used. The \textit{TbUGP} structure with the coordinates (PDB code 3GUE) (Marino, \textit{et al}., 2011) was used as receptor for docking. Hydrogen atoms were added using MOLOC (Gerber, molecular design) and their positions minimized using the MAB force field (Gerber and Muller 1995) as implemented in
MOLOC in presence of the product present in the structure, while keeping all non-hydrogen atoms rigid. Subsequently, all ligands, water molecules and ions were removed from the crystal structure. The sphere set used to define the region of the binding site with a low dielectric constant, was created based on bound UDP-Glc (3GUE). The product UDP-Glc was modified by adding atoms to the 2-hydroxy group of ribose to completely fill the cavity. For the sphere set, used for placing the ligands into the binding site, the matching atoms were placed around the three functional groups of uracil groups that are part of the pharmacophore (Figure 3.1 and Figure 3.2). Partial charges for all receptor atoms were obtained using the AMBER-99 force field parameters (Wang 2000). The electrostatic potential was calculated using DelPhi (Nicholls and Honig 1991), with a grid size of 65 and an internal dielectric constant of 2 and an external dielectric constant of 78. The van der Waals potential was calculated using a DOCK utility named CHEMGRID (Meng, et al., 1992; Shoichet, et al., 1992). Maps to calculate partial ligand desolvation were generated using SOLVMAP (Mysinger and Shoichet 2010).
Figure 3.2 Matching sphere set generated for UGP
The green spheres indicate the positions of the matching points used for docking. The uracil ring is shown for clarity, where carbon atoms are indicated in light blue, nitrogen atoms in dark blue, oxygen atoms in red and part of the surrounding enzyme with white carbon atoms.

3.1.2.4 Small molecule preparation and molecular docking

DOCK 3.5.54 was used to dock small molecules flexibly into the active site of TbUGP. The small compounds with pre-calculated physicochemical properties selected from the database (3.1.2.1), were filtered as described (3.1.2.2). All compounds were stored in SMILES format (Weininger 1988). The protonation- and tautomeric states for each compound were calculated using an in-house script based on the OEToolkit (Openeye, Santa Fe, NM). The 3D and multiple low energy conformations were generated using OMEGA2 (Openeye, Santa Fe, NM). AMSOL (http://comp.chem.umn.edu/amsol/; (Wei, et al., 2002)) was used to calculate the
desolvation energies and partial charges. Finally all ligands were aligned on their ring systems and stored in a hierarchical format (Wei, et al., 2002).

The following settings were chosen to sample ligand orientations: ligand and receptor bins were set to 0.5 Å, and overlap bins were set to 0.4 Å; and the distance tolerance for matching ligand atoms to receptor matching sites ranged from 1.1 to 1.2 Å. Only docking poses which did not placed any atoms in areas occupied by the receptor was scored for electrostatic interaction energy and van der Waals and complementarity (Lorber and Shoichet 1998) and penalized according to its estimated partial desolvation energy. For each compound, only the best-scoring database representation (tautomer, protonation state, multiple ring alignment) was stored in the final docking hit list.

3.1.2.5 Docking analysis

All docked compounds were visually inspected using Pymol (The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC). Only compounds which were placed in the uracil binding site and made at least two hydrogen bonds to the protein were selected for further investigations. If the compounds contained moieties exceeding the uracil binding site, it was required that they pointed into the cavity located opposite the 2-hydroxy group of the ribose in the TbUGP complex structure (Figure 3.8 a)). This was mandatory in order to search for selective compounds that would not inhibit hUGP.
3.1.3 Protein overexpression and purification of *TbUGP*

Two different constructs A and B of *TbUGP* were used: For kinetic assays the “kinetic assay construct” A (Table 3.1) and for crystallisation the “crystallisation construct” B (Table 3.3). Both constructs were purified as described before (Marino, *et al.*, 2010).

Table 3.1 Amino acid sequence of *TbUGP* kinetic assay construct A

<table>
<thead>
<tr>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGSSHHHHHSSGLEVLFGPHMPNLAPSAAFLACLEKMQASGGVEECKIHIQHALVR KGETGYIKEISIPVESLPFLQGIETKSENTALRQAVVVLKNGLGKTVMGLNGPKSLLQVKNG QTFLDFTALQLEHRQVRNCNVPFMLMNSFSTGETKNFLRKYPTLYEVFSDIELMQNRVPKI RQDNFFPVTYEADPTCEWVPPGHGDVYTVLYSSGKLDYLYLGKGYRENFMSNGDNLGATLDVRL LDYMQEKQLGFLMEVCRRTEDKKGGHLYKVIDDETQTRRRFVLRESACPCNEDSFQ NIAKHCFFNTNININMLELKKMMEQQLGVRLPRMNPQDSQSTKVSQLEVAMG AAISLFDRSEAVVPRFRAPVKTCSDLLALRSQTVTEDQRVLCEERNGKPPAIIDLEGHYK MIDGEKLVGGVPSTRQCTSLTVRLGVEFVPSVRGNVVKNLKEELPIIGSGLDNEVVE</td>
</tr>
</tbody>
</table>

Table 3.2 Biochemical properties of *TbUGP* kinetic assay construct A

- Number of amino acids: 507
- Molecular weight: 56857.1 Dalton
- Theoretical pI: 6.23
- Abs 0.1% (=1 g/l): 0.560 at 280 nm (Artimo, *et al.*, 2012)
Procedure

Cultures of *E. coli* BL21(DE3) cells containing a modified pET15B plasmid were grown in an incubator (INFORS HT Multitron) at 37 °C in LB medium supplemented with ampicillin (50 µg/ml) until OD$_{600}$ of 0.9 was reached. The temperature was then lowered to 16 °C and the protein expression was induced with 0.5 mM IPTG and grown o/n for 16 h.

The cells were harvested, re-suspended in lysis buffer (50 mM Tris, 150 mM NaCl, 20 mM imidazole, pH 7.5) supplemented with 50 µg Dnase from bovine pancreas (Sigma), 50 µg lysozyme from chicken egg white (Sigma) and 1 EDTA-free protease inhibitor cocktail tablet (Roche), before being sonicated and centrifuged (50,000 g, 30 min, 277 K on BECKMAN Avanti-J25). The filtered supernatant was applied on a 5 ml HisTrap HP chelating column, washed with lysis buffer, and the protein was eluted with a linear imidazole gradient from 96% buffer A (50 mM Tris, 150 mM NaCl, pH 7.5) to 100% buffer B (50 mM Tris, 150 mM NaCl, 500 mM imidazole, pH 7.5) using an ÄKTA-purifier.
Fractions containing *TbUGP* were pooled, concentrated and applied on a Superdex75 16/60 column, equilibrated with buffer C (50 mM Tris, 150 mM NaCl, 10% glycerol, pH 7.5). The size-exclusion chromatography fractions containing *TbUGP* were pooled and flash frozen in liquid nitrogen. Aliquots were stored at -80°C at a concentration of 2 mg/ml.
Table 3.3 Amino acid sequence of cleaved *TbUGP* crystallisation construct B

LNPPSAFSGAALACLEKMQASGVEEKCIHIFLIQHALVRKGETGYIPEKSIPVESLPFLQGIETKGE
ENTALLRQAVVLKLNGLGTGMLNGPSLLQQVKQGQTFLDFLATLEHRQVRNCNVPFMLMNSFSTSGG
TKFLKYTLVEFDSDIELMQNRVPKIRQDNFPVTYADPTCEWVPPGHGDD/VYTVLYSSGKLDYLLGKY
RYMFSINGDNLATLDVRLLCHEKFQFLGFLMEVCRRTESDKKG
GHLAYKDVIDETTGQTRRFLRESAQCPKEDEDSFQNIAKHCFNNTNNINMLELKKMMD
EQLGVLRPLMRNPKTVPQSQTKVYQLEVAMGAAISLFDRSEAVVPRERFAPVKTCSDL
LALRSVDAYQTVEDQRLVCERNGKPPAIDLGEHYKMDGEKLVGQPSLRCQTSLTRAVL
VEFGADVSVRGNVVIKNLKEEPILIGSGRVLDEVV

