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Abstract 

The effects of structural breaks in dynamic panels are more complicated 

than in time series models as the bias can be either negative or positive. 

This paper focuses on the effects of mean shifts in otherwise stationary 

processes within an instrumental variable panel estimation framework. We 

show the sources of the bias and a Monte Carlo analysis calibrated on 

United States bank lending data demonstrates the size of the bias for a 

range of auto-regressive parameters. We also propose additional moment 

conditions that can be used to reduce the biases caused by shifts in the 

mean of the data. 
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1. Introduction 

Instrumental variable panel estimators are used in almost all fields of economics and are usually 

consistent and efficient. However, econometricians have noted that in some cases, like in the 

presence of heteroscedasticity or highly persistent data, instrumental variables estimators can 

perform poorly. Furthermore, Carrion-i-Silvestre et al. (2005) and Bai and Carrion-i-Silvestre 

(2009) demonstrate that unaccounted structural breaks bias the least squares estimates in standard 

auto-regressive panels.  In this paper we add another dimension to this existing literature by 

showing how structural breaks in the mean of the variables can result in severely biased estimates in 

dynamic panels when the data is endogenous.  We also propose two new moment conditions for the 

GMM estimator that reduces the bias substantially in dynamic time series panels. 

Nickell (1981) shows the panel estimator of auto-regressive terms is subject to a positive bias due to 

unobserved fixed effects and this bias is present irrespective of structural breaks in the data.  

Compared to work done on structural breaks in time series the panel literature is still in its infancy. 

Notable work has been undertaken by Carrion-i-Silvestre et al. (2005) and Bai and Carrion-i-

Silvestre (2009) who demonstrate that when the variables are strictly exogenous the power of panel 

unit root tests decreases in the presence of structural breaks making the data look more persistent. 

For example, unaccounted structural breaks in mean introduce a positive bias to the auto-regressive 

terms and the size of this bias depends on the magnitude and timing of the breaks and the sample 

length.  This can be thought of as the Perron (1989) effect in panels.  Carrion-i-Silvestre et al. 

(2005) and Bai and Carrion-i-Silvestre (2009) also show that the unaccounted breaks in mean 

introduces an additional bias to the Perron effect outlined above by changing the magnitude of the 

fixed effects bias of Nickell.  While the Perron effect of unaccounted breaks in mean is always 

positive the effect of the unaccounted breaks on the fixed effects bias results in the bias being 

mostly negative but in some cases positive.  Consequently the sign of the total bias is ambiguous in 

the presence of structural breaks. 

However, in dynamic panels that incorporate endogenous variables the effect of structural breaks is 

more complicated.  For example, Arellano and Bover (1995) and Blundell and Bond (1998) show 

that applying the difference GMM estimator to highly persistent data in dynamic models leads to 

invalid instruments which in turn causes a downward bias (in absolute terms) to the estimated 

coefficient on the lagged dependent variable. The usual way to overcome the problem of highly 

persistent data as suggested by these papers is to assume that the persistence has some economic 
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rationale and estimate the model using the systems GMM estimator where the instruments are 

included as first differences. However, if the data looks persistent only because of structural breaks 

then this solution to ‘imagined’ persistence in the data leads to biased estimates and possibly 

incorrect inference. Consequently, unaccounted structural breaks in mean introduce an 

‘endogeneity’ bias in difference and system GMM estimators which is over and above the Perron 

and Nickell biases outlined above. This paper seeks to identify the ‘endogeneity’ bias in the 

difference and system panel estimators before proposing two new moment conditions which can be 

used to reduce the ‘endogeneity’ bias. 

In the next section we begin by briefly setting out the standard Carrion-i-Silvestre et al. (2002) 

analysis of the biases due to structural breaks in a dynamic panel assuming the variables are strictly 

exogenous.  We extend this methodology to analyse the biases due to structural breaks assuming the 

data is endogenous.  We identify three biases.  The first two (the Perron and Nickell effects) are 

equivalent to those found when the data is exogenous.  The third bias is due to the endogeneity of 

the data and is particularly important when the data is highly persistent.  These biases indicate that 

the moment conditions are not zero in the presence of structural breaks.  We therefore suggest two 

moment conditions that are zero in the presence of structural breaks and term the associated GMM 

estimator the ‘double-D’ GMM estimator.
1
 

Section 3 uses a Monte Carlo analysis calibrated on United States bank lending data to examine the 

difference, system and double-D GMM estimators both without and with structural breaks in the 

data.  We find that in the presence of structural breaks the double-D estimator out performs the 

difference and system GMM estimators for low levels of persistence (i.e. autoregressive coefficients 

less than 0.6) and the difference and system GMM estimators perform marginally better when 

persistence is high.  A panel data model of the bank lending channel is then estimated in Section 4 

to demonstrate the advantage of the double-D GMM estimator when estimating models in the 

presence of structural breaks. 

