UNDERSTANDING
FORENSIC DNA ANALYSIS
Welcome to the second issue in our Understanding Forensic Analysis series of comics! These have been created by the Leverhulme Research Centre for Forensic Science and The Scottish Centre for Comics Studies at the University of Dundee and are based on the judicial primers produced in collaboration between members of the judiciary, the Royal Society, and the Royal Society of Edinburgh.

The Lord Chief Justice of England and Wales and the Lord President of Scotland have worked together with the Royal Society and the Royal Society of Edinburgh to create a series of judicial primers to assist the judiciary with better understanding of scientific evidence in the courtroom. They were written by leading scientists and members of the judiciary, and peer reviewed by practitioners, scientists and judges. The aim of the primers is to present clear, scientifically accurate information and to address the limitations and challenges associated with applying scientific evidence in a courtroom.

The Understanding Forensic Analysis comic series led by the Leverhulme Research Centre for Forensic Science at the University of Dundee reinterprets the primers in order to visualise these issues and challenges for a wider audience.

Understanding Forensic DNA Analysis is an examination of the use of DNA as forensic evidence. It explores current practice and considerations in interpretation of DNA evidence as well as considering new methods that are being developed.

Editors:
Chris Murray
Phillip Vaughan
Golnar Nabizadeh
Laura Findlay
Heather Doran
Niamh Nic Daeid

Front Cover & Artwork:
Mark Brown

Design & Production:
Phillip Vaughan

Leverhulme Research Centre for Forensic Science
University of Dundee

The Scottish Centre for Comics Studies (SCCS) leads a research project on the use of comics for educational purposes. It has, in collaboration with various private, public and third sector partners, and working with other researchers, produced comics that communicate the findings of research, or engage the public with important issues related to healthcare, science communication, and social justice. We are proud to be working with the Leverhulme Research Centre for Forensic Science to produce these comics based on the judicial primers.
DNA is composed of four chemical units (labelled A, T, G and C), known as bases...

The sequence of bases act as a code, providing the instructions for many biological functions.

There are two strands in DNA. Each base pairs exclusively with one other base on the opposite strand: A to T and G to C. The bases make up to form a twisted ladder, known as the DNA double helix.

When the strands separate, each one can act as template to reproduce the other.

Each cell in the human body contains nuclear DNA containing 6,000,000,000 pairs of bases.

Defining DNA and its use in forensic science

Since DNA, considerable scientific study and resource has been devoted to the development and refinement of DNA analysis technologies.

In forensic DNA analysis only small sections of a person's DNA are analysed by forensic scientists.
DEFINING DNA AND ITS USE IN FORENSIC SCIENCE

Forensic DNA analysis typically assesses specific locations on the nuclear DNA, called loci, where there are repeating blocks of the four bases (A, T, C, and G). These are called short tandem repeats or STRs. The number of repeat blocks can vary between individuals.

The DNA analysis measures the number of repeating blocks (the STRs) at these locations (the loci). Each different variant is called an allele, and an individual will inherit one allele from each parent.

There are a number of mutations that affect the number of repeats within each loci. As a consequence, there are usually several different alleles for each DNA loci, each with slightly different repeat lengths.

The frequency of occurrence of a specific allele provides a measure of how common that allele is in that population. Since 2017, in the UK 16 loci are examined. In some Scottish cases as 37 loci are examined.
THE MAIN QUESTIONS RELATING TO DNA EVIDENCE ARE:

1. Who could a DNA sample recovered from a crime scene or a victim have originated from?
2. If the sample has originated from a body fluid, then which one?
3. How did the DNA get to where it was recovered from?
4. Have the results been reported in a fair and balanced way?

Provided there is sufficient DNA, the interpretation of a DNA profile from a single individual’s sample is straightforward and can provide powerful scientific evidence either to exclude or to include any one individual as a possible source of that DNA.

DNA evidence is interpreted by calculating and presenting a likelihood ratio. That is by calculating statistically, how many any matching DNA profile is in a population.

In 1995 the UK national DNA database was established to maximise the investigative use of DNA profiles from individuals and from crime scenes. On a global scale, most countries now use forensic DNA analysis in one form or another.

A variety of computer software programs have been developed for the interpretation of mixed profiles, using a range of mathematical methods.

Samples can contain DNA from multiple people (mixed profiles). Technological improvements in DNA analysis have resulted in the ability to detect ever smaller quantities of DNA, this has led to increased numbers of mixed DNA profiles.

This means that it is important to:
1. Understand and control contamination and
2. Be able to interpret mixed DNA profiles.

This means that when a likelihood ratio is estimated from a DNA profile using different software approaches, different values can be obtained.

In the UK, the national accreditation body and the forensic science regulations codes of practice and conduct sets out the requirements for the validation of software programs used for mixed DNA sample interpretation.
There is a developing scientific research base on the evaluation of how DNA transfers onto an item, and the length of time it might persist.

DNA scientists rely on the published scientific literature as well as on their experience and knowledge of the available underlying circumstances of each case.

But not all contact will result in a DNA transfer, and the amount of DNA that can transfer in each situation will depend on a variety of factors, including:

1. Person to person variability
2. How long the touch was for, whether sweat or body fluids were involved, and what has been done since such as washing of hands or body
3. The intensity of contact (for example, a brief touch or a robust handshake)
4. Whether surfaces are wet or dry, rough or smooth, absorbent or non-absorbent.

Indirect transfer can occur from person to person, person to object, object to object, this is also called secondary or tertiary transfer and can result in a person's DNA being on an object that they have not directly touched.