Table 3.4 Biochemical properties of *TbUGP* crystallisation construct B

Number of amino acids: 483
Molecular weight: 54191.2
Theoretical pi: 6.03
Abs 0.1% (=1g/l): 0.588 at 280nm (Artimo, et al., 2012)

The crystallization construct B was provided by the Hui group (Structural Genomics Consortium, University of Toronto). The construct was transformed and overexpressed in *E. coli* BL21(DE3) cells as described previously (Marino, et al., 2010). In brief, cells were grown o/n at 37 °C in 10 ml of LB media with ampicillin (50 µg/ml) and transferred into 50 ml of TB media + ampicillin (50 µg/ml) and incubated for 3 h at 37 °C. Subsequently the culture was transferred into 1.8 L of TB supplemented with ampicillin and grown till an OD$_{600}$ of 1 was reached.
Overexpression of *TbUGP* was induced by adding 0.5 mM for an overnight incubation at 15 °C. For harvest and protein purification the protocol described above (3.1.3) was used and adapted with following changes. The lysis buffer D used was 50 mM HEPES pH 7.5, 500 mM NaCl, 5 mM imidazole, and 5% glycerol, and the wash buffer E used was 50 mM HEPES pH 7.5, 500 mM NaCl, 30 mM imidazole, and 5% glycerol. After the HisTrap-column, the protein was treated with TEV protease (produced in-house) and dialysed into 10 mM HEPES, 500 mM NaCl, 5 mM imidazole and 5 mM DTT o/n. After dialysis, the protein was again applied on a HisTrap -column to separate the TEV – tagged and untagged *TbUGP* (Figure 3.4.).

![Figure 3.4 Chromatogram of TbUGP (construct B) on a HisTrap HP 5 ml column after TEV – cleavage](image)

The chromatogram describes the UV absorbance in blue on the y-axis in mAU and volume on the x-axis in ml, in green a gradient of buffer B, in brown is the conductivity of the solution and in red the collection tubes. The SDS-page gel on
the right shows the following from left to right: L = protein ladder in kDa (SeeBlue); A10 = flow through HisTrap; D6 = uncleaved TbUGP; ctrl = purified TbUGP from previous purification.

The eluation buffer for Superdex75 16/60 column was 10 mM HEPES, pH 7.5 and 500 mM NaCl, 5 mM DTT.

Figure 3.5 Chromatogram of TbUGP (construct B) on a Superdex75 column after TEV – cleavage

The chromatogram describes the UV absorbance on the y-axis in blue in mAU, volume on the x-axis in ml and in red the collection tubes. The SDS-page gel on the right shows the following from left to right: L = protein ladder in kDa (SeeBlue); samples from the tubes B4, C3, C5, C8 and C9. Protein from C3 to C9 was collected for further experiments.

The protein was concentrated up to 17 mg/ml and aliquots were flash frozen in liquid nitrogen and subsequently stored at -20°C.
3.1.4 Kinetic inhibition assay of *Tb*UGP

Inhibition of *Tb*UGP was measured using a pyrophosphatase coupled Biomol Green assay (Enzo Life Sciences) (Figure 3.6) based on previously published paper (Marino, *et al.*, 2010). Biomol Green is a modified malachite-green and therefore very sensitive in detecting free phosphate in solution. The change of colour from yellow to green was detected at 650 nm in a 96 well plate with a SPECTRA max 340 PC spectrometer.

![Figure 3.6 Detection of phosphate using BiomolGreen](image)

Figure 3.6 Detection of phosphate using BiomolGreen

Reaction mechanism of *Tb*UGP. The produced pyrophosphate (PPi) is converted by pyrophosphatase into free phosphate which is then coloured by BiomolGreen and detected in a plate reader at 650 nm.

The DMSO tolerance for *Tb*UGP in this assay was determined to 5%. The aqueous buffer consisted of 50 mM Tris/HCl pH 7.2, 1 mM DTT, 0.1 mM EDTA, 0.1 mM EGTA, 150 mM NaCl, 10 mM MgCl₂ and 0.02% CHAPS. The substrate concentration was at *K_m*: 122 µM Glc1P and 53 µM UTP. At a *Tb*UGP concentration of 30 fM the reaction
was linear for 30 min. Pyrophosphatase concentration was at 0.1 units per ml. The reaction was stopped after 30 min by adding the same volume as the reaction volume of Biomol Green. After a colour developing time of 30 min the absorption was measured at 650 nm. All compounds were tested with LCMS for purity and in the biochemical assay as well in absence of TbUGP to make sure, that inhibitors found are not inhibiting pyrophosphatase instead of TbUGP. As a standard inhibitor non-hydrolysable Rp-UTP-α-S (BioLog, Germany) was used.

3.1.5 High throughput screening (HTS) with TbUGP

The HTS was carried out together with Raffaella Grimaldi. The assay conditions were the same as described in 3.1.4., except that different instruments (see below) and plates (384 PSF clear well plates) were used. The in-house DDU compound sets consisted of a general set (62538 compounds, (Brenk, et al., 2008)), a kinase set (6724 compounds, (Brenk, et al., 2008)), the Prestwick Library (1120 compounds) and of a fragment library (652 compounds). All HTS libraries were tested at 35 µM in the primary screen (single point (SP) and hits from SP in double point measurements (DP)) and at 100 µM top concentrations in the potency screen (ten point). The fragment set was screened at 500 µM. Compounds were transferred from the source plates to the screening plates using the HummingBird instrument (DIGILAB). The substrate mix (UTP, Glc1P and pyrophosphatase in buffer) was then pipetted into the plates and the reaction was started by adding substrate using an
8-channel micro plate dispenser (Thermo Scientific Matrix WellMate). In addition, Biomol Green was added and assay plates were read using a PerkinElmer 2102 Multilabel Reader (Envision), which can read several plates automatically. To monitor assay performance, each dispensing and measuring instrument was tested before the screen and calibrated if necessary. Two control rows (high/low) were measured on each plate together with a standard inhibitor 16 (Table 3.6) or UTP-α-S (7, Table 3.5). The high-control was the reaction mixture without compounds and the low control was the complete reaction mixture without TbUGP. The signals of these wells were averaged (AVHIGH, AVLOW) and used to calculate the signal to noise ratio (AVHIGH/AVLOW) and

\[
Z' = 1 - \frac{3(\text{SD}_{\text{HIGH}} + \text{SD}_{\text{LOW}})}{\text{AV}_{\text{HIGH}} - \text{AV}_{\text{LOW}}}
\]

Equation 3.1 Z-factor (Zhang, et al., 1999)

(SD: standard deviation; Z: Z-factor). The ligand efficiency was calculated using the following formula:

\[
LE = \frac{-RT\ln K_i}{\text{number of heavy atoms}}
\]

Equation 3.2 Ligand efficiency

(LE = ligand efficiency in kcal/mol per non-hydrogen atom; R = ideal gas constant; T = 298K, Ki = binding affinity calculated from IC50 values using
Table 3.5 Non-hydrolysable substrate UTP-α-S