2. Structural Breaks and their impact on the GMM panel estimators 

Carrion-i-Silvestre et al. (2002) in a similar vein to Perron (1989) showed that the bias due to 

unaccounted mean shifts in panel data reduces the power of traditional unit root tests with 

exogenous data. They start with an AR(1) process,    , with a single level shift; 

                                                             
1
 The name of the estimator will become evident later in the paper. 
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                         (1a) 

                         (1b) 

where,    is the entity in the panel,    are the time invariant fixed effects,     is the error term and 

      for         and 0 elsewhere, with     indicating the date of the structural break. 

2.1 Structural Breaks and the difference GMM Estimator 

Carrion-i-Silvestre et al. (2002) demonstrates that if the shift term is unaccounted for and one 

estimates with least squares; 

                   (2) 

then     will be biased and the least square estimate of α is; 

  ̂    
∑       

 
   

∑          
 
   ⏟      

  

 
∑      

  
        

∑      
         

 
   ⏟        

  

 (3) 

where,                 , X being the     matrix of non–stochastic regressors,            

where                and          
  with θ being the magnitude of the break. Equation (3) 

shows the biases due to the unaccounted mean shifts is made up of two components. The bias 

identified by Nickell (1981) caused by fixed effects in OLS estimation is shown as NE in equation 

(3).  Carrion-i-Silvestre et al. (2002) argue that this bias is negative although the sign is positive in 

Nickel’s original paper which does not include structural breaks.
2
  The bias identified as PE in 

equation (3) is positive and is similar to the Perron (1989) effect. Hence, the net bias when the data 

is exogenous depends on the relative magnitudes of the Nickell effect,   , and Perron effect,   , 

such that;  

  ̂          (4) 

                                                             
2
 Carrion-i-Silvestre et al. (2002) show that the sign of the denominator of NE in equation (3) depends on 

the magnitude of the auto regressive parameter and the break function involved.  They conclude that in 

general the sign of the Nickell effect in the presence of structural breaks is negative. 
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We now extend this approach to consider the difference GMM estimator when the data is 

endogenous.  Although the ‘true’ data generating process is as described by equation (1) we ignore 

the shift term and assume the process is as described by equation (2).  In this case the standard 

difference GMM (Arellano and Bond 1991 type) orthogonal moment conditions can be written; 

                  for              and             (5) 

Assuming       then the moment condition in equation (5) is exactly identified and the 

corresponding method of moments estimator reduces to a two stage least square estimator.
3
  This 

implies the first stage of the instrumental variable regression is; 

                        (6a) 

                    (6b) 

where         .  The least squares estimator of equation (6b) is then; 

  ̂        
∑       

     
 
   

∑      
  

          ⏟        
  

 
∑      

      
 
   

∑      
         

 
   ⏟        

  

 (7) 

  ̂              (8) 

where the Nickell effect,   , and Perron effect,   , are the same as those in equation (4) when the 

data is exogenous.  Arellano and Bond (1991) show that as the data becomes more persistent then 

without structural breaks     and          in equation (6a) and       becomes an invalid 

instrument as the correlation between      and       declines.  Therefore, the ‘persistence bias’ and 

the Nickell effect are negative while the Perron effect is positive in equation (8). 

Consequently, the total bias is non-linear and depends on the relative magnitudes of the three 

biases.  In equation (8) if   is small and the positive Perron effect is larger than the negative Nickell 

effect then  ̂ will be biased upwards. Alternatively, when persistence is high then      tends to 

zero creating a negative bias to  ̂.  If this negative bias along with the negative Nickell effect is 

                                                             
3
 Assuming     avoids the use of matrixes and greatly simplifies the exposition.  If     then the 

following results also apply to the other moment conditions. 
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greater than positive Perron effect then  ̂ will be biased downwards and the instruments will be less 

correlated with the      term.
4
  Therefore, when estimating the model without accounting for the 

structural breaks the instruments may become invalid with the difference GMM estimator resulting 

in the estimates being biased.  The standard response to finding the data are highly persistent is to 

estimate the model in equation (2) using the system GMM estimator and it is this estimator that we 

now turn to. 

2.2 Structural Breaks and the System GMM Estimator 

Arellano and Bover (1995) and Blundell and Bond (1998) demonstrated that when the data is 

persistent (i.e. when      ) the difference GMM performs poorly for the reasons explained 

above. The solution proposed in both these papers is to use system GMM where lagged differenced 

terms are used as instruments instead of the lagged level terms as in difference GMM. They also 

demonstrate using Monte Carlo simulations that the system GMM performs better than the 

difference GMM when data is highly persistent.
5
 Although it has been shown in the literature that 

system GMM adequately accounts for persistence in the data, we show that when persistence is 

caused by structural breaks in the mean of the data and these breaks are not accounted for then the 

moment conditions of system GMM may become invalid and the estimators biased.
6
 

To show this, start with our simple AR (1) panel data model of equation (1) represented here as the 

period before the break; 

                         (9a) 

and the period after the break: 

                   
          (9b) 

                                                             
4 

However, Hayakawa (2009) argue that if the data is mean non stationary the moment condition of the 

first difference GMM may be valid even when the auto regressive parameter is high. This is due to the 

unaccounted fixed effects in the first stage of the regression. 
5
 Roodman ( 2008) and Blundell and Bond (1998) argue that if the time period is small and the individual 

fixed effects are large then system GMM may perform poorly. 
6
 We consider breaks in the mean of the data but similar results can be obtained by changes in the auto-

regressive term. 
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In equation (9b),     
 is the mean shift and    is the break date where we assume that     .

