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ABSTRACT  

Global soil moisture products retrieved from various sensors onboard satellites are becoming readily available. However, 

validation of such products is a crucial step to ensure their reliability. In-situ measurements, which provide the most 

accurate soil moisture estimates, are often used as reference dataset, but they are limited in number. The GROW 

Observatory (GROW) was initiated to demonstrate that a 'Citizens' Observatory' (CO) can provide and utilise 

unprecedented amounts of data. We present GROW as a case study and demonstrate, for the first time, the use of 

crowdsourced observations to assess the temporal and spatial consistency of various satellite-derived soil moisture 

products. In particular, we provide evidence of the added value to Earth Observation, thanks to (i) the high number of 

sensors deployed, covering a wide range of land use, environmental, and climatic conditions, and (ii) the unique spatial 

density in GROW. Our results confirmed that SMAP and ESA CCI SM can better capture the temporal dynamics 

compared to the other products investigated. We found high uncertainties due to the spatial mismatch between in-situ 

and satellite observations, not only for coarse scale but also for high-resolution soil moisture products. This finding 

highlights the importance of crowdsourced observations, which have the potential to reduce representativeness errors. 

Finally, a preliminary analysis of the spatial consistency of Sentinel-1 soil moisture showed a poor agreement against 

GROW data. We conclude presenting the challenges and the steps that will follow this preliminary analysis, as well as 

design guidelines for COs to meaningfully contribute to Earth Observation.   

Keywords: Citizens' Observatory, Crowdsourcing, Remote Sensing, Soil Moisture, Satellite Validation, In-situ, Citizen 

Science, Design 
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1. INTRODUCTION

Soil moisture is a key variable regulating the water, energy, and carbon fluxes between the soil-plant-atmosphere 

continuum1. For instance, soil moisture affects the partitioning of water between runoff and groundwater recharge, 

controls the ratio between sensible and latent heat fluxes, and governs the water available to vegetation for 

photosynthesis2–4. Therefore, accurate knowledge of spatial and temporal patterns of soil moisture is essential to deepen 

our understanding of hydrologic processes, vegetation productivity, and the climate system. This, in turn, can benefit 

society as a whole, by e.g., enhancing resilience to extreme climate events such as floods, drought, and wildfires.  

Remote sensing is a very efficient means of monitoring soil moisture conditions globally. Since the last two decades, 

microwave sensors on-board satellites have been used to retrieve soil moisture either from backscatter (active sensors, 

i.e. radars) or from brightness temperature (passive sensors, i.e. radiometers). Soil moisture has been successfully

estimated because of the high contrast between the dielectric properties of water and dry soil5. Several satellite-derived

soil moisture products are currently available, with a varying range of spatial and temporal resolutions. Widely used soil

moisture products are based, among others, on the SMAP (Soil Moisture Active Passive) mission6 launched by NASA

(National Aeronautics and Space Administration), the ASCAT (Advanced Scatterometer) sensor7 on board the Metop

satellites, and the recently launched Sentinel-1 mission by ESA (European Space Agency). Furthermore, efforts have

been directed to develop algorithms for merging various products, in order to improve either the observation period, the

spatial/temporal resolution, or both. For instance, the ESA CCI (Climate Change Initiative) SM product is obtained by

blending several active and passive products8.
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In order to exploit such remotely sensed data, validation is a crucial step to ensure their reliability. In-situ (i.e. ground) 

measurements collected by soil moisture sensors are commonly used as reference, i.e. the so-called ground truth. 

However, validation of soil moisture products is difficult because of two main factors9. The first is the spatial mismatch 

between the satellite footprint and the volume of soil sampled by a sensor. The second, which further amplifies the 

previous issue, is the high spatial variability of soil moisture. Therefore, a large number of in-situ sensors would be 

necessary to thoroughly validate soil moisture products. Unfortunately, the setup of such a network is not feasible 

because of the high costs associated with the installation and maintenance of ground sensors10.  

An appealing solution to fill this gap is offered by Citizens' Observatories (COs), which have gained great attention in 

the last decade11. COs are community-based environmental monitoring and information systems bringing together 

stakeholders from policy and science with individuals and communities to share and use data and observations. Many of 

these initiatives make use of accessible sensing technologies for data gathering and also create learning resources and 

protocols for participants to ensure data quality. COs frequently adopt participatory approaches with the aim of 

empowering people to make sense of the data, and use the data to address both scientific and community challenges. 