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>pIC₅₀ for WT</th>
<th>Hill slope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TbUGP (G219I–mutant)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4.51±0.02; (4.86±0.01)</td>
<td>0.9±0.1; (0.8±0.1)</td>
</tr>
</tbody>
</table>

3.1.5.1 Analysis of HTS hits to establish SAR

In order to be able to establish a SAR, the software ClassPharmer was used with the following settings to cluster the screening hits:

- Cluster by ring system with minimum 1 ring and maximum 3 rings
- Skip compounds which have more than 20 rings
- Do not allow portioning of fused rings into individual rings
- Do not allow connecting of rings using non-ring linker atoms
- Set in class parameters that the homogeneity level is high, redundancy level is low.
Compounds spanning a range of potencies in each cluster were selected using Pipeline Pilot (Accelrys). Pipeline Pilot is a graphical workflow application, where different modules can be used to process, analyse, manipulate and filter tables, texts and graphics. In the first step all singletons were rejected. To be able to probe one cluster for active compounds, three compounds from each cluster were chosen according to the following rules:

- From each cluster take the compound with the highest PI
- Take a compound from the same cluster with PI closest to >70% inhibition
- Take a third compound X (if present) from the same cluster for which PI is over 70% -inhibition and less than highest PI.

3.1.6 NMR fragment screen and analysis

The NMR fragment screen was carried out as described for Gs6PGDH enzyme (2.1.2.1 and 2.1.1) except that for competition 5 mM UTP was added.

3.1.7 Testing solubility using a nephelometer

A nephelometer detects insoluble particles in solutions by measuring forward scattered light. The particle density in the solution is a function of the reflected light hitting the detector. Because the amount of light reflected depends on the shape and reflectivity of the particles, a reference sample must be measured to calibrate
the nephelometer. Nephelometry was used to determine solubility of compound 16. As a reference the assay buffer (3.1.4) plus DMSO (2%-5%) was used for calibration. Compound 16 was added to the same solution at different concentrations (0.1 mM – 3 mM) and measured in triplicates. The reflectivity is giving a numeric value. If this value is not more than three times higher as the correspondent reference value, the compound was considered to be soluble at the given concentration.

3.1.8 DNA isolation and manipulation

Plasmid DNA was purified from *E. coli* (DH5α) using the Miniprep kit from Qiagen. The mutation G219I was inserted into the crystallisation construct using site-directed mutagenesis (Stratagene QuikChange). The following primers (Eurofins MWG Operon in Germany) were used plus 10% DMSO in the reaction mix:

Forward: 5’ CTACATGTTTATATCAACATAGAACAACCTTGGCGGCAC 3’

Reverse: 5’ GTCGCGCCAAGGTTGTCTATGTTTATATACACCAAGAC 3’

The DNA was sequenced by the University of Dundee oligonucleotide facility using T7 (TAA-TAC-GAC-TCA-CTA-TAG-GG) + T7 terminator (CTA-GTT-ATT-GCT-CAG-CGG-TG) primers.
3.1.9 Crystallisation of TbUGP G219I-mutant and structure determination

Crystals were grown using the hanging drop method in 24-well plates on VDX slides (Hampton Research) or with the Phoenix RE (Art Robbins Instruments) using the sitting drop method in 96-well MRC 2 crystallisation plates. Several screening sets from Hampton Research (PEG/Ion, Index) and from Qiagen (Classics, JCSG+, AmSO₄ Suite) were screened for suitable crystallisation conditions using a robotic system Phoenix RE (Art Robbins Instruments).

Hanging drop method

The G219I-mutant was crystallised in presence of 3 mM UDP-Glc under the same conditions as described earlier (Marino, et al., 2010). Crystals were grown using 1 µl crystallisation buffer at pH 5.5 (22% PEG 3350 (as precipitant), 0.1 M ammonium sulphate, 0.1 M BisTris) from the reservoir and mixed with the same volume of 17 mg/ml G219I-mutant (in the following buffer: 10 mM HEPES, pH 7.5 and 500 mM NaCl and 5 mM DTT) and equilibrated against 500 µl of reservoir. Crystals appeared after growing for two days at 20 °C. These were flash-cooled in crystallisation buffer with 20% PEG 400.
Sitting drop method

Construct B of TbUGP (Table 3.3) was crystallised with a 100 nl mixture of 3 mM 16 and 17 mg/ml TbUGP (in the same buffer as G219I-mutant described above) together with either 100 nl or 200 nl of the following crystallisation buffer: 0.2 M lithium sulphate, 0.1 M Tris/HCl pH 8.5 and 1.26 M ammonium sulphate as precipitant. Crystals appeared after growing for two days at 20 °C. These were flash-cooled in crystallisation buffer with 20% PEG 400 before collection.

3.1.9.1 Data collection, processing and structure modelling

X-ray diffraction data for the mutated TbUGP were remotely collected at beamline ID14 in the European Synchrotron Radiation Facility (ESRF) in Grenoble (France), equipped with a MAR 225 CCD detector. A full data set of 200 images were collected from 140 ° - 340 ° with φ = 1 and 4 s exposure time. Crystal orientation, cell parameters and possible space group were determined using MOSFILM (Leslie and Powell 2007; Battye, et al., 2011). Generated reflection lists and integrated reflections from the images were scaled and merged using SCALA (Evans 2006; 2011) from the CCP4 suite of programs (Potterton, et al., 2003). Resolution data less than 45 or greater than 2.5 Å were excluded to produce an R_merge of 0.121.

Model generation was done using PHASER (McCoy 2007; McCoy, et al., 2007). As a model enzyme the coordinates from TbUGP (PDB 3GUE) dimer were used as a starting point with a sequence identity set to 0.95 and molecular weight to 56 kD. A
solution was found with a rotation function score (RFZ) = 46.0 and a translation function score (TFZ) = 36.1. The structure was refined using REFMAC5 (Murshudov, \textit{et al.}, 2011) from the CCP4 package. Refinement was done in 20 cycles using a manual weighting term of 0.1 at first and automatic weighting for the last refinement steps. Iterative model building was carried out using the interactive graphics program WinCOOT (v. 0.7.1 -pre) (Emsley and Cowtan 2004; Emsley, \textit{et al.}, 2010). At first, all amino side chains with no electron density were mutated as stubs. The ligand UDP-Glc was added to the structure using the function “Find Ligands” and refined using “Real Space Refine Zone” feature. After a refinement with REFMAC5 the amino side chains were mutated back and the occupancy of the atoms without electron density were set to 0.01. The structure was refined using the validation steps available in WinCoot and checked using web-based validation server MolProbity (http://molprobity.biochem.duke.edu/) (Chen, \textit{et al.}, 2010) and RCSB PDB (http://validate.rcsb.org/).
3.2 Results

3.2.1 Hit discovery by virtual screening

3.2.1.1 Virtual screening

The crystal structure of the *TbUGP*–product complex was determined (Marino, *et al.*, 2010).

![Figure 3.7 Binding mode of the product UDP-Glc in TbUGP](image)

Hydrogen-bond interactions between product and *TbUGP* are indicated as dotted lines. Nitrogen atoms are coloured blue, oxygen atoms red, phosphate atoms orange, and carbon atoms of the protein white and of the ligand light blue.
The uracil moiety forms two hydrogen bonds to the enzyme backbone (Gly83 and Gly189) and two with the side chain of Gln161 (Figure 3.7). The uridine ring stacks with the amide bonds of Gly83, Gly84 and Gly189. The 2-hydroxy group of the ribose ring points into a cavity which appears large enough to accommodate a mono substituted cyclopentane ring (Figure 3.8a). The phosphate group forms two hydrogen bonds with the Lys375 and His190 side chains and the buried glucose residue forms hydrogen bonds to Glu279, Glu256 and Asn301.

