DataMirror: Reflecting on One’s Data Self
A Tool for Social Media Users to Explore Their Digital Footprint

Amal Htait
amal.htait@strath.ac.uk
University of Strathclyde
Glasgow, UK

Leif Azzopardi
leif.azzopardi@strath.ac.uk
University of Strathclyde
Glasgow, UK

Emma Nicol
enicoll001@dundee.ac.uk
University of Dundee
Dundee, UK

Wendy Moncur
wmoncur@dundee.ac.uk
University of Dundee
Dundee, UK

ABSTRACT
Small pieces of data that are shared online, over time and across multiple social networks, have the potential to reveal more cumulatively than a person intends. This could result in harm, loss or detriment to them depending what information is revealed, who can access it, and how it is processed. But how aware are social network users of how much information they are actually disclosing? And if they could examine all their data, what cumulative revelations might be found that could potentially increase their risk of various online threats (social engineering, fraud, identify theft, loss of face, etc.)? In this paper, we present DataMirror, an initial prototype tool, that enables social network users to aggregate their online data so that they can search, browse and visualise what they have put online. The aim of the tool is to investigate and explore people’s awareness of their data self that is projected online; not only in terms of the volume of information that they might share, but what it may mean when combined together, what pieces of sensitive information may be gleaned from their data, and what machine learning may infer about them given their data.

KEYWORDS
Information Revelation; Digital Identity; Data Self; Privacy; Security

1 INTRODUCTION
Online Social Networks (OSNs) allow people to build a network of connections with others in addition to the ability to construct personalised profiles and post content. Such profiles and posts present an opportunity for people to introduce themselves while expressing their personality, thoughts, feelings, and other personal data on the web (e.g., interests, opinions, livelihood, place of work, relationship status, sexual orientation, religion, etc. [5, 9, 10]).

The small pieces of information shared online across multiple networks, may seem innocuous or harmless, individually. However, over time they may reveal more cumulatively than the person intends, as these identifiable traces can be linked together and exploited. For example, many posts may reveal that the person lives alone, while their jogging data shows the routes that they take and where they live, while other posts taken together might suggest, via machine learning tools, that the person is depressed. Thus, these shared data can lead to revealing more about one’s identity, habits, work/life patterns, personality, and so forth than they intend — which may result in privacy exposure risks. Such risks can have potentially negative and even disastrous consequences for the person (e.g., identity theft [1], financial losses, imprisonment, damage of reputation [2]), for their employer (e.g., by creating opportunities for cyber-crime, damage to corporate reputation, etc.), and even for national security [3].

How can people use social media, and enjoy its benefits, while minimising their risk of negative or unintended consequences? One possible solution proposed in [3, 7] is the use of a personal informatics system, that enables people to examine and reflect upon the details that they are sharing online, so as to increase their awareness of the privacy risks. For example, the DataSelfie 1 project provided a browser plug for Facebook to show individuals what their interactions online might reveal about them. Another project called WASP [8] provided a prototype of a personal web archive and search system, integrating archiving, indexing, and reproduction technology into a single application. The prototype offered a customised search engine which enabled users to explore the pages they had visited online.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’20, July 25–30, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8016-4/20/07...
$15.00
https://doi.org/10.1145/3397271.3401398

1http://dataselfie.it/
In this work we are concerned with mapping, presenting and visualising people’s profiles and posts so that they can examine and explore information they have explicitly shared online (with other people). Given the recent legislation by the European Union, e.g. General Data Protection Regulation (GDPR), end-users can request a copy of their own data. However, such bulk downloads are in machine readable format which is not easy to explore. Thus, our tool aims to provide a mechanism for people to explore their downloaded data across multiple platforms. The presented tool, DataMirror, is an initial prototype that will be used as a starting point to study how people reflect upon their own data sharing practices and behaviours, as well as learning more about how their data may be used, combined, and potentially exploited, in different ways – which can lead to security and privacy risks.

2 DEMONSTRATOR

DataMirror is a self-contained application (which can be installed via Docker). It is designed to run on the person’s machine as opposed to a web service, because the data to be used is their own personal data, which will invariably contain sensitive and personal information about the person.