These measures have the potential to overcome barriers such as motivation and retention of citizens, data quality and 

accuracy, and improved decision-making.  

In particular, the GROW Observatory (GROW), one of four H2020 CO Innovation Actions funded by the European 

Commission (EC) in 2016, had the ambition to monitor soil moisture continuously over an extended period and at an 

unmatched spatial density12. GROW provided the means for farmers and land managers to contribute to validation of 

satellite soil moisture products, and address their own local environmental issues relating to soil condition and climate 

variability. In its support for growing communities, GROW moved beyond the provision of information and knowledge, 

to give communities access to open data in order to stimulate social innovation. GROW generates crowdsourced data at 

high temporal and spatial density, verifies quality and validity, integrates the data in global monitoring systems, and 

creates information services built on that data. GROW data has been integrated in the International Soil Moisture 

Network (ISMN)13and has potential to extend the in-situ segment of the Global Earth Observation System of Systems 

(GEOSS). 

The objective of this study was to employ for the first-time crowdsourced soil moisture observations for evaluating the 

accuracy of various remotely sensed soil moisture products. Both coarse scale (ASCAT, SMAP, and ESA CCI SM) and 

high-resolution (Sentinel-1) products have been evaluated against in-situ measurements collected within GROW. Thanks 

to the spatial density and coverage of crowdsourced measurements we were able to (i) analyse the performance of 

satellite products over different climatic and environmental conditions, (ii) analyse the within-pixel variability for highly 

represented pixels, and finally (iii) carry out an evaluation of the spatial consistency of the Sentinel-1 high-resolution 

product.  

 

2. DATA AND METHODS 

2.1 The GROW approach 

GROW developed and evaluated a challenge-based, design-led approach to scope issues, build cross-disciplinary 

partnerships, develop scientific protocols, collect and integrate data, and stimulate innovation and advocacy built on 

data14,15. A sensor distribution plan was defined according to both scientific needs and social variables to meet the 

requirement for a large scale, high density network of soil sensors across Europe. Priority areas called GROW Places 

were designed and specified as a model for minimum viable high-density clusters, based on geographical, climatic, 

social and scientific criteria. At each GROW Place, a Community Champion was tasked in distributing that site’s 

allocation of sensors to community participants, maintenance of the sensing network, and trained to cascade information 

on ideal installation and sensing practices to the participants. 

The selection of GROW places was defined by the following scientific and social criteria:  

● Meaningful geographic coverage (across a breadth of climate, soil, and land-use types, and agro-technology 

approaches) 

● An area of approximately 50x50 km can be described with a distribution density of about 1000 sensors 

Proc. of SPIE Vol. 11524  115241U-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Sep 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

● Soil, terrain and land-use variability, with relatively homogenous characteristics around each sensor (20-30 

meter radius) 

● Good quality of environmental data (terrain, soil, and land-use) 

● Having a scientific institution capable of supervising the process 

● A local organization with established connections to maintain and extend the network  

● An identified Community Champion with competencies for leadership, education and ability test the 

engagement, awareness-raising strategies, and toolsets 

In order to maintain scientific rigor for the placement of sensors to provide robust data quality a high degree of training 

along with a participatory strategy was initiated. GROW built on previous research in the development of training 

resources and validation of participatory strategy methods, tools and resources for citizen sensing16 . An intensive social 

peer-to-peer education and training programme using digital tools such as Massive Open Online Courses (MOOCs), was 

developed and delivered over three years. These included basic education on soils, sensors, data awareness as well as 

specific training with physical resources such as field guides and handbooks to support the scientific protocols. This 

innovation widened participation beyond the geographical areas that were engaged in distributing sensors to empower a 

more participatory, inclusive society. 

Over the course of three years, GROW iteratively built both community and scientific momentum. Year 1 focused on 

aligning community and science challenges, validation of scientific methods and low-cost sensor technology, protocols 

and the criteria for geographic distribution, as well as training citizen scientists through massive online open courses 

(MOOCs) and the participatory approach. Year 2 implemented sensor distribution and enlisted Community Champions 

in nine communities who tested protocols and sensor placement. Finally, Year 3 implemented rapid scaling using the 

strategies of amplification to extend the activities of existing communities, and replication to enlist new communities 

that met the scientific, geographic and social criteria.  