To assess if there is a rational basis for selective inhibition of \(TbUGP \) over \(hUGP \) the binding sites of both enzymes were compared. At the time of study no crystal structure of \(hUGP \) was available. Therefore, a homology model was build (3.1.1). Comparison of the homology model and the \(TbUGP \) crystal structure revealed that all hydrogen-bond interactions that the product forms in \(TbUGP \) are conserved in the model structure of the complex (Figure 3.9). However, the cavity lying opposite of the 2-hydroxy group of the ribose ring of the product in \(TbUGP \) is not present in the model structure of \(hUGP \) (Figure 3.8 b)). This is due to a replacement of Gly219 in \(TbUGP \) with Ile252 in \(hUGP \).
Figure 3.8 Surface overlay of *Tb*UGP with *hUGP*-model (red) with bound UDP-Glc

(a) Solvent accessible surface of the binding site of *Tb*UGP. (b) Alignment of *Tb*UGP (coloured atoms) and the *hUGP*-model (red). For clarity, only the solvent accessible surface of the binding sites and the bound UDP-Glc are shown. The cavity opposite the 2-hydroxy group of ribose ring (selectivity pocket) is blocked in the human model.

It can be speculated that ligands occupying this cavity would bind selectively to *Tb*UGP. From this point onwards, this cavity is called the selectivity pocket.

Recently, the apo-structure of *hUGP* was published (Yu and Zheng 2012). Comparison of homology model and this structure (PDB code 3R2W) revealed that the build *hUGP* model is structurally very close to the published X-ray structure (aligned Å, Figure 3.9). The side chain location of Ile241 in the *hUGP* X-ray structure blocking access to the selectivity pocket was also predicted correctly (Figure 3.10).
Figure 3.9 C-alpha chains overlay of hUGP(red) and hUGP-homology model (white) C-alpha chains of h UDP-Glc from TbUGP (yellow carbon atoms) is displayed to indicate the location of the active site.

Figure 3.10 Overlay of active sites of hUGP(red) and G219I-mutant(black)
UDP-Glc from G219I-mutant (in white) is displayed to indicate the location of the active site. In pink is Ile241 of hUGP and in green Ile219 of the G219I mutant.
A hierarchical screening protocol (Figure 3.12) was established to retrieve small compounds that bind into the uracil pocket of *TbUGP* and possibly extend into the selectivity pocket. First, a database of commercially available compounds was filtered according to physicochemical criteria. Next, a pharmacophore hypothesis was derived and used to filter all compounds passing through the first filter. The remaining compounds were docked into the *TbUGP* binding site and promising compounds with a favourable, predicted binding mode, were purchased.

![Figure 3.11 Surface overlay of *TbUGP* with *hUGP* (green) with bound UDP-Glc in *TbUGP*.](image)

a) Solvent accessible surface of the binding site of *TbUGP*.
b) Alignment of *TbUPG* (coloured atoms) and the *hUGP*-crystal structure (green) (PDB 3R2W). For clarity, only the solvent accessible surface of the binding sites and the bound UDP-Glc are shown. The cavity opposite the 2-hydroxy group of ribose ring (selectivity pocket) is blocked in the human structure, which is consistent with the human model (Figure 3.8).
An in-house virtual database of 5.2 million commercially available compounds (Brenk, et al., 2008) was filtered according to the following criteria to derive a compound set for virtual screening: Only compounds that had less than 24 heavy atoms, four or less rotational bonds, two or more hydrogen-bond acceptors and one or more hydrogen bond donors, no unwanted (toxic or reactive) groups, were allowed to pass this filter. The selection criteria were chosen to obtain fragment-like compounds binding into the uracil pocket which were big enough to reach the selectivity pocket. In total, 60255 compounds passed this filter.

The selected subset was further filtered using a protein-based 3D pharmacophore to select for compounds that have the required spatial arrangement of functional groups to bind into the uracil pocket. The pharmacophore (Fig 3.1) consisted of three hydrogen-bond features and an aromatic ring feature to mimic all atoms of

Figure 3.12 Virtual screening cascade used to identify potential TbUGP inhibitors
the uracil moiety of the product that from hydrogen-bonds with the protein and the aromatic ring that stacks with amide bonds (Fig 3.3). With this setup 4916 compounds fulfilled the pharmacophore requirements.

In the final step, the compounds passing the previous filter steps were docked into the receptor. For all of these compounds a binding mode was generated. Visual analysis of the docking poses revealed that many compounds did not occupy the uracil binding pocket. As interactions in this pocket were judged to be crucial for binding, these compounds were not further considered. In total, 15 of these remaining compounds were purchased for binding studies (Table 3.6). Out of those four were ring fragments of docked compounds (8, 9, 10, 15) that appeared frequently in high-ranking compounds.

Table 3.6 Compounds shortlisted for binding assays with TbUGP after virtual screening

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>pIC50 for TbUGP</th>
<th>Hill slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>pIC$_{50}$ for TbUGP</td>
<td>Hill slope</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>insoluble</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>insoluble</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>3.53±0.04</td>
<td>1.1±0.1</td>
</tr>
<tr>
<td>#</td>
<td>Structure</td>
<td>pIC$_{50}$ for TbUGP</td>
<td>Hill slope</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>not active</td>
<td>not active</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>insoluble</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>insoluble</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
3.2.1.2 Evaluation of virtual screening hits

Initial solubility tests indicated that compounds 11, 13, 20 and 21 were not soluble at the required concentration for compound evaluation. Therefore these compounds were omitted in further studies.

3.2.1.3 Binding studies using NMR

NMR provides a relatively cheap, fast and sensitive method to measure weakly binding compounds up to mM range (Meyer 1999). With this technique it is also possible to identify a binder out of a mixture of several compounds. Therefore, compounds were tested for binding to TbUGP using two NMR experiments. First, 1H-NMR spectra for all compounds were recorded. Subsequently, cocktails containing a mixture of 10 different compounds with the protein were prepared and STD (Figure 3.13, Figure 3.15) and wLOGSY (Figure 3.14, Figure 3.16) spectra were measured. The compounds which gave a positive signal in the STD and wLOGSY experiments were tested for interactions. The substrate UTP was added to the mixture to displace bound compounds in the active site and the spectral measurements were repeated. Only two compounds (16, 22) showed binding to TbUGP as in both experiments (STD + wLOGSY, Figure 3.14 and Figure 3.15). A signal reduction after adding the substrate UTP was only observed for compound 16 (Figure 3.14.) indicating that this compound was accommodated in the UTP binding site.
Figure 3.13 NMR STD - spectra for 16 showing signal reduction after adding UTP
In green is the reference spectrum of compound 16, in blue the STD – spectrum of the compound and in red the STD – spectrum when substrate UTP is added.

Figure 3.14 NMR wLOGSY - spectra for 16 showing signal reduction after adding UTP
A wLOGSY spectrum from TbUGP with inhibitor 16 added. In blue is the wLOGSY spectrum without the substrate UTP and in red the reduced signal when UTP is added.

Figure 3.15 TbUGP - STD spectra of compound 22 in a mixture
In green is the reference spectrum of compound 22, in blue the STD – spectrum of the compound mixture and in red the STD – spectrum when substrate UTP is added.

Figure 3.16 TbUGP - wLOGSY spectra of compound 22 in a mixture
In green is the reference spectrum of compound 22, in blue the wLOGSY – spectrum of the compound mixture and in red the wLOGSY – spectrum when substrate UTP is added.