7
 

Assuming that  (   
   )    for     ,  (   

   )    for      and       
      then for 

    , the moment conditions in the system GMM if there are no structural breaks in the mean of 

the data are;
8
 

                     (10) 

However, if there are unaccounted breaks then the moment conditions in equation (10) will not be 

valid and                     .  With structural breaks, therefore, the moment conditions when 

     are: 

                                       (11a) 

 =   (           
             )          (11b) 

    [(              )  ]       
    (11c) 

Equation (11c) differs from the standard moment condition of no structural breaks system GMM of 

equation (10) by the term,  (   
   ) which is non-zero and therefore the moment condition, 

                 , is not equal to zero and invalid along with the instruments.  Moreover, in 

system GMM with structural breaks the initial moment condition will not decay towards its long 

run mean set by the parameter   in equations (9a) and (9b). 

2.3 The Double-D GMM Estimator 

The problem caused by unaccounted structural breaks in the system GMM can be resolved by 

changing the moment condition in equation (10) to   (                ). In this case the 

moment conditions will be valid and equal to zero, as demonstrated below for      : 

                                                             
7 

Note that the break date needs to be towards the start of the sample because if towards the end of the 

sample then the initial moment conditions may be valid even in the presence of a break.
 

8
 This means that equations (9a) and (9b) follow from equation (2) instead of equation (1) as in the text.  

For more see Wachter and Tzavalis (2004). 
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  (                )                 (12a) 

  ((           
             )      ) (12b) 

  (              )             
         (12c) 

The moment condition in (12) can be generalized as              where      and the 

instruments enter as lagged differences of the data.  Moreover, if we relax the restriction in Section 

2.2 that the fixed effects are not correlated with the error term so that  (   
   )    for      

then the moment condition              can also be used where       .  In this case the 

instruments enter as forward differences of the data.  Thus for    : 

  (            )  [(              
      )       ]    (13) 

Table 1 summarises the moment conditions set out above and allows us to compare the GMM 

estimators according to the practical implications of their moment conditions.  For the difference 

GMM estimator the instruments are lagged and remain in levels while the equation is estimated in 

difference form.  The moment conditions of the system GMM estimator implies that the instruments 

are also lagged and are both in levels and differences and the respective equation are also estimated 

in levels and differences.
9
  Finally, the moment conditions proposed in equations (12) and (13) the 

instruments and the equation are both in differences and this gives rise to the name ‘double-D’ 

which is short for double-difference.  Furthermore, with the moment conditions of equation (12) the 

instruments are lagged whereas in equation (13) the instruments are forward terms (or leads) and 

thus gives rise to two estimators; namely the backward and forward double-D GMM estimators 

respectively.  Note that if the autocorrelation of     is low a GMM estimator based on moment 

conditions (12) and (13) may result in weak instruments leading to biased estimates of the auto 

regressive parameter. Finally, we can combine the moment conditions of all four estimators in a full 

system GMM estimator. 

                                                             
9
 Note that with the system GMM the instruments could instead only include the lagged differences.  See 

Blundell and Bond (1998). 
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3. A Monte Carlo Analysis of the GMM estimators 

In this section we undertake Monte Carlo simulations to examine the bias associated with mean 

shifts on the five GMM estimators outlined above. Two sets of simulations are undertaken for each 

of the GMM estimators.  In the first set the data are generated without breaks and in the second set 

two mean shifts that are explained below are included in the generated data.  The data generating 

process is calibrated on United States individual bank loan growth data for the period 1993 to 2007 

in terms of the mean, variance and sample length of that data.
10

 

3.1 Simulations without structural breaks 

We create a panel of data where the number of entities       and time periods     . The data 

generating process is: 

                   (14a) 

                              (14b) 

where    are randomly generated fixed effects and     are randomly generated data with mean 0.087 

and standard deviation of 0.163. Simulations are repeated 1000 times for a range of   parameter 

values between 0.1 to 0.99 to retrieve the mean values of the estimated auto-regressive coefficients 

and associated standard errors. 

To avoid the problem of over-fitting we do not use the full set of instruments/moment conditions 

when estimating the model.
11

  Specifically, (i) the difference GMM estimator we use as instruments 

the third and fourth lags of    ; (ii) the system GMM estimator the third and fourth lags of       and 

   ;  (iii) the backward double-D GMM estimator the third and fourth lags of        ;  (iv) the 

forward double-D GMM estimator the third and fourth leads of        ; and (v) the full system 

estimator uses all the above instruments. 