In all, twenty-four GROW Places were selected as communities who met the scientific and social criteria, across thirteen 

European member-states (Figure 1). The Community Champions and community members became a community of 

practice, placing and connecting more than 6,500 low-cost sensors to the platform.  

 

 
Figure 1. The twenty-four GROW Places in year 3, with a total of 6,500 low-cost sensors deployed and connected to the 

platform. 
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2.2 In-situ soil moisture measurements 

The aim of GROW was to generate a vast in-situ soil moisture network across Europe maintained by citizens using the 

commercial sensor Flower Power, produced by the French company Parrot SA. A thorough evaluation of the accuracy of 

such sensors has been carried out both in the lab and in the field17. The authors found strong agreement between soil 

moisture observed by the low-cost sensors and gravimetric samples in the lab, as well as against professional sensors in 

the field. Furthermore, the inter-sensor variability was negligible. Overall, the low-cost sensors were found suitable for 

environmental monitoring and scientific applications.  

The crowdsourced dataset generated within GROW was employed for further analysis if meeting certain requirements. 

In particular, we disregarded measurements from sensors located in proximity (< 10 km) of water bodies or in urban 

areas according to the ESA CCI Land Cover18. The hourly measurements taken with simultaneous air temperature below 

4 °C were also neglected. Following previous studies19, only observations flagged as good based on the ISMN quality 

control procedure20 were selected for further analysis. Finally, the temporal analysis has been carried out against sensors 

with at least one year of measurements, in order to ensure both a wide range of soil moisture conditions being covered 

and a robust overlap with satellite observations. As a result, 154 sensors were employed as reference dataset for the 

temporal evaluation (Figure 2 top), while 761 sensors located in the Danube region formed the reference for the spatial 

consistency analysis (Figure 2 bottom).  

 

 

Figure 2. Distribution of the in-situ sensors employed for: the temporal analysis, with a zoom in the high-density clusters 

(top), and the spatial analysis carried out over the Danube region (bottom) 
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2.3 Satellite soil moisture products 

Table 1 provides an overview of the satellite-derived soil moisture products investigated in this study.   

Table 1. Overview of the satellite soil moisture products characteristics 

 

 Spatial 

resolution 

Revisit 

time 

Unit 

SMAP 36 km 1-2 days m3 m-3 

ASCAT 25 km 1 day % saturation 

ESA CCI SM 0.25° 1 day m3 m-3 

Sentinel-1 1 km 2-5 days % saturation 

 

2.3.1 SMAP 

The Soil Moisture Active Passive (SMAP) is a mission specifically devoted to monitor soil moisture and freeze/thaw 

state, launched in 2015. SMAP follows a sun-synchronous orbit, with the overpass time at 6:00 a.m. and 6:00 p.m. for 

the descending and ascending orbits, respectively. SMAP carries a radiometer (1.41 GHz) and a radar (1.26 GHz) 

operating at L-band6. The radar instrument, however, stopped working after about three months of operation. The 

brightness temperature retrieved by SMAP is converted to volumetric soil moisture using the V-pol single channel 

algorithm (SCA-V)21. Technical details on the soil moisture retrieval via the SCA-V algorithm can be found in 22. The 

SMAP product is gridded on the 36 km Equal-Area Scalable Earth grid version 2 (EASEv2). Here, we employed 

observations from the morning overpasses (06:00 a.m.) because of the better thermal equilibrium conditions23. 

2.3.2 ASCAT 

The Advanced SCATterometer (ASCAT) is a real aperture radar sensor carried on board the Metop satellites. The first 

satellite, Metop-A, was launched in 2006, followed by Metop-B and Metop-C, launched in 2012 and 2019, respectively. 

The Metop satellites follow a sun-synchronous near-polar orbit, with the morning (descending) overpass at 9:30 a.m. and 

the evening (ascending) overpass at 9.30 p.m. on average. The ASCAT sensor measures the backscatter at C-band (5.255 

GHz) in VV polarization. Soil moisture is retrieved from backscatter using the TU Wien change detection algorithm24. In 

short, a linear relationship between backscatter and soil moisture is expected, vegetation is accounted for using seasonal 

parameters, while surface roughness is assumed constant during the retrieval period25. The historically lowest and 

highest values of backscatter are assigned to the driest and wettest soil moisture references, which are used to derive 

relative soil moisture content (from 0% to 100%). This procedure is computed for each pixel individually. The ASCAT 

soil moisture product is retrieved at a resolution of 25 km. Building on the results of 26, we employed observations 

collected during the descending (a.m.) orbit. 