System and Architecture. Figure 1 shows the main components of DataMirror. Once installed, the user needs to request and download their data (in JSON data format) from the various social media sites that they use and then point the DataMirror to these data. DataMirror, first ingests the data via transformers that attempt to extract out users and profile details, posts, and connections. As the different networks have different JSON formats, the specific transformers are required for each site, to transform the data to a common data format to be used within DataMirror. Currently, DataMirror can ingest data from Facebook, Twitter and LinkedIn, otherwise it resorts to a generic transformer which tries to pick out the salient details (users, dates, post/comments, source, etc.). Once the data is extracted and transformed it is then stored within Elasticsearch. A number of post-processing steps are then performed at the record level, as well as the collection level, in order to provide different insights and visualisations. At the record level, for posts/comments for example, we have included Sentiment Analysis based on Vader [6], a lexicon and rule-based sentiment analysis tool, to classify the sentiment of each post. These annotations are then stored with each post (for downstream visualisation). At the collection level, we have included topic modelling by clustering together related posts, while the closeness and relatedness between connections (including followers, followees and friends) is also calculated based on several factors, such as the most tagged and mentioned connections over the different sources. Basic entity resolution is performed at the record level, as well as the collection level, in order to provide different insights and visualisations. At the record level, for posts/comments for example, we have included Sentiment Analysis based on Vader [6], a lexicon and rule-based sentiment analysis tool, to classify the sentiment of each post. These annotations are then stored with each post (for downstream visualisation). At the collection level, we have included topic modelling by clustering together related posts, while the closeness and relatedness between connections (including followers, followees and friends) is also calculated based on several factors, such as the most tagged and mentioned connections over the different sources. Basic entity resolution is currently employed to match connections across sources. Given the data and the annotations, the user interface is provided via Kibana dashboards, which sits on top of Elasticsearch and enables the user to filter and search through their data, as well as visualising and querying their data in different ways. As we wish to investigate how people explore and inspect their own data, the initial prototype aims to provide a way to start engaging and motivating people to think about different questions that they might have about their data, and to start to highlight what, given their data, someone or some system, might be able to learn about them, and how that might put them at risk or expose them in some way. To provide different views on their data, users can search and browse through their data, as well as interact with the visualisations.

Search and Filter. To provide an open-ended mechanism for users to explore their own data, search functionality is provided where users can enter queries to find related content and connections within their data. The returned results can then be filtered down by: date, source of data, location, content of posts, etc.

Identifying Personal Data. Housed on profile pages and disclosed through posts, people reveal different pieces of content that help to personally identify the person (which could be used to compromise their identity [1]). Figure 2 shows an example of extracted details across the different networks.

Figure 2: User’s personal data, collected from different OSNs, presented in a same tree diagram to help the user visualise his cumulated information.

Interests. What users’ post, in terms of content, discloses their thoughts, feelings and opinions about their interests (where they risk being a target of manipulative marketing). Figure 3 presents a word-cloud generated with the most informative words in a user’s collected posts.

Figure 3: A word-cloud of the most frequent words in a user’s online posts, clustered by Topic, reflecting a mainly political topic and a use of a very simple vocabulary.

2 https://gdpr-info.eu/
3 JavaScript Object Notation
4 A search engine based on the Lucene library: https://www.elastic.co/
5 https://www.elastic.co/what-is/kibana

Activity. The volume and timing of users’ online activities may also provide different insights into their behaviour. Figure 4 aims to show users their online activities (e.g., comments, posts) on different OSNs, divided into time intervals, so that they can observe the potential patterns – which others could potentially glean. For example, employers may be able to observe that staff are spending way too much time on social media during work hours.

Location. The shared geolocation data in online posts (e.g., check-in) can also reveal more than intended about the user, which could be used to infer their home address, place of work, places they frequent i.e. gyms, shops, parks, cafes. Figure 5 aims to show the users what location information they are sharing which could be used by those with malign intent.

Connections. The connections that users create can also provide other vulnerabilities e.g. by providing other paths to reveal information about them, by connecting them to minority groups (that could trigger cyber-bullying acts against them), and who they communicate with the most/least in their connections. Figure 7 shows a name-based word cloud where the larger the name the more connections between them.
Sentiment. Figure 6 shows how posts over time, and collectively, can be interpreted in terms of sentiment, providing potential cues regarding a user’s state of mind and outlook. Sentiment, taken together with interests, could provide information that potential employers might use when making hiring decisions [4], or by others with malicious intent, to socially engineer situations to gain more information or to infiltrate the user’s data further.

3 SUMMARY AND FUTURE WORK

Our initial prototype provides a tool for searching through and visualising one’s data from various social media sites. It lets people explore their own data, it shows them what high level summaries generated from their data provides and what their overall online presence projects to others. Over the course of the project, we aim to extend the prototype to include additional visualisations and deeper content analysis, for example, to identify content as being sensitive (phone numbers, addresses, account numbers, passwords, etc.), to classify content as being personal to the user, as well as including other machine learning algorithms that can provide ratings of people’s mood, level of depression, personality, etc., in addition to including multi-media content (e.g., pictures, videos). Our research will then investigate, through user-studies, what people want to find out from their own data, what questions they want to ask of it, and how we can best present and visualise that to them, in order to promote better awareness and understanding of the risks and potential consequences that sharing many small pieces of information can have cumulatively — as part of the Cumulative Revelations of Personal Data project. The prototype is currently available via GitHub, see https://github.com/cumulative-revelations/DataMirror.

ACKNOWLEDGMENTS

Cumulative Revelations of Personal Data This project is supported by the UKRI’s EPSRC under Grant Numbers: EP/R033889/1 and EP/R033854/1.

REFERENCES