                                                             
10

  See the data appendix for further details. 
11

 The over-fitting problem is when a large set of instruments are individually valid but collectively invalid 

in finite samples because the number of instruments is greater than the number of entities.  See 

Roodman (2006), Windmeijer (2005) and Ziliakc (1997). 
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Table 2 reports the mean estimates of the Monte Carlo simulations for the auto-regressive 

parameter,  , and the associated standard errors (in parentheses).
12

  The bias measured as  ̂    is 

shown in square brackets.  The table shows that when there are no mean shifts in the data the 

difference GMM and the system GMM estimators both perform well in an absolute sense and in the 

sense that the estimated values of   are less than two standard errors from their true values in the 

DGP.  However, when the data is highly persistent and   is large and in the range of 0.8 to 0.99 the 

system GMM estimator outperforms the difference estimator as also reported in the simulations of 

Arellano and Bover (1995) and Blundell and Bond (1998).  These results are consistent with the 

literature. 

Table 2 also shows that without structural breaks the double-D estimators perform poorly relative to 

the other three estimators.  This is because there is very low correlation between the instruments 

and the dependent variable as both enter as differences.  Note however that the full system GMM 

which combines the moment conditions of all four GMM estimators (i.e. the difference, system and 

two double-D estimators) performs best and retrieves the data generating process to within 0.001 of 

the true value of  .   

3.2 Simulations with structural breaks 

Assuming the parameter values of the model are constant, there are two broad categories of breaks 

that are possible in the bank level data. The first are idiosyncratic breaks associated with each of the 

entities which in our case are banks. The second are common breaks across all entities.  The most 

common cause of the first category of breaks is bank mergers which will introduce a one-off spike 

to the loan growth data and is not the type of structural break that we consider above.  We therefore 

focus on the second category of breaks which we attribute to changes in policy and shifts in the 

business cycle.
13

 

To calibrate the structural breaks in our generated data we apply the Bai-Perron multiple structural 

break test to the aggregate growth in loans data to obtain the number, weighted average size and 

dates of the breaks.  Two significant break dates are found in the aggregated data.
14

  The first is at 

     which corresponds to 1997 in our dataset and the second is at       which is the year 

                                                             
12

 Note that inference is unaffected by the use of the median rather than mean values of the estimates. 
13

 The business cycle is generally thought to follow a stationary process.  However, over finite samples the 

same cycle may look non-stationary and introduce a structural break to the bank lending data. 
14

  Details of the Bai-Perron estimates are provided in the data appendix. 
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2002. The former is consistent with changes in United Sates bank regulations and the start of the 

‘boom’ in the technology sector and the latter with the end of the technology bubble. The 

instruments, number of entities and time span remain the same as in our previous simulation. 

We now generate a second panel of data which is identical to the first but incorporates the dates and 

magnitudes of the two Bai-Perron structural breaks identified in the aggregate data.
15

 The DGP 

incorporating the structural breaks is; 

                                        (15a) 

                 ,     and     (15b) 

where,     is equal to 0.100 and     =1 for      and 0 in other periods,           

and        in       and 0 in other periods, and           and         in         

and 0 in other periods.
16

 

Table 3 presents the Monte Carlo results for the difference and system GMM without introducing 

shift variables to account for the structural breaks in the mean in the DGP. For both of these 

estimators we see that for values of   below 0.6 there is substantial and significant positive bias to 

the estimated values of    .  For values of     between 0.6 and 0.99 however the bias is negative. 

These results demonstrate the non-linear nature of the bias introduced by the unaccounted breaks in 

mean as explained in Section 2.  With low levels of persistence the total bias is positive because the 

Perron effect dominates.  However, as   increases the negative bias due to the persistence itself 

increases along with the Nickell effect until the total bias becomes negative.  With our generated 

data the total effect of the three biases ‘cross-over’ somewhere between the true values for    

between 0.5 and 0.6.
17

  Note however there is also a non-linearity in the negative range of the bias 

when the value of   approaches one.  In this range the concept of a structural break in very highly 

persistent data becomes less relevant and in some sense is undefined in the limit when    . 

                                                             
15 

 The magnitude of the parameters     and    are Bai Perron estimates of the breaks. 
16 

 Another way to proceed is to include shift dummies in the estimated model to account for the known 

structural breaks.  However, if the magnitude of the break is different for each entity then one needs to 

include shift dummies for each individual entity which is not practical when the number of observations 

is small. 
17

 If the DGP incorporates larger shifts in mean then the ‘cross-over’ point is higher. 
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Table 3 also shows the double-D estimators, either using the leads or lags as instruments, 

outperforms the difference and system GMM estimators by a wide margin when      .  

However, for values of       the system GMM estimator performs better in terms of the absolute 

size of the bias although the improvement is small and most likely to be insignificant. 

These Monte Carlo results conform to our theoretical analysis in Section 2.  When there are 

structural breaks the use of levels in the estimation is problematic because of the Perron effect.  This 

explains why the double-D estimators which incorporate only differences dominate the other 

estimators which include levels in the estimation procedure.  However, as the level of persistence 

increases the bias due to the breaks is reduced and so the advantage of using only differences is also 

reduced to the point where the system estimator outperforms the double-D estimator. 