Under some test conditions, it has been found that:
1) a person's DNA can be indirectly transferred onto an object that they have never had contact with by another person without detecting the DNA of the person who actually had contact with the object.
2) with each transfer event the amount of DNA transferred decreases. DNA can also be removed from the surface of an object when it is touched.

If a DNA match is observed between a suspect's DNA profile and the DNA profile of evidence recovered from a crime scene, then 3 possibilities exist:

1. The suspect deposited the sample.
2. The suspect did not deposit the sample, but has the profile by chance. The probability of obtaining this match by chance is expressed as a likelihood ratio.
3. The suspect did not provide the sample and the matching result is a false positive due to some kind of error, contamination, or indirect transfer.

Scientists address issues of error and contamination through stringent quality control processes, checks, and control samples associated with their work.

Transfer of DNA and its persistence remains the subject of continuing research.

Forensic DNA analysts are trained, monitored and alerted in order to maintain standards and ensure that the results obtained are robust and reliable.
When forensic DNA analysis is used as evidence in court, the following should be considered:

When a DNA profile is obtained from one person, the interpretation of that DNA profile is normally straightforward and provides powerful scientific evidence to either exclude or include an individual as a possible source of the DNA.

DNA profiles can exclude people and can provide links between people, between people and places, and people and objects. The weight of evidence from mixed DNA profiles is calculated using computer software. There are a range of software programs available, which use different assumptions and statistical methods to analyse the mixed DNA profiles and to produce 'unmixed' profiles. This means that:

1. The same data derived from mixed DNA profiles analysed repetitively by the same software can have small differences in the resulting 'unmixed' DNA profiles.

2. The same data derived from mixed DNA profiles analysed by different software programs can have more marked differences in the resulting 'unmixed' DNA profiles.

The analysis and interpretation of DNA profiles is undertaken only within validated guidelines by the organisation performing the work.

Some tests to determine which body fluid(s) may have produced a DNA profile only give an indication as to the possible presence of a body fluid and not a definite identification, but more research is being done in this area. A scientist may give an opinion on the presence of a particular body fluid by considering: the result of a chemical test, the physical appearance of a stain, the quantity of DNA recovered and the quality of the DNA profile obtained.

There are many published studies addressing the transfer and persistence of DNA but specific circumstances relating to individual criminal cases are not likely to have been studied. This is also an area of active research.

The use of DNA evidence is an extremely successful tool in criminal investigations, and scientists are exploring new DNA methods, which may, for example, enable prediction of an individual's skin or eye colour.
CHRIS MURRAY is Chair of Comics Studies and the Associate Dean for Knowledge Exchange and Partnerships at the University of Dundee. He is Director of the Scottish Centre for Comics Studies and Dundee Comics Creative Space. Murray co-edits Studies in Comics. He researches British comics, superhero comics and public information comics. c.murray@dundee.ac.uk

PHILLIP VAUGHAN is a Senior Lecturer and Programme Director at the University of Dundee. He has worked with the BBC, Sony, DC Comics, Warner Bros and EIDOS. He has credits on work such as Braveheart, Farscape, Star Trek, Wallace and Gromit, Tom & Jerry, Commando and Superman. He currently hosts a podcast for Comic Scene Magazine. @phillipbvaughan

GOLNAR NABIZADEH is Lecturer in Comics Studies at the University of Dundee where she teaches on the Comics & Graphic Novels MLitt. Her research interests are graphic justice, critical theory, trauma and memory studies. Her monograph, entitled Representation and Memory in Graphic Novels (2019) is available from Routledge. g.nabizadeh@dundee.ac.uk

LAURA FINDLAY is a project coordinator at Screen Education Edinburgh. She has worked on a number of public information comics, such as The Gift: Transforming Lives Through Organ Donation; her most recent comic is about the Golden State Killer. Her research interests include non-verbal communication through sound and image and representation in true crime narratives. l.findlay@screenedin.org.uk

MARK BROWN graduated from Duncan of Jordanstone College of Art and Design, before moving to London where he cut his teeth creating content across various platforms. He has worked for The BBC, Channel 4, The Daily Telegraph, Digit4, University of York, University of Dundee, HighScore TV, Original Gravity, The McManus Gallery and Firewords Quarterly. www.markbrown.online

NIAMH NIC DAID is Director of the award winning Leverhulme Research Centre for Forensic Science (LRCFS). The 10 year mission is to provide a robust underpinning for the scientific evidence presented in our Courts. She is a Chartered Chemist and an authorised Forensic Chemist with specialisms including fire investigation, clandestine drug chemistry and explosives. n.nicdaid@dundee.ac.uk

HEATHER DORAN is the Public Engagement Manager at the Leverhulme Research Centre for Forensic Science, University of Dundee. She is a member of the Public Communication of Science and Technology (PCST) committee and the Local Organising Committee for the PCST Conference 2020. She was Editor and co-founder of Au Science Magazine. h.doran@dundee.ac.uk
The Lord Chief Justice of England and Wales and the Lord President of Scotland have worked together with the Royal Society and the Royal Society of Edinburgh to create a series of judicial primers to assist the judiciary with a better understanding of scientific evidence in the courtroom. They were written by leading scientists and members of the judiciary, and peer reviewed by practitioners, scientists and judges. The aim of the primers is to present clear, scientifically accurate information and to address the limitations and challenges associated with applying scientific evidence in a courtroom. The Understanding Forensic Analysis comic series led by the Leverhulme Research Centre for Forensic Science at the University of Dundee reinterprets the primers in order to visualise these issues and challenges for a wider audience.

*Understanding Forensic DNA Analysis* is an examination of the use of DNA as forensic evidence. It explores current practice and considerations in interpretation of DNA evidence as well as considering new methods that are being developed.