Generation of a transgenic ORFeome library in Drosophila
Bischof, Johannes; Sheils, Emma M.; Bjorklund, Mikael; Basler, Konrad

Published in:
Nature Protocols

DOI:
10.1038/nprot.2014.105

Publication date:
2014

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Vector Preparation & Gateway ORF Cloning

Barcode the pGW-HA.attB vector

Clone and sequence ORFs into pDONR221

Transfer ORFs into pGW-HA.attB

Determine barcodes of pGW-HA.attB plasmids

Inject pooled plasmids

Establish fly strains

Identify strains via barcode determination

Confirm ORFs by single-fly PCR

Figure 1
Figure 2

(a) Gateway destination vector pGW-HA.attB

(b) Integration of a UAS-ORF transgene into an attP site
Entry clones

100 µl of each o/n culture

Pool

Well A1

Pooled culture

Miniprep

End repair and A tailing

Adapter ligation

Library amplification

Sequencing

Plasmid fragmentation

0.5-1 µg DNA

10-45 min

“beads-in” magnetic bead purification

Illumina sequencing library preparation

Vector and insert DNA (300-800 bp) with short random overhangs

End repair (NEBNext End Repair Module) (blunt ends)

A tailing (NEBNext dA-Tailing Module)

Adapter ligation (T4 ligase)

Library amplification by PCR

sequencing barcode (optional)

Gene specific primer F

AAAAAGCAGGCTTCAACATGTGTGACGAAGAAGTTGCTGCT

Gene specific primer R (rev. complement)

CCATTGTCACCAGCAAGTGCTTCGACCCAGCTTTCT

Act5C ORF

Stop codon omitted

GGGGACAAGTTTGTACAAAAAAGCAGGCT ACCCAGCTTTCTTGTACAAAGTGGTCCCC

Gene specific primer F

AAAAAGCAGGCTTCAACATGTGTGACGAAGAAGTTGCTGCT

Gene specific primer R (rev. complement)

CCATTGTCACCAGCAAGTGCTTCGACCCAGCTTTCT

attB1 primer

GGGGACAAGTTTGTACAAAAAAGCAGGCT

attB2 primer (rev. complement)

CCATTGTCACCAGCAAGTGCTTCGACCCAGCTTTCTTGTACAAAGTGGTCCCC

attB2 primer

GGGGACAAGTTTGTACAAAAAAGCAGGCT

500 bp

Gene specific primer R (rev. complement)

CCATTGTCACCAGCAAGTGCTTCGACCCAGCTTTCT

attB1 primer

GGGGACAAGTTTGTACAAAAAAGCAGGCT

attB2 primer (rev. complement)

CCATTGTCACCAGCAAGTGCTTCGACCCAGCTTTCTTGTACAAAGTGGTCCCC

attB1

Act5C ORF

attB2

Figure 3
Figure 4

a
N-terminal *in vivo* exchange

- `white^+`
- loxP
- UAS-hsp70
- ORF
- FL
- 3xHA
- 3'UTR

+ FLP

- yellow^+
- actin5C
- white^+

↓

- yellow^+
- actin5C
- ORF
- FL
- 3xHA
- 3'UTR
- eGFP

b
C-terminal *in vivo* exchange

- `white^+`
- loxP
- UAS-hsp70
- ORF
- FL
- 3xHA
- 3'UTR

+ FLP

- eGFP
- 3'UTR
- yellow^+

↓

- `white^+`
- loxP
- UAS-hsp70
- ORF
- FL
- 3xHA
- 3'UTR
- eGFP

c
Additional N- and C-terminal swapping lines

- lexB

Exchange to *lexO* promoter

- 3xSTOP

Elimination of 3xHA tag

- VNm9
- 3'UTR

Bimolecular fluorescence complementation

- VC155
- 3'UTR

- FL
- TEV
- 2xTY1
- 3'UTR

Exchange to 2xTY1 tag
Figure 5

G0: 2 inj. yw ΦC31 x yw

F1: 1 yw ; $\frac{UAS-ORF(w^+)}{+}$ x yw ; $\frac{D gl3}{TM3 Sb Ser}$

F2: yw ; $\frac{UAS-ORF(w^+)}{TM3 Sb Ser}$