3.3 A robustness check of the results 

Because of the finite nature of our generated data we are required to specify the lag structure of the 

instruments to avoid over-fitting the model.  Furthermore, our Monte Carlo analysis has been 

constrained in other dimensions so as to conform to our annual bank lending data.  Some observers 

may feel uncomfortable about our Monte Carlo analysis and wonder if the results are simply 

dependent on our modelling choices or are more ‘global’ in nature.  To this end we undertake the 

following analysis of the robustness of our results. 

First, to examine if our results depend on the choice of lags (and leads) of our instruments we re-run 

the Monte Carlo analysis for a range of lag structures for the instruments.  The three panels of 

Figure 1 report the mean estimates of   for a range of lag structures for the instruments.  The dotted 

line in each panel indicates the ‘true’ value of   from the DGP.  Shown with square markers, 

circular markers, thick and thin lines are the mean estimates from the difference, system, double-D 

with backward lags and double-D with forward lags respectively. 

The top panel shows graphically the results from Table 3.  On a visual basis we can see that the 

double-D estimators dominate the difference and system estimators for values of      .  The 

middle panel of the figure re-estimates the model only with the third lag (or lead where appropriate) 

as instruments.  And finally the lower panel estimates the models using the third to fifth lags as 

instruments.  We can see from all three panels that the double-D estimators perform better than the 
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difference and system estimators at low levels of persistence but outperformed marginally by the 

system estimator at high levels of persistence. 

Second we consider whether our results are dependent on the dimensions of the data set, in 

particular whether the number of periods (i.e. the size of T) and the number of entities (i.e. N) 

influence our results.  We re-run the Monte Carlo analysis assuming      and     .  Given 

the position of the breaks may affect the results we also undertake the analysis assuming the breaks 

are in their initial positions (i.e. periods 5 and 10) and in the same relative positions in the data set 

(i.e. 10 and 20 when      and at 20 and 40 when     ).  We find that in both cases the bias is 

reduced for all five estimators as might be expected but that the ranking of the estimators in terms 

of bias is unaffected by the longer data sets.  We also find that increasing the number of entities by 

a factor of 5 has little impact on the bias or the ranking of the estimators. 

We might conclude therefore that the Monte Carlo results reported above are largely unaffected by 

the choice of lags structures for the instruments and the dimensions of the data set. 

4. An application of the double-D GMM estimator to the bank lending channel 

Traditionally the transmission of monetary policy has been thought of in terms of the demand and 

supply side channels.  The former includes the transmission through interest rates, exchange rates, 

the effect on the balance sheets of non-financial firms and the effect on the valuation of the firm’s 

assets.  In contrast, the supply side transmission of monetary policy focuses on the willingness of 

banks to lend which includes the bank lending channel.   

The bank lending channel is difficult to identify in models using aggregate data and so researchers 

have turned more recently to the use of time series panel techniques to model this channel.  The 

standard panel bank lending model is that of Kashyap and Stein (2000).  This model attempts to 

identify how banks respond to changes in monetary policy by focusing on the heterogeneity among 

bank characteristics which can be incorporated in the panel analysis.  However, the data employed 

in these panels contain structural breaks and therefore the estimates are subject to the biases 

discussed above to demonstrate the advantages and disadvantages of the five GMM estimators in 

the above analysis.  We therefore estimate a Kashyap model of bank lending using the range of 

GMM estimators.   The model is estimated with disaggregated United States bank level data for the 

period 1993 to 2007.  The data appendix provides further details concerning the data. 
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4.1 The model 

The Kashyap bank lending model is of the following form; 

                 ∑  

 

   

                ∑  

 

   

       

                                 ∑    
 
                 (16) 

 ∑   

 

   

             ∑               

 

   

 

where the bank entity,  , with N       and time, t=1 to 16.  In the above equation     is total loans, 

   is the federal funds rate,               and       are the size of the balance sheet, capitalization 

and liquidity of individual banks respectively,     is gross domestic product measured at constant 

prices and      is inflation.  Lower case variables are in natural logarithms and   represents the 

change in the variable.  

In the Kashyap model the growth in loans depends on two aggregate variables (i.e. the growth in 

GDP and prices) that represent the demand side of the economy and a range of characteristics of the 

individual banks.  The lagged dependent variable models the dynamics in the data.  The direct 

effects of monetary policy are represented in the model by the interest rate,  .  The indirect effects 

of monetary policy are due to the interaction of changes in interest rates with the heterogeneous 

bank characteristics and these effects are incorporated in the model as multiplicative terms.  We 

estimate the model using the five GMM estimators discussed above and our primary interest is the 

estimates of the lagged dynamic term and the indirect monetary policy effects captured by the 

multiplicative terms. 

4.2 Results 

Table 4 reports the long-run estimates of the bank lending model.  Columns 1 to 5 report the models 

estimated with the difference, system, double-D backwards, double-D forwards and full system GMM 

estimators respectively.  While there are some similarities in the estimates across the five estimators 

there are also some important differences.  For example, if there are no breaks in the data then we 

know from the simulation results in Table 2 that the full system GMM estimates are the least biased by 
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a considerable margin.  In this case the estimated direct and indirect effects of monetary policy 

reported in column 5 of Table 4 are relatively small although they have the signs predicted in the 

monetary policy transmission literature. 