2.3.3 ESA CCI SM 

The ESA CCI combined SM is a merged product obtained from the retrieval of both active and passive sensors8. In 

particular, the CCI product combines in a synergistic way the soil moisture products from SMMR, SSM/I, TMI, AMSR-

E, ERS AMI, and ASCAT. These various datasets are scaled to the climatology obtained from the Global Land Data 

Assimilation System27 (GLDAS) Noah Land Surface Model28 using a cumulative distribution function (CDF) matching 

method. Then, the signal to noise ratio (SNR) of each dataset is used to derive a product-specific weight, necessary for 

the subsequent merging process. The CCI SM is provided in volumetric unit (m3 m-3) and with a daily time stamp 

centred at 0:00 UTC, even though the actual observation time varies among the different input products29. The CCI 

product is generated starting from 1979 and has a spatial resolution of 0.25°. 

2.3.4 Sentinel-1 

The Sentinel-1 mission consists of two identical satellites carrying a C-band (5.405 GHz) synthetic aperture radar (SAR) 

system. Sentinel-1A was launched in 2014, followed by Sentinel-1B in 2016. A revisit of up to 1.5-4 days can be 

obtained over Europe when both satellites are in orbit. Both satellites follow a near-polar sun-synchronous orbit, with 
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acquisition time at 6:00 a.m. and 6:00 p.m. for the descending and ascending nodes, respectively. In the Interferometric 

Wide (IW) swath mode, the SAR sensor allows to retrieve backscatter at 20 x 22 m. Because of the high signal 

complexity, backscatter observations are upscaled to 500 m sampling, featuring spatial resolution of 1 km. Soil moisture 

is then obtained after adapting the TU Wien model to SAR sensors, thus is expressed as percentage of saturation30. 

Sentinel-1 soil moisture was obtained through the Copernicus Global Land Service31, where it is provided with a 

timestamp centered at 0:00 UTC. 

2.4 Preprocessing and analysis 

2.4.1 Temporal matching 

The remotely sensed soil moisture products used in this study cover slightly different periods. All coarse-scale products 

(ASCAT, CCI, SMAP) were available until December 2018, while the high-resolution product (Sentinel-1) was 

available until May 2019. The instantaneous ground measurements closest to the satellite observation time were 

considered. Given the higher temporal resolution of in-situ measurements, the difference between satellite overpasses 

and ground observations was always equal to or less than one hour.  

2.4.2 Scaling 

Because of the spatial mismatch between satellite soil moisture products and in-situ measurements, a direct comparison 

between these two sources will be strongly affected by representativeness error10. Therefore, remotely sensed datasets 

have been rescaled to match the temporal mean and standard deviation of the in-situ references. Applying a statistical 

rescaling allows to account for (i) systematic representativeness error, (ii) the specific depth sensed by each satellite 

product and the in-situ sensor, as well as (iii) the different measurement units. 

2.4.3 Statistical metrics 

The Pearson correlation (R) and the unbiased root mean square deviation (ubRMSD) have been calculated to assess the 

satellite soil moisture accuracy with respect to the ground observations, both for the temporal and spatial evaluation. 

Please note that bias was not included because systematic differences between the reference dataset and satellite products 

have been intentionally removed with rescaling. 

 

3. RESULTS AND DISCUSSION 

3.1 Temporal analysis 

Figure 3 shows Pearson correlation and ubRMSD between soil moisture timeseries obtained from crowdsourced 

measurements and satellite observations, for each of the 154 in-situ sensors employed for the temporal evaluation. Please 

note that the number of temporal matches (n) is not identical because of the revisit time specific to each remotely sensed 

product (Table 1). For instance, Sentinel-1 is characterized by less frequent overpasses compared to other products, 

resulting in a lower number of pairs (n=106) regardless the data availability over a longer period. Notwithstanding the 

slightly different time interval covered by the various satellite products, we found that the highest correlation (median R 