3.2.1.4 Inhibition assay with virtual screening hits

All compounds (Table 3.6) were tested in two independent measurements. For each measurement one replication was carried out and was performed under the same conditions as previously described (3.1.5) at concentrations up to 1 mM (as described in 3.1.5). The only inhibitors found were 16 and 22, with 16 showing 76% inhibition at 1 mM and 22 showing 50%. Only for compound 16 a dose-response curve could be recorded. To ensure that the compound was dissolved at high concentrations, the solubility was determined using a nephelometer. The data showed that compound 16 was not entirely soluble at 2 mM when the assay buffer contained 1 % DMSO. However, when the DMSO concentration was increased to 5 % compound 16 was completely dissolved. Therefore, a DMSO concentration of 5 % was used in the following assays. Under these conditions, the inhibitor has a pIC$_{50}$ of 3.53±0.04 and a Hill slope of 1.1±0.1 (Figure 3.17).
Figure 3.17 Dose response curve of compound 16
Dose-response curve with error bars for each data point from two experiments (each with n=4), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a two parameter equation (Equation 2.3). Analysis from two experiments returns a pIC$_{50}$ = 3.53±0.04 and a Hill slope of 1.1±0.1 (mean ± SD; N=2).

3.2.1.4.1 Determination of mode of inhibition of compound 16

Inhibition of 16 was measured at different substrate (UTP) concentrations to determine the mode of inhibition of this compound. Following the Cheng-Prusoff equation

$$IC_{50} = K_i \left(1 + \frac{[S]}{[K_m]}\right)$$

Equation 3.3 Cheng – Prusoff equation
(Cheng and Prusoff 1973) the IC$_{50}$ for a competitive inhibitor rises with increasing concentration of the competing substrate is increased. With a substrate concentration at K_m the IC$_{50} = 2K_m$. When substrate concentration is increased to 5 times K_m IC$_{50}$ will increase 3 times (from 303 µM to 909 µM; IC$_{50} = 6K_m$) and an increase of the substrate concentration to 10 times K_m will increase IC$_{50}$ 5.5 times (from 303 µM to 1667 µM; IC$_{50} = 11K_m$).

Therefore, in the inhibition assay the UTP concentration was increased to 5 times and 10 times the K_m value of UTP (53 µM) to determine if the IC$_{50}$ values changed as expected for a competitive inhibitor. Under these conditions, 29% and 11% enzyme inhibition at 2 mM of 16 were observed respectively (Figure 3.18). Due to solubility limits of 16 a full dose-response curve could not be measured and no IC$_{50}$ values at higher substrate concentration could be determined. Nevertheless, a clear loss of activity could be observed as expected for a competitive inhibitor.
Figure 3.18 Shift in pIC$_{50}$ for 16 at a substrate concentration of 5 times and 10 times the K$_{m}$

Dose response curve of 16 (black dots) was taken from (Figure 3.17). Red dots were determined at 5 times K$_{m}$ (265 µM) and green squares at 10 times the K$_{m}$ (530 µM). Percentage inhibition on y-axis is plotted versus compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a two parameter equation (Equation 2.3). (mean ± SD; N=2).

3.2.1.4.2 Evaluation of binding mode of compound 16

An attempt was made to determine the binding mode of 16 in TbUGP using X-ray crystallography. The strategy was either to obtain apo crystals of TbUGP to be able to soak compound 16 or to co-crystallise TbUGP with 16. The best co-crystallised crystals grew in the JCSG+ set (position E4) from Qiagen (for crystallisation condition see 3.1.9). Although the crystals were very small (< 20 µM), an attempt was made to collect reflection data at ESRF facility in France. Unfortunately the
collected x-ray data was of bad quality so it was not possible to determine the structure. Attempts to grow larger crystals were unsuccessful.

In the proposed binding mode, part of the ligand is occupying the selectivity pocket which is not present in hUGP (Figure 3.8 and Figure 3.19a). For this reason a point mutation was introduced in TbUGP where Gly219 was changed to Ile that is present in hUGP at this place and restricts access to the selectivity pocket (Figure 3.19b). We hypothesised, that compound 16 should not fit in the cavity any longer and therefore not bind to the mutated enzyme if the proposed binding mode is correct (Figure 3.19b).
Figure 3.19 Comparison of docked compound 16 in wild type (a) and mutated (b) TbUGP structure

a) Structure of wild type TbUGP with bound product UDP-Glc in blue and proposed binding mode of 16 in pink. The coupled ring system is pointing into the selectivity cavity. b) Structure of the G213I-mutant, where the selectivity cavity is partly closed resulting in a clash with compound 16 in the docked binding mode of the wild type enzyme.

The protein containing the point mutation was purified like the wild type and crystallized under similar conditions (Table 6.2).

In the F_0-F_c electron density map the position of the isoleucine side chain was clearly defined (Figure 3.20). Superposition of G213I from TbUPG and hUGP show
that I213 adopts a different conformation (Figure 3.10). As a consequence the selectivity pocket is still partially accessible but not large enough to accommodate 16 in the same binding mode as suggested for the wild type enzyme without a clash (Figure 3.19b).

![Figure 3.20 Binding site of G219I–mutant with F_0-F_c electron density](image)

The mutated enzyme was kinetically characterized. The enzyme was still active but compared to the wild type, the K_m of UTP changed from 53 µM to 18 µM and of Glc-1P from 122 µM to 20 µM (Table 3.7).
Table 3.7 Comparison of K_m values of wild type and G219I-mutant of TbUGP

<table>
<thead>
<tr>
<th></th>
<th>TbUGP</th>
<th>G219I-mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTP K_m [µM]</td>
<td>53</td>
<td>18</td>
</tr>
<tr>
<td>Glc-1P K_m [µM]</td>
<td>122</td>
<td>20</td>
</tr>
</tbody>
</table>

Compound 16 showed no activity for G219I-mutant to a concentration up to 1 mM but G219I-mutant was still inhibited by the substrate-like inhibitor UTP-α-S (7) (Figure 3.21).

Figure 3.21 Dose-response curve for substrate like inhibitor UTP-α-S
Dose-response curve with error bars for each data point from two experiments (each with $n=2$), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Points were fitted using a two parameter
equation (Equation 2.3). Analysis from two experiments returns a $pIC_{50} = 4.86\pm0.01$ and a Hill slope of 0.8 ± 0.1 (mean ± SD; $N=2$).

3.2.1.5 Inhibition of hUGP by compound 16

The inhibition constant of 16 with hUGP was determined (Figure 3.22). The compound has a pIC_{50} value of 5.3 and a Hill slope of 4.2.

![Figure 3.22 Dose response curve of 16 with hUGP (measured by Raffaella Grimaldi)](image)

Dose-response curve from one experiment (with $n=2$), percentage inhibition on y-axis and compound concentration in µM on x-axis (logarithmic scale). Analysis from the experiment returns a $pIC_{50} = 5.3$ and a Hill slope of 4.2.

Unfortunately, the available amount of hUGP was not sufficient to produce any more data with this enzyme.
3.2.1.6 SAR around compound 16

To establish SAR around compound 16, the Pipeline pilot standard module “Substructure Filter from File” was used to retrieve analogues of compound 16. This module performed a substructure search in the in-house database (Brenk, et al., 2008). From the few substructures that came through the filter, only 4 were available for purchase (Table 3.8). The four analogues were tested using NMR and biochemical assay.

In the NMR Screen all analogues except 26 gave a signal in the STD and wLOGSY experiments. The signals were reduced when UTP was added suggesting, that they are binding in the substrate binding site.

Unfortunately none of the compounds showed activity up to 1 mM in the BiomolGreen coupled assay.