However, there is every indication that the growth in bank lending data contains structural breaks.  If 

we apply the difference and system GMM estimators to the model (see columns 1 and 2 in Table 4) we 

again obtain long-run estimates that are similar to the full system GMM estimates which in turn we 

believe to be poor because of the breaks in the data.  Consequently, we might also question the validity 

of the difference and system GMM estimates.  The double-D estimates reported in columns 3 and 4 

indicate the direct and indirect effects of monetary policy on bank lending are substantially larger.  For 

example, the effect of the size of the balance sheet on bank lending is around 10 times larger when the 

model is estimated with the double-D estimators than the estimates from the difference, system and full 

system estimators.  Similarly, the direct effect of monetary policy is around 4 times larger when 

estimated with the double-D estimator.  Note that as expected the residuals from the difference, system 

and full system models display second order serial correlation while the residuals from the models 

estimated with the double-D estimators are largely free of second order serial correlation.
18

 

Finally, the dynamics of the models estimated with the double-D estimator appear more relevant than 

the estimated dynamics using the other estimators.  The estimated coefficient on the lagged dependent 

variable in the difference, system and full system models are around -0.4.  This suggests that the bank 

lending data is relatively slow to revert to its mean and that during convergence the data oscillates 

strongly about its mean.  Given the models are estimated with annual data this description of the bank 

lending data appears difficult to sustain.  In contrast, the double-D estimates suggest that the data are 

also mean reverting but the reversion is substantially quicker and the data does not routinely overshoot 

the mean on its path back to its mean.  These differences in the estimates between the estimators are 

exactly as would be expected if the data contained structural breaks and the breaks are not adequately 

accounted for by the difference, system and full system estimators. 

                                                             
18

  Arellano-Bond type GMM estimators require that the error terms are serially correlated. If     in 

equation (1a) is serially uncorrelated then      are correlated because                  .  However, 

    , will not be correlated with         for    . 
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5. Conclusion 

The Monte Carlo analysis above suggests that if the researcher is confident that there are no 

structural breaks in the means of the data of the individual entities then the full system GMM 

estimator dominates all of the alternative estimators considered above in terms of lowest bias.  This 

includes the standard difference and system GMM estimators commonly used in the literature. 

However, when the data contains breaks in mean it is more complicated.  The first difficulty is that 

when the panel data is of the ‘large N relative to T’ variety the individual graphing of the data is 

laborious and not practical.  If the researcher is confident that there is a common break in the data of 

the entities then the double-D GMM estimator (estimated either with leads or lags for instruments) 

is the preferred option when estimated persistence is less than 0.6 and the system estimator when 

persistence is high. 

We therefore, suggest the following methodology when estimating panels. 

(i) Are there breaks in the data?  This issue has two dimensions.  First, has there been a change in 

the regulations or market structures that may lead to a break in the means of the data of the 

individual entities?  Second, does the data span a short period of time so that the data appears 

non-stationary?  For example, the business cycle may make some data look non-stationary over 

a few years when the same data are stationary over a longer span of time.  It may be helpful to 

graph the aggregate data at this stage as an aid to understanding common breaks in the data. 

If the researcher concludes that it is highly unlikely that there are breaks in the mean of the data 

then the full systems estimator that combines the moment conditions of the difference, system 

and both double-D GMM estimators should be applied to the data. 

(ii) Breaks and Persistence.  It is fortunate that none of the estimators considered above estimate 

the data to have low persistence when the true level of persistence is high.  This implies that 

when choosing the ‘correct’ estimator the researcher does not need to know the ‘true’ level of 

persistence in the data and the estimated level of persistence can guide our choice when we 

believe there are structural breaks.  Therefore, having decided that there are common breaks 

among the entities, the next stage is to estimate the model using the double-D estimator.  

However, if persistence is greater than 0.6 then the model should be re-estimated using the 
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system estimator.  We note that any improvement in the estimates over the double-D estimator 

may be minor. 

Finally, the analysis above further demonstrates that ‘good’ empirical work is a sophisticated ‘art’.  

The researcher needs to understand the data they are working with and, importantly, the nature of 

any breaks that may be in the data.  The analysis also suggests that there may be considerable 

benefit in undertaking Monte Carlo simulations similar to that above so as to understand the 

properties of the available estimators given the particular dimensions of the data set and prior 

beliefs concerning the nature of the breaks. 
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APPENDIX 1:  DATA APPENDIX. 

Balance sheet items are measured at the end of the December quarter each year and from the Federal 

Reserve Bank of Chicago (www.chicagofed.org). The data were downloaded between 25th October 

2009 and 10th November 2009.  Total loans (mnemonic Rcfd1400) are defined as the aggregate gross 

book value of total loans (before deduction of valuation reserves) including (i) acceptances of other 

banks and commercial paper purchased in open market, (ii) acceptances executed by or account of 

reporting bank and subsequently acquired by it through purchases or discount, (iii) customer’s liability 

to reporting bank on drafts paid under letter of credit for which bank has not been reimbursed, and (iv) 

all advances.  The data are in natural logarithms.  All data and the Stata ‘do files’ are available at 

www.billrussell.info. 