= 0.67) was achieved by SMAP, followed by CCI (R = 0.63). On the other hand, CCI and SMAP obtained the lowest 

ubRMSD (0.054 and 0.056 m3 m-3, respectively). The ASCAT product showed modest accuracy (R = 0.52 and ubRMSD 

= 0.062 m3 m-3), and slightly worse results are attained by Sentinel-1 (R = 0.49 and ubRMSD = 0.069 m3 m-3). Overall 

results of each remotely sensed product are reported in Table 2.  
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(a) Pearson R 

 

(b) ubRMSD (m3 m-3) 

Figure 3. Evaluation metrics for all satellite products compared to GROW in-situ measurements. The median value 

(blue dots) and the associated confidence interval (10th and 90th percentiles) against each in-situ sensor are depicted. 

 
Table 2. Median values of evaluation metrics obtained between satellite products and GROW in-situ measurements 

 
 Pearson R ubRMSD (m3 m-3) 

ASCAT 0.52 0.062 

ESA CCI SM 0.63 0.054 

SMAP 0.67 0.056 

Sentinel-1 0.49 0.069 

 

We further investigated the remotely sensed products’ skill in relation to static properties associated to each in-situ 

sensor location, namely the land cover type (Figure 4a) and climate class (Figure 4b). Figure 4 shows results obtained for 

SMAP only, because very similar patterns were observed for the other satellite products investigated. According to the 

ESA CCI Land Cover map 2010, which provides information with a spatial resolution of 300 m, most of the sensors 

(150) are located in “cropland” pixels. Of the remaining sensors, two are situated in grassland, one sensor belongs to a 

mixed pixel consisting of cropland, shrubs and trees, and one sensor to deciduous broadleaf forest. Due to this 

unbalanced ratio, a comparison among land cover classes was not possible. However, the “cropland” class shows that a 

wide range of accuracy, both in terms of Pearson R and ubRMSD, can be found within the same land cover type. For 

instance, Pearson R ranges from 0.11 up to 0.89 and the ubRMSD varies between 0.023 and 0.12 m3 m-3 for the SMAP 

soil moisture product. Notwithstanding the very limited number of samples belonging to other land cover classes, we can 

infer that SMAP, and other satellite products, has higher agreement with sensors located in grassland and shrubs rather 

than in forested sites. This result confirms that the soil moisture retrieval is more challenging over densely vegetated 

areas19.  

According to the Koeppen-Geiger classification32, sensors used for the temporal analysis belong to three climate classes. 

Most of the sensors (114) are located in a continental climate without dry season and with warm summer (Dfb), 37 

sensors are located in arid hot climate (BWh), and the remaining 3 sensors in temperate climate without dry season and 

with warm summer (Cfb). Even if the distribution among climate classes is not well balanced, an overall trend can be 

observed (Figure 4b). Higher accuracy is found against sensors situated in the arid climate (BWh), regardless the satellite 
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product considered. Commonly, vegetation is less vigorous and/or sparser in arid climates compared to temperate and 

continental regions, thus allowing a better retrieval of soil moisture. In-situ sensors located in the arid climate have been 

installed in vineyards, which are characterized by a considerably lower vegetation cover and density compared to forest 

and agricultural crops. The latter, i.e. crops, are the most represented land use type among the sensors installed in Austria 

and Hungary.  

  

  

(a) Land Cover (b) Climate class 

Figure 4. SMAP evaluation metrics grouped by land cover (a) and climate class (b). Note that similar results were 

found for the other satellite products 

 

Figure 5 shows the accuracy of the satellite soil moisture products against in-situ measurements grouped by pixel. Note 

that only pixels covering Austria, Hungary and Greece are shown, because of the high number of sensors available in 

these GROW Places. A marked difference in the number of pixels observing the same in-situ sensors is evident, 

especially between coarse scale and high-resolution products because of the distinct pixel sizes (from 36 km to 1 km). 

Our results show that even within the same pixel, various degrees of agreement between remotely sensed and in-situ soil 

moisture can be found. For instance, the correlation obtained between SMAP observations and ground measurements 

ranges from 0.11 to 0.83 for the same pixel. The highest (median) correlation for a SMAP pixel is 0.81, obtained for the 

satellite pixel covering the sensors in Greece. Furthermore, the same pixel shows a smaller variability of both Pearson R 

and ubRMSD compared to other highly represented pixels, i.e. in Austria and Hungary. As explained above, the sensors 

in Greece are located in vineyards, which can explain the higher skill (because of lower vegetation density and cover). 