Table 3.8 Purchased analogues of compound 16

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
3.2.2 Hit discovery using HTS

The in-house DDU libraries (3.1.5) were screened using BiomolGreen coupled enzyme assay. The best performance was achieved at 30 pM TbUGP and substrate concentration at K_m with a signal to noise ratio = 2.00 and $Z' = 0.84$ in average.

The HTS primary screen came back with over 2000 hits from the double point – measurements. To see if the hits displayed SAR a maximum substructure analysis was carried out using ClassPharmer™ (Simulations Plus, Inc.). Next, using Pipeline Pilot (Accelrys), three compounds from each generated class were select to cover a range of PI values. This filtering step reduced the amount of compounds to 377. These were analysed by kinetic -potency screens (done by Raffaella Grimaldi) and tested using surface plasmon resonance (SPR) (done by Iva Hopkins Navratilova). The best binders from both screens were compared. The analysis showed that the best hits from the potency screen were generally not confirmed using SPR. Further
the best binders in SPR, except one, had Hill slopes either < 0.5 or > 1.6. Only two compounds (27 and 28) were found to be potent in both screens. These compounds do not share the same scaffold or pharmacophore, so no SAR could be developed from it.

Table 3.9 Best binders in SPR and potency screen from filtered HTS

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>pIC\textsubscript{50} for TbUGP</th>
<th>Hill slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td></td>
<td>4.74</td>
<td>1.4</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>5.74</td>
<td>1.1</td>
</tr>
</tbody>
</table>

3.2.3 Screening of fragment library

The fragment library was screened by NMR and by using the kinetic assay. The hit rate of the NMR assay was very high (>40% of screened compounds gave a positive signal in either STD or wLOGSY experiment). However, for most compounds no signal reduction was observed after adding UTP, indicating that the screening setup
is valid. When screening the fragment library with the kinetic assay, a signal to noise ratio = 2.1 and $Z' = 0.82$ was obtained. As a result 49 compounds with PI ≥ 75% were selected for potency screen (Table 3.10).

Figure 3.23 PI of fragment set
Distribution of average PI of the fragment set with PI on the x-axis and number of compounds on the y-axis.

The table shows all 49 compounds with the corresponded pIC$_{50}$ ranges, the number of compounds, the number of compounds which inhibited pyrophosphatase and the amount of these compounds which were confirmed as binder in the NMR experiments. Some of the interfering compounds were found to bind to TbUGP in the NMR experiment, which is shown in the red brackets (Table 3.10.)
<table>
<thead>
<tr>
<th>pIC<sub>50</sub></th>
<th># TbUGP</th>
<th># Interfering with PPase</th>
<th># TbUGP NMR positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>6</td>
<td>2</td>
<td>3 (1 of interfering)</td>
</tr>
<tr>
<td>5 – 4.7</td>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4-7 – 4.5</td>
<td>4</td>
<td>2</td>
<td>1 (1 of interfering)</td>
</tr>
<tr>
<td>4.5 - 4.4</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4.4 - 4.3</td>
<td>3</td>
<td>2</td>
<td>1 (1 of interfering)</td>
</tr>
<tr>
<td>4.2 - 4</td>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4 – 3.7</td>
<td>13</td>
<td>6</td>
<td>4 (2 of interfering)</td>
</tr>
<tr>
<td>3.7 – 3.5</td>
<td>5</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>3.5 – 3.4</td>
<td>1</td>
<td>1</td>
<td>1 (1 of interfering)</td>
</tr>
<tr>
<td>>3.3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3 Discussions of the UGP – project

By using a virtual screening approach, 15 compounds were shortlisted for biochemical testing with *TbUGP* (Table 3.6) out of which one inhibitor (16) was identified. This is a very high hit rate, especially considering that only 15 out of 5.2 million commercially available compounds were tested. Virtual screening was again proven to be an efficient method to find inhibitors in the early drug development stage for a target for which no drug-like inhibitors were known at the onset of the study.

The mode of binding of the virtual screening hit 16 was determined using NMR experiments and enzyme kinetics. NMR experiments showed that 16 binds to *TbUGP* and competes with UTP for the same binding site (3.1.6, 3.2.3). However, by adding 5 mM UTP the signal in the saturation transfer difference (STD) experiment was not fully reduced (Figure 3.13) and in the wLOGSY experiment not inverted (Figure 3.14). This is probably due to the fact that UTP binds only relatively weakly to *TbUGP* (Kₘ: 53 µM, 3.1.4). It is likely, that the competition of the compound would have been much more clearly observed in the spectra if a potent inhibitor for *TbUGP* was available. In addition to the NMR experiments, studies of the binding kinetics were carried out to determine the mode of inhibition of 16. By increasing the concentration of UTP, the inhibition of *TbUGP* decreased, indicating that the inhibitor binds competitively into the substrate binding site (Figure 3.17, Figure 3.18).
To further probe the binding mode of \textbf{16}, a point mutation was introduced into \textit{TbUGP} to close the selectivity pocket as found in the structure of the human homolog (Figure 3.8). In the suggested binding mode (Figure 3.19a) the ligand is occupying this pocket. Hence, it was expected that the compound would no longer inhibit the mutated enzyme. Introducing the mutation proved challenging, because the required primers were prone to intramolecular interactions and formation of secondary structures (Figure 3.24). The site-directed mutagenesis was only successful after adding 10 % DMSO to disturb these unwanted interactions. Analysis of the crystal structure of the mutated enzyme (Figure 3.19b) revealed that the selectivity pocket was not entirely closed as expected based on the structure of \textit{hUGP} but far enough to restrict binding of \textbf{16} in the model binding mode of the compound in the wild type enzyme (Figure 3.19a). Compound \textbf{16} showed no inhibition with mutated \textit{TbUGP} up to a concentration of 1 mM which is consistent with the suggested binding mode.
Analogue (Table 3.8) of 16 were purchased and tested for activity to establish SAR. All analogues possess the pyrazole group which is presumably binding into the uracil binding site (Figure 3.19a). They also contain a moiety which can extend into the selectivity cavity. However, none of the compounds have a hydrogen-bond acceptor functionality which corresponds to the nitrogen atom of the bicyclic ring system of 16, which forms a hydrogen-bond with Gly84. (Note, that compound 23 is similar to 16 but has got an oxygen atom instead of the nitrogen in the bicyclic ring system, however, due to its environment in the ligand it is at best a very poor hydrogen-bond acceptor). Therefore the analogues were expected to be less potent than 16. All analogues except 26 showed competitive binding in the NMR experiments at 1 mM. It is likely that the nitrogen atom of the pyrazole ring in 26 has no hydrogen-bonding partner in the protein leading to reduced affinity.

Figure 3.24 Secondary structures of used primers.
Images produced by the sir graph utility of the mfold program (Zuker 2003)
Although binding was measured by NMR for the remaining compounds, binding was too weak to be detected in the biochemical assay up to 1 mM. This might indicate that the interaction of the nitrogen atom of the thiazole moiety in 16 with Gly84 is crucial for affinity. To develop further SAR and to improve potency, more analogues must be designed and synthesized.

The virtual screening hit 16 was also tested for inhibition with hUGP using the BiomolGreen kinetic assay. Despite the assumption that 16 should not inhibit hUGP as the selectivity pocket is closed in the crystal structure (Figure 3.11), a pIC$_{50}$ of 5.3 was measured with a Hill slope of 4.2. This Hill slope is too steep for a competitive inhibition and binding does therefore not follow the law of mass action for a single binding site. A Hill slope > 1 can indicate either non equilibrium state, allosteric binding or positive cooperation (Heck 1971). That would mean that the binding of 16 into one active site of the enzyme increases its affinity for the other sites. These modes of inhibition are different from the one in TbUGP. It is therefore not clear where and how compound 16 is binding to hUGP. The amount of hUGP enzyme available was not sufficient enough to accomplish further necessary experiments.