The Bai and Perron (2003) approach minimises the sum of the squared residuals to identify the number 

and dates of k  breaks in the model: tktl   1  where tl  is the annual change in the natural 

logarithm of total loans, 1k  is a series of 1k  constants that estimate the mean growth of loans in 

each of 1k  ‘regimes’ where the mean is constant in a statistical sense and t  is a random error.  The 

model is estimated with a minimum regime size (or ‘trimming’) of 5 years out of a total sample of 15 

years.  The final model is chosen using the Bayesian Information Criterion. The model is estimated for 

the period 1993 to 2007.  The results of the estimated model are reported in the table below.  The Bai-

Perron technique was estimated using Rats 7.2 using baiperron.src and multiplebreaks.src written by 

Tom Doan and kindly made available on the Estima internet site. 

Table A1:  Estimated breaks in the Growth in Total Loans 

Regime Dates of the ‘Regimes’ Mean Growth Rate of Loans 

1 1993 - 1997 0.0996 

2 1998 - 2002 0.0858 

3 2003 - 2007 0.0761 

 

  

http://www.chicagofed.org/
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Figure 1: GMM estimators assuming different lag structures 
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Table 1: Moment conditions used in each of the GMM estimators 

Moment conditions 

1                                         

2                      

3                                

4  (         )                     

 Moment conditions used in each estimator 

Difference System Double-D 

(backward lag) 

Double-D 

(forward lag) 

Full system 

 1 1, 2 3 4 1, 2, 3, 4 
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Table 2: Monte Carlo results assuming no structural breaks 

 Mean  ̂ 

True α Difference System 
Double-D  

(backward lags) 

Double-D 

(forward lags) 
Full System 

0.1 -0.166 

(0.172) 

[-0.266] 

0.086 

(0.133) 

[-0.014] 

-0.254 

(0.225) 

[-0.354] 

0.077 

(0.054) 

[-0.023] 

0.099 

(0.029) 

[-0.001] 

0.2 0.030 

(0.139) 

[-0.17] 

0.187 

(0.109) 

[-0.013] 

-0.197 

(0.228) 

[-0.397] 

0.171 

(0.060) 

[-0.029] 

0.199 

(0.029) 

[-0.001] 

0.3 0.319 

(0.095) 

[0.019 ] 

0.289 

(0.089) 

[-0.011] 

-0.138 

(0.222) 

[-0.438] 

0.262 

(0.067) 

[-0.038] 

0.298 

(0.029) 

[-0.002] 

0.4 0.434 

(0.085) 

[0.034 ] 

0.391 

(0.073) 

[-0.009] 

-0.072 

(0.223) 

[-0.472] 

0.349 

(0.075) 

[-0.051] 

0.398 

(0.029) 

[-0.002] 

0.5 0.538 

(0.080) 

[0.038 ] 

0.492 

(0.060) 

[-0.008] 

0.010 

(0.216) 

[-0.490] 

0.429 

(0.084) 

[-0.071] 

0.498 

(0.028) 

[-0.002] 

0.6 0.625 

(0.085) 

[0.025] 

0.593 

(0.049) 

[-0.007] 

0.107 

(0.211) 

[-0.493] 

0.492 

(0.102) 

[-0.108] 

0.598 

(0.027) 

[-0.002] 

0.7 0.617 

(0.122) 

[-0.083] 

0.695 

(0.038) 

[-0.005] 

0.200 

(0.216) 

[-0.500] 

0.525 

(0.102) 

[-0.175] 

0.699 

(0.024) 

[-0.001] 

0.8 0.747 

(0.180) 

[-0.053] 

0.798 

(0.027) 

[-0.002] 

0.230 

(0.211) 

[-0.570] 

0.448 

(0.124) 

[-0.352] 

0.800 

(0.019) 

[0.000] 

0.9 0.710 

(0.106) 

[-0.19] 

0.900 

(0.016) 

[0.000] 

0.290 

(0.218) 

[-0.610] 

0.339 

(0.175) 

[-0.561] 

0.900 

(0.013) 

[0.000] 

0.99 0.981 

(0.026) 

[-0.009] 

0.990 

(0.009) 

[0.000] 

0.907 

(0.096) 

[-0.083] 

0.894 

(0.080) 

[-.0096] 

0.991 

(0.008) 

[0.001] 

 

Notes: The simulations where undertaken in Stata 11.1 with a ‘seed’ value of 1010.  See 

Section 3.1 for details concerning the generation of the data.  Shown in ( ) are the mean 

standard errors of   ̂.  Shown in [ ] is the estimated bias. 
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Table 3: Monte Carlo simulation results assuming structural breaks 

 Mean  ̂ 

True  ̂ Difference System 
Double-D 

(backward lags) 