Additionally, the homogeneous vegetation type explains the lower intra-pixel variability observed. On the other hand, 

both SMAP pixels observing Austria and Hungary are compared to sensors located in agricultural fields where various 

crop types, i.e. summer and winter crops, are grown. Hence, a much larger variability in the statistical metrics between 

remotely sensed soil moisture and in-situ measurements is found. Both ASCAT and CCI SM products show a similar 

pattern.  

Interestingly, also two Sentinel-1 pixels compared against a large number of in-situ sensors follow the same trend, 
however, the smaller pixel size and the lower number of sensors lying within each pixel reduce this effect. For instance, 

the one pixel observing Austria shows Pearson correlation ranging between 0.23 and 0.75, and ubRMSD varying from 

0.049 to 0.10 m3 m-3. Such outcome is related to the presence of various land cover and vegetation types within this 

pixel, which includes summer and winter crops, grassland and forest33. The similar behavior, even though less 

prominent, found for the pixel observing Greece can be explained by the high inter-rows soil moisture variability in 

vineyards. Overall, our results suggest that the use of one or very few sensors to monitor the pixel-scale soil moisture 

dynamics (even for high-resolution products) might be inadequate. The spatial representativeness of in-situ 

measurements is strongly related to the complexity of the landscape observed, and especially the presence of different 

vegetation types with distinct growing cycles leads to high soil moisture variability.  
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(a) Pearson R 

 

(b) ubRMSD (m3 m-3) 

Figure 5. Evaluation metrics for all satellite products compared to in-situ measurements grouped by GROW Place. Note that 

only results for Austria, Hungary, and Greece are depicted because of the high spatial density of the sensors.  

 
3.2 Spatial analysis 

Spatial statistical metrics (Pearson R and ubRMSD) for the Danube region were calculated only for the Sentinel-1 soil 

moisture product (Figure 6), because of its high spatial resolution. Large data gaps in the timeseries exist due to the 

relatively poor temporal resolution of approximately 2-5 days characterizing the Sentinel-1 mission. Furthermore, 

numerous observations during winter (from December 2018 until mid-February 2019) have been masked because of 

temperature below 4°C, leading to inaccurate measurements for both the in-situ sensors and the satellite observations. 

The spatial correlation is generally positive, but several values below 0.5 were found. Furthermore, no clear seasonal 

trend can be observed. On the other hand, the ubRMSD increases during spring 2019 compared to autumn/winter 2018. 

This finding suggests that with the beginning of the vegetative season, and the consequent increase of vegetation water 

content in the leaves, stems, and shoots, the backscatter signal is mixed and the retrieval of soil moisture becomes more 

challenging. The fluctuating evolution of both metrics is likely an artifact due to incidence angle effects, and could be 

bypassed considering only measurements from either the ascending or descending orbit. Overall, a poor spatial 

agreement was found between in-situ measurements and Sentinel-1 soil moisture, however it must be noted that the in-

situ sensors used for the calculation of spatial metrics were not fixed but changed over time. An additional source of 

uncertainty derives from the availability of only one or very few sensors serving as reference for each satellite pixel (as 

discussed above). Clearly, both factors have a negative impact on the accuracy assessment, and potentially underestimate 

the metrics computed.  
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(a) Spatial Pearson R (b) Spatial ubRMSD (m3 m-3) 

Figure 6. Evaluation metrics showing the spatial consistency of soil moisture derived from Sentinel-1 against GROW in-situ 

measurements over the Danube region.  