Inhibitor 16 has a molecular weight of 201 Daltons and a ligand efficiency of 0.4 kcal/mol per non-hydrogen atom and an alogP of 2.7. This makes it a good starting point for further optimization (Hopkins, et al., 2004). It is possible, that some changes in the fused ring system will not only improve the potency of the compound but also make it more selective for TbUGP as the requirements for binding to the alternatives sites in hUGP might be different. With modifications on
it will be possible to learn more about the inhibition mode in hUGP and develop highly potent and selective inhibitors.

HTS of over 70 000 compounds produced thousands of hits but no obvious SAR. Many hits had Hill slopes that were not consistent with competitive inhibition. Even after clustering the hits in classes and testing them using SPR, the hits could not be confirmed. For this reason an alternative inhibition assay was used. This was carried out by Sabine Kuettel using a Dionex HPLC instrument that directly measured the production of the product UDP-Glc (data not shown). She selected the top hits from the HTS, SPR and fragment screening and tested them by using 7 as a control (Table 3.5). She could not confirm that any of the compounds (including 16) were active. The reason for the unexpected behaviour of TbUGP under different assay conditions is currently unclear.
4 Summary and Conclusions

In this study the process from assay development to hit validation for two different targets for HAT, \(Tb6PGDH \) and \(TbUGP \), was carried out. For hit identification different modern techniques were used like \textit{in silico} virtual screening or experimental screening using SPR, NMR and HTS.

4.1 Summary and conclusions regarding 6PGDH – Project

The aim of this project was to use a thermophilic model system like \(Gs6PGDH \) instead of the highly instable \(Tb6PGDH \) and search for binders using a fragment screening by NMR (2.1.2). Because the substrate (6PG) pocket of both enzymes is conserved (Figure 2.8) it was a reasonable assumption that compounds found to bind to the model enzyme should also bind in the same way to the target enzyme. The selectivity over \(h6PGDH \) could then be achieved by chemically expanding the compounds into the co-factor \(\text{NADP}^+ \) - binding site. Structural analysis suggests that the differences around the co-factor should be sufficient to achieve that goal (Figure 2.10). For the kinetic studies a colorimetric assay was developed measuring the production of \text{NADPH} at 340 nm (2.1.3.1). This assay is easy to perform but has several limitations. Compounds that absorb at 340 nm or interact with NADPH cannot be measured and are excluded from further studies.
To validate Gs6PGDH as a good model it was planned to test compounds which were found to inhibit TbUGP (Ruda, et al., 2010). This first revealed a discrepancy between the published data and the ones collected for the model enzyme (2.2.2). However, this data does not disproved Gs6PGDH as a good model enzyme, because the published data lacks of many important details and is therefore uncertain (2.3.1). The fragment screen resulted in many hits from which only two acids were found to weakly bind to Gs6PGDH using calorimetric assay (2.2.5). It seems that most of the NMR - hits were not potent enough to be detected by a biochemical assay.

In Summary this study was unfortunately not able to successfully determining a binding mode of published virtual screening hits of Tb6PGDH and has not discovered any new potent, fragment-like inhibitors. The polar binding pocket and the instability of the enzyme suggesting that Tb6PGDH is not a suitable target for a structure-based hit discovery approach.

4.2 Summary and conclusions regarding UGP – Project

For the target TbUGP a very first, drug-like inhibitor (16) was discovered using in silico virtual screening. From an in-house virtual library of 5.2 million commercial available compounds, fifteen were purchased for activity test from which two showed activities in the kinetic assay but only for 16 a dose response curve could be measured. Compound 16 has a molecular weight of 201 Dalton, a ligand efficiency
of 0.4 kcal/mol per non-hydrogen atom, an alogP of 2.7 and inhibits TbUGP with a pIC\textsubscript{50} of 3.53±0.04 and a Hill slope of 1.1±0.1. NMR and enzyme inhibition data for the compound is consistent with it being a competitive inhibitor (3.2.1.3 and 3.2.1.4). This is the first, not substrate like competitive inhibitor found for TbUGP. The proposed binding mode of \textit{16} was evaluated using mutation studies (3.2.1.6) and crystallography (3.1.9). Compound \textit{16} was expected to bind into the UTP pocket and expand into a cavity present in TbUGP (Figure 3.19). A G219I - mutation of TbUGP results in a blocked cavity, similar as found in hUGP (Figure 3.10). As expected \textit{16} was no longer inhibiting the G219I–mutant up to 1 mM but was still inhibiting hUGP. The proposed selectivity of \textit{16} could not be confirmed in this study.

To establish a SAR around compound \textit{16} a substructure search was carried out from which four analogues were purchased (Table 3.8). The NMR – screen showed that three of four compounds bind competitively to TbUGP. A biochemical test showed that none of these compounds were active up to 1 mM. That means that the biochemical assay is not sensitive enough to detect such weak binders.

A HTS with the DDU in-house fragment library using a biochemical BiomolGreen coupled enzyme assay, SPR and NMR came back with a high unusually hit – rate. The best compounds from each test did not coincide with each other. To be able to explain that behaviour the BiomolGreen assay was replaced by an assay using a Dionex HPLC instrument that directly measured the production of the product UDP-Glc. This replacement did not clarify the results but raised even more questions, as none of the hits (including \textit{16}) could be confirmed in this assay. Therefore a new
strategy should be developed to tie up all the results collected and to explain that strange behaviour observed in this study.

In summary, based on the NMR data and the data collected using the BiomolGreen assay with the wild type and G219I–mutant, compound 16 provides a good lead for further development of TbUGP inhibitors. Derivatives of 16 could result in a more potent and selective inhibitor and become a good lead compound for further development.
5 Outlook

6PGDH has proven to be a difficult target. The fact, that no binding modes inhibitors are know which were not substrate like and that the binding pocket of 6PGH enzyme is challenging to address, together with the instability of Tb6PGDH, makes this target not a good candidate for further studies. There are better targets for HAT to concentrate on.

One example is UGP. This thesis showed that this enzyme is accessible to a rational hit discovery approach. The crystal structures of TbUGP and h which makes it available for structure – based design.

Further studies should be carried out to explain what the mode of action of 16 with hUGP is. A crystal structure of hUGP with 16 could help to understand the biochemical data and provide guidance for the synthesis of selective derivatives of 16. A derivative with a higher binding affinity for TbUGP would prove beyond doubt that 16 is not a false positive.
6.1 Recipe for auto-induction media

Table 6.1 Autoinduction media

<table>
<thead>
<tr>
<th>For 1 L autoinduction media</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5g Yeast extract</td>
<td>20ml 50x5052</td>
</tr>
<tr>
<td></td>
<td>50x5052:</td>
</tr>
<tr>
<td></td>
<td>250g glycerol</td>
</tr>
<tr>
<td></td>
<td>25g glucose</td>
</tr>
<tr>
<td></td>
<td>10g α-lactose</td>
</tr>
<tr>
<td></td>
<td>1ml 1M MgSO₄</td>
</tr>
<tr>
<td>10g Tryptone</td>
<td></td>
</tr>
<tr>
<td>50ml 20xNPS</td>
<td>20xNPS:</td>
</tr>
<tr>
<td></td>
<td>66g (NH₄)₂SO₄</td>
</tr>
<tr>
<td></td>
<td>136g KH₂PO₄</td>
</tr>
<tr>
<td></td>
<td>142g Na₂HPO₄</td>
</tr>
</tbody>
</table>
6.2 Crystallographic statistic tables

Table 6.2 Crystallographic data and refinement statistics of G219-mutant ligand complex.