Double-D 

(forward lags) 
Full System 

0.1 0.837 

(0.046) 

[0.737] 

0.842 

(0.042) 

[0.742] 

0.190 

(0.119) 

[0.090] 

0.088 

(0.059) 

[0.012] 

0.606 

(0.030) 

[0.506] 

0.2 0.874 

(0.041) 

[0.674] 

0.857 

(0.037) 

[0.657] 

0.252 

(0.087) 

[0.052] 

0.224 

(0.070) 

[0.024] 

0.702 

(0.030) 

[0.502] 

0.3 0.895 

(0.037) 

[0.595] 

0.816 

(0.031) 

[0.516] 

0.346 

(0.074) 

[0.046] 

0.326 

(0.072) 

[0.026] 

0.777 

(0.029) 

[0.477] 

0.4 0.874 

(0.033) 

[0.474] 

0.695 

(0.023) 

[0.295] 

0.460 

(0.066) 

[0.060] 

0.319 

(0.053) 

[-0.081] 

0.801 

(0.028) 

[0.401] 

0.5 0.730 

(0.027) 

[0.230] 

0.579 

(0.014) 

[0.079] 

0.592 

(0.062) 

[0.092] 

0.327 

(0.033) 

[-0.173] 

0.703 

(0.024) 

[0.203] 

0.6 0.501 

(0.017) 

[-0.099] 

0.566 

(0.008) 

[-0.034] 

0.753 

(0.082) 

[0.153] 

0.411 

(0.019) 

[-0.189] 

0.500 

(0.016) 

[-0.100] 

0.7 0.504 

(0.009) 

[-0.196] 

0.637 

(0.005) 

[-0.063] 

0.261 

(0.230) 

[-0.439] 

0.557 

(0.010) 

[-0.143] 

0.505 

(0.009) 

[-0.195] 

0.8 0.675 

(0.004) 

[-0.125] 

0.744 

(0.003) 

[-0.056] 

0.675 

(0.020) 

[-0.125] 

0.700 

(0.006) 

[-0.100] 

0.675 

(0.004) 

[-0.125] 

0.9 0.839 

(0.002) 

[-0.061] 

0.863 

(0.001) 

[-0.037] 

0.852 

(0.004) 

[-0.048] 

0.840 

(0.002) 

[-0.060] 

0.839 

(0.002) 

[-0.061] 

0.99 0.961 

(0.001) 

[-0.029] 

0.969 

(0.000) 

[-0.021] 

0.971 

(0.001) 

[-0.029] 

0.961 

(0.001) 

[-0.039] 

0.961 

(0.001) 

[-0.039] 

 

Notes:  Reported are the mean values of   ̂ from the Monte Carlo simulations.  See Section 

3.2 for details concerning the generation of the data.  See also notes to Table 2. 
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Table 4: United States Estimates of the Bank Lending Channel 

 1 2 3 4 5 

Variables Difference System Double-D 

(backward lags) 

Double-D 

(forward lags) 

Full System 

       -0.469** 

( 0.000) 

-0.409** 

(0.000) 

0.126** 

(0.057) 

0.097** 

(0.097) 

-0.397** 

(0.611) 

Long-Run Coefficients 

        0.779** 

(0.000) 

0.738** 

(0.738) 

0.020 

(0.213) 

0.200 

(0.179) 

0.709** 

(0.000) 

       0.003* 

(0.001) 

0.002** 

(0.000) 

0.002** 

(0.001) 

0.006** 

(0.001) 

0.002** 

(0.000) 

     -0.007** 

(0.000) 

-0.004** 

(0.063) 

-0.018** 

(0.000) 

-0.0176** 

(-0.017) 

-0.005* 

(0.000) 

              0.007* 

(0.004) 

0.020** 

(0.003) 

0.051** 

(0.008) 

0.044** 

(0.000) 

0.020** 

(0.004) 

             0.004 

(0.004) 

0.016** 

(0.004) 

0.001 

(0.005) 

0.001 

(0.005) 

0.015** 

(0.004) 

             0.006 

(0.074) 

0.043 

(0.063) 

0.126* 

(0.075) 

0.172** 

(0.086) 

0.037 

(0.059) 

Diagnostics – probability values 

 

J-Stat 0.180 0.390 0.630 0.055 0.060 

AR(1) 0.781 0.005 0.000 0.000 0.009 

AR(2) 0.001 0.000 0.188 0.191 0.000 

 

Notes:**  significant at 5% level,* significant at 10% level.  Standard errors reported as ( ).  

Dependent variable is     .  Long-run values calculated as the sum of the estimated coefficients 

divided by 1 minus the coefficient on the lagged dependent term.  Associated long-run standard 

errors are calculated using Taylor series progression.  J-Stat, AR(1) and AR(2) are the Hansen 

J statistic of moment condition over-identification and Arellano-Bond tests of auto-correlated 

residuals of order 1 and 2 respectively (see also footnote 18).  A linear trend is included in the 

models which are estimated using Stata 11.1. 
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