 

4. CONCLUSION AND OUTLOOK 

In this study we evaluated the accuracy of various remotely sensed soil moisture products against crowdsourced in-situ 

measurements generated within the GROW Observatory. Specifically, we analyzed and inter-compared the temporal 

consistency of ASCAT, SMAP, ESA CCI SM, and Sentinel-1 products employing data from 154 ground sensors 

covering different climatic and environmental conditions across Europe. Our results confirmed that SMAP and ESA CCI 

SM performances are comparable and they are generally able to better capture the soil moisture dynamics of soil 

moisture compared to other products. Furthermore, for well-represented satellite pixels, i.e. monitored with a high 

number of in-situ sensors, we found a wide range of satellite products’ accuracy depending on the individual sensor used 

as a reference. This finding is more prominent for coarse scale products, however, the same behavior was observed also 

for high-resolution soil moisture product (Sentinel-1). As already reported in literature29,34, employing a single point 

location as a reference to evaluate coarse-scale products (20-40 km) generates high uncertainties in the results because it 

is extremely difficult to estimate the representativeness of an in-situ measurement for such satellite footprints. Our 

results suggest that even at the kilometric scale one single in-situ sensor might not be representative of the overall soil 

moisture dynamics. This is especially valid for highly fragmented landscapes, where the presence of various land cover 

types, e.g. summer and winter crops, broadleaf and evergreen forest, leads to a great variability of soil moisture spatio-

temporal patterns. The use of crowdsourced observations, such as those from GROW, is of utmost importance because it 

allows to monitor soil moisture intensively at the sub-pixel scale, reducing the representativeness errors and uncertainties 

generally associated to conventional networks. Finally, we evaluated the ability of Sentinel-1 to represent spatial patterns 

of soil moisture over the Danube region using measurements from 761 in-situ sensors. The spatial consistency of 

Sentinel-1 was only sufficient, however we discussed the sources of uncertainty and error that can explain this result. In 

particular, the change over time of the in-situ sensors used as reference, the representativeness of such measurements 

(generally only one or few sensors were available for each satellite pixel) as discussed above, as well as the period 

investigated (duration and climatic conditions) were identified as the main causes of underestimation. Hence, more 

robust analysis must be carried out when more data, both in terms of spatial and temporal coverage, will be available.  

In conclusion, GROW has demonstrated for the first time that COs can contribute to and have potential to improve the 

validation of remotely sensed soil moisture products. Our results show that future technology for sensors along with the 

social aspects of any CO endeavor will play an important role in creating opportunities with the remote sensing 

community for environmental monitoring. They also show that success, when coupled with the need for continuous 

monitoring, should be determined over an extended period of time (e.g. months or years). Therefore, our findings 

highlight the need for longitudinal studies to better explore the impact of all facets of sensing that are validated, robust, 

and environmentally sound. Whilst the results are highly encouraging, they have implications for the design of COs and 

the integration of CO data in Earth Observation activities in the future. The requirement for temporal continuity 

underscores the ongoing need for strategic approaches both to the development of scientific protocols and criteria, and to 

promoting and resourcing the engagement of resilient communities of practice and place. In addition, new and ongoing 

CO initiatives will benefit from finding a balance between, on the one hand, scientific requirements and representation 

through the selection of sites, and, on the other hand, the interests and locations of citizen scientists, with some flexibility 

needed to accommodate varying technical and social competencies and needs for training and support. Therefore, 
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education and resources are essential to sustain participation, and this can boost intrinsic motivation for individuals to 

continue to participate and for renewal of membership as natural participation cycles change. The offer of training does 

help to overcome common issues; to achieve scale, and mass training initiatives are necessary. Peer to peer platforms can 

also enable new communities to form, and knowledge to be exchanged, communities can learn from each other as well 

as from interactions with scientists. There are requirements for the technologies employed, with larger reference datasets 

requiring more robust sensors, this has implications, not only for the sensor instrument but also components such as 

batteries. The design of sensor housing can also pose a challenge where environmental conditions in which sensors are 

placed cause damage, such as water ingress and extremes in temperature. This is a common issue, particularly as 

continuous sensing through the seasons is a requirement. The unit cost of sensors creates a barrier to achieving high 

density clusters, and initiatives need to allow for a replacement strategy when technology fails. Ongoing refinement of 

protocols is necessary to address hyper-local needs, in land management and seasonal adjustments to those practices. In 

GROW, both the offer of access to open raw data, as well as an introduction to data awareness activities and tools helped 

to demonstrate the value of soil moisture at a local level for water resource management. GROW highlights the benefits 

of participation of all stakeholders in social innovation activity and outcomes. Finally, Citizens often cite policy as an 

area they do not feel they have any agency in, consequently we learn that engagement with policy through science should 

be implemented throughout all stages of the activity to enable the uptake of crowdsourced data at the highest level. 
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