<table>
<thead>
<tr>
<th>Details of Data Collection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>C 2</td>
</tr>
<tr>
<td>Unit cell dimensions: (a, b, c) (Å)</td>
<td>166.2, 78.4, 112.3</td>
</tr>
<tr>
<td></td>
<td>(\alpha=\gamma=90^{\circ}, \beta=118^{\circ})</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>45 -2.5</td>
</tr>
<tr>
<td>No. reflections</td>
<td>155335</td>
</tr>
<tr>
<td>No. unique reflections</td>
<td>41173</td>
</tr>
<tr>
<td>Redundancy(^a)</td>
<td>3.8 (3.5)</td>
</tr>
<tr>
<td>Completeness(^a) (%)</td>
<td>93.4 (92.8)</td>
</tr>
<tr>
<td>Wilson B (Å(^2))</td>
<td>18.2</td>
</tr>
<tr>
<td>(<l/\sigma(l)>)</td>
<td>8.8 (2.9)</td>
</tr>
<tr>
<td>(R_{\text{merge}}(^b)) (%)</td>
<td>12.1 (42.8)</td>
</tr>
</tbody>
</table>

Refinement Statistics

\(R_{\text{work}}\(^c\) / R_{\text{free}}\(^d\)\) (%) | 22.9 / 29.6 |

Number of:

<table>
<thead>
<tr>
<th>Protein residues</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chain A</td>
<td>466</td>
</tr>
<tr>
<td>Chain B</td>
<td>459</td>
</tr>
<tr>
<td>Water molecules</td>
<td>118</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>UPG (Chain A + B)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average B-factors (Å^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall / side chain / main chain</td>
</tr>
<tr>
<td>UPG (chain A / B)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>r.m.s.d. from ideal values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond lengths (Å)</td>
</tr>
<tr>
<td>Bond angles (˚)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ramachandran plot analysis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable e</td>
</tr>
<tr>
<td>Outliers e</td>
</tr>
</tbody>
</table>

a Values in parentheses refer to the highest resolution shell (2.64-2.5 Å).
b $R_{\text{merge}} = \sum h \sum i ||(h,i)|| - <I(h)> \sum h \sum i I(h,i)$; where $I(h,i)$ is the intensity of the ith measurement of reflection h and $<I(h)>$ is the mean value of $I(h,i)$ for all i measurements.
c $R_{\text{work}} = \sum hkl || |F_o| - |F_c|| / \sum |F_o|$, where F_o is the observed structure-factor amplitude and the F_c is the structure-factor amplitude calculated from the model.
d R_{free} is the same as R_{work} except calculated with a subset, 5 %, of data that are excluded from refinement calculations.
e According to MolProbity (http://molprobity.biochem.duke.edu)
Table 6.3 Crystallographic data and refinement statistics of Gs6PGDH.

<table>
<thead>
<tr>
<th>Details of Data Collection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>$P2_12_12_1$</td>
</tr>
<tr>
<td>Unit cell dimensions: a, b, c (Å)</td>
<td>67.8, 119.8, 141.9</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>38.8 -2.7</td>
</tr>
<tr>
<td>No. reflections</td>
<td>144947</td>
</tr>
<tr>
<td>No. unique reflections</td>
<td>31971</td>
</tr>
<tr>
<td>Redundancya</td>
<td>4.5 (4.0)</td>
</tr>
<tr>
<td>Completenessa (%)</td>
<td>98.6 (97.0)</td>
</tr>
<tr>
<td>Wilson B (Å2)</td>
<td>18.2</td>
</tr>
<tr>
<td>$<I/\sigma(I)>$</td>
<td>11.2 (2.5)</td>
</tr>
<tr>
<td>R_{merge} (%)</td>
<td>13.1 (57.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{work}^c / R_{free}^d (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein residues</td>
</tr>
<tr>
<td>Chain A</td>
</tr>
<tr>
<td>Chain B</td>
</tr>
<tr>
<td>Water molecules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average B-factors (Å2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall / side chain / main chain</td>
</tr>
<tr>
<td>r.m.s.d. from ideal values:</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
</tr>
<tr>
<td>Bond angles (°)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ramachandran plot analysis (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable</td>
<td>889 (96.3)</td>
</tr>
<tr>
<td>Outliers</td>
<td>3 (0.3)</td>
</tr>
</tbody>
</table>

^a Values in parentheses refer to the highest resolution shell (2.64-2.5 Å).

^b $R_{merge} = \sum h \sum i ||(h, i) - < I(h) > \sum h \sum i l(h, i)$; where \(l(h, i)\) is the intensity of the \(i\)th measurement of reflection \(h\) and \(< I(h) >\) is the mean value of \(l(h, i)\) for all \(i\) measurements.

^c $R_{work} = \sum hkl ||F_o|| - ||F_c||/ \sum |F_o|$, where \(F_o\) is the observed structure-factor amplitude and the \(F_c\) is the structure-factor amplitude calculated from the model.

^d R_{free} is the same as R_{work} except calculated with a subset, 5 %, of data that are excluded from refinement calculations.

^e According to MolProbity (http://molprobity.biochem.duke.edu)
6.3 List of Abbreviations

- °C – degree Celsius
- µ – mycro
- 6PGDH – 6-Phosphogluconate dehydrogenase
- CHAPS – 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
- DMSO – dimethyl sulfoxide
- DNA – deoxyribonucleic acid
- Dnase – deoxyribonuklease
- DTT – dithiothreitol
- EDTA – ethylenediamine tetraacetic acid
- EGTA – ethylene glycol tetraacetic acid
- ESRF – European synchrotron radiation facility
- G – earth’s gravitational acceleration
- g – Gramm
- Gs – Geobacillus stearothermophilus
- h – hour/s
- h - human
- HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HPLC – high performance liquid chromatography
- IPTG – Isopropyl-β-D-thiogalactopyranosid
- K – Kelvin
- kDa - kilodalton
- kg – Kilogramm
- l – litre
- m – milli
- M – Molar
- NADP⁺ – nicotinamide adenine dinucleotide phosphate (reduced form NADPH)
- nm – nanometre
- o/n – over night
- OD₆₀₀ – optical density at 600nm
- ORF – open reading frame
- PCR – Polymerase chain reaction
- PDB – protein databank
- PEG – polyethylene glycol
- PPase -pyrophosphatase
• QSAR – quantitavie structure-activity relationship
• RMS – root mean square
• RMSD – root mean square deviation
• Rpm – rounds per minute
• TB – Terrific Broth (media)
• Tb – Trypanosoma brucei
• TEV – Tobacco Etch Virus
• Tris – 2-amino-hydroxymethyl-propane-1,3-diol
• U – Uracil
• UDP – Uridine diphosphate
• UGP – UDP-glucose pyrophosphorylase
7 References

Cheng, Y. and W. H. Prusoff (1973). "Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction." Biochem Pharmacol 22(23): 3099-3108.

Elebring, T., A. Gill and A. T. Plowright (2012). "What is the most important approach in current drug discovery: doing the right things or doing things right?" Drug Discov Today 17(21-22): 1166-1169.

Murshudov, G. N., P. Skubak, A. A. Lebedev, N. S. Pannu, R. A. Steiner, R. A. Nicholls, M. D. Winn, F. Long and A. A. Vagin (2011). "REFMAC5 for the refinement of

