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ABSTRACT

‘Modern’ Phillips curve theories predict inflation is an integrated, or near
integrated, process. However, inflation appears bounded above and below in
developed economies and so cannot be ‘truly’ integrated and more likely
stationary around a shifting mean. If agents believe inflation is integrated as
in the ‘modern’ theories then they are making systematic errors concerning
the statistical process of inflation. An alternative theory of the Phillips curve
Is developed that is consistent with the ‘true’ statistical process of inflation.
It is demonstrated that United States inflation data is consistent with the
alternative theory but not with the existing ‘modern’ theories.
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1. INTRODUCTION

A notable shortcoming of the ‘modern’ Friedman-Phelps (F-P) expectations augmented, New
Keynesian (NK) and hybrid theories of the Phillips curve is that they predict inflation is an
integrated, or very near integrated, statistical process and that this prediction is a direct result
of the personal characteristics of the agents in all three models." For example, in the F-P
model this prediction is due to the assumption that agents hold adaptive expectations. In the
NK model the coefficient on expected inflation is equal to the discount rate of households and
firms. The idea that the statistical process of inflation is due to a characteristic of agents and
not due to the behaviour of central banks is an anathema to standard monetary theory where
central banks set monetary policy in response to shocks to inflation which in turn determines
the long-run rate of inflation. Furthermore, as inflation in developed economies appears to
have an upper boundary at some moderate rate and a lower boundary around zero it is

unlikely inflation can be ‘truly’ integrated.

While inflation appears not to be an integrated process it is likely that inflation is non-
stationary.> For example, to argue the converse that inflation is stationary implies, (i) the
stance of monetary policy is unchanging leading to a constant mean rate of inflation, (ii) there
is only one expected rate and associated long-run rate of inflation implying there is only one
short-run Phillips curve, and (iii) the original Phillips (1958) curve did not ‘break-down’ with
changes in the expected rate of inflation towards the end of the 1960s. Furthermore, a
constant mean rate of inflation implies that all the ‘modern’ theories of the Phillips curve
since Friedman (1968) and Phelps (1967) are irrelevant on an empirical level as there has
been no change in the expected rate of inflation. Unless we are comfortable with the
implications of inflation as a stationary process we need to conclude that inflation is a

stationary process around shifting means. This allows for the numerous long-run and

The F-P and hybrid theories predict that the sum of the dynamic inflation terms sum to one. In the NK
model the coefficient on expected inflation is the discount rate. However, the empirical NK literature
largely ignores this and considers the sum of the dynamic inflation terms to be one. For simplicity of
exposition we will assume the sum of the coefficients on the dynamic inflation terms in the NK and hybrid
models is one unless otherwise stated. To paraphrase Milton Friedman’s famous quotation from his
Wincott Memorial Lecture delivered in London on 16 September 1970, ‘modern’ theories of the Phillips
curve argue that ‘inflation is always and everywhere an integrated phenomenon’.

The term non-stationary in this paper encompasses all statistical processes other than stationary with a
constant mean. It therefore includes stationary around a shifting mean.



expected rates of inflation which are a central component of modern theories of the Phillips
curve. Furthermore, deviations from any particular mean rate of inflation are partly due to
exogenous shocks to inflation and partly due to the response of monetary policy to those

shocks.®

One might also question the role that agents play in the modern theories of the Phillips curve.
The agents that populate these theories are very sophisticated and very well informed so as to
undertake the highly sophisticated optimising behaviour in these models. Therefore it is
inconsistent with the sophisticated nature of the agents that they do not understand something
as simple as the statistical process of inflation. In particular, a sophisticated agent is unlikely
to make the systematic error over the last fifty or more years of predicting that inflation has a
constant mean or is an integrated process. Consequently, an attractive characteristic of any
model of how agents form inflation expectations would be that agents do not make systematic
errors concerning the ‘true’ statistical process of inflation. In particular, the information set of
rational agents should include an understanding of the ‘true’ statistical process of inflation and
that this set should not include over the past fifty years the mistaken belief that inflation is
(i) integrated or (ii) stationary. We therefore propose a model of expected inflation which is
consistent with the statistical process of inflation.

The empirical Phillips curve literature also has its shortcomings. First, the literature that
seeks to validate the competing modern theories fails to model the heteroscedastic nature of
inflation over the past five decades. Graph 1 of United States quarterly inflation for the
period March 1960 to December 2010 shows the variance in inflation increasing during the
turbulent high inflation years of the 1970s before declining to lower levels following the
“Volker deflation’ in the early 1980s." This clustering’ of high and low variance into discrete
periods suggests that the variance in inflation may be serially correlated. Since Engle (1982,

1983), a popular way to accommodate the heteroscedastic characteristics of the inflation data

®  Russell (2006, 2011) makes this argument in more detail.

*  Inflation is measured in Graph 1 as the quarterly change in the natural logarithm of the gross domestic

product (GDP) implicit price deflator at factor cost multiplied by 400 to provide an ‘annualised’ rate of
inflation. See Appendix 1 for details of the data used in this paper.

3



is to estimate one of a wide range of auto-regressive conditional heteroscedastic (ARCH) type

models of inflation.’

This brings us to the second shortcoming of the empirical Phillips curve literature where most
work proceeds under the assumption that inflation is either stationary or integrated. These
assumptions are difficult to sustain as argued above. If instead the ‘true’ statistical process of
inflation is a stationary process around a shifting mean then assuming inflation is either
stationary or integrated will lead to biased estimates of Phillips curves.® Russell (2011) and
Russell et al. (2011) demonstrate using United States data that not adequately accounting for
the shifts in mean inflation leads to severely biased estimates of Phillips curves.

The shifting mean rate of inflation is also evident in Graph 1. These shifts can be identified
formally by applying the Bai and Perron (1998) technique to identify multiple breaks in the
mean rate of inflation.” Nine breaks in mean are identified in the inflation data implying there
are ten inflation ‘regimes’ within which we believe statistically the mean rate of inflation is
constant. The identified mean rates of inflation in each regime are shown on Graph 1 as solid
thin horizontal lines. On a visual level the technique appears to have identified all the major

shifts in mean over the past fifty years.

This paper therefore considers two questions. First, do Phillips curves that model inflation
expectations in a way that is consistent with the statistical process of inflation dominate in an
empirical sense the existing three ‘modern’ theories of the Phillips curve? And second, are
estimates of the ‘modern’ Phillips curves affected in any meaningful way by accounting for

(i) shifts in the mean rate of inflation, and (ii) the heteroscedastic nature of inflation?

In his seminal Nobel Prize winning paper Engle (1982) introduces the ARCH methodology and
demonstrates the technique on a model of United Kingdom inflation. There is a wide range of excellent
survey articles on the ARCH methodology including those of Bollerslev, Chou and Kroner (1992),
Bollerslev, Engle and Nelson (1994) and Engle, Focardi and Fabozzi (2008). For applied work see Engle
(1982, 1983, 1988), Cosimano and Jansen (1988), Baillie, Chung and Tieslau (1996), Grier and Perry
(2000) and Boero, Smoth and Wallis (2008).

This is a generalisation of the Perron (1989) argument that stationary processes with breaks are easily
mistaken for integrated processes.

See Appendix 2 for details of the Bai-Perron estimated breaks in the mean rate of inflation.



In the next section we briefly consider the ‘three” modern theories of the Phillips curve so as
to identify the source of the prediction that inflation is an integrated, or near integrated,
process. Section 3 suggests a fourth theory of the Phillips curve where the formation of
expectations is consistent with agents knowing the statistical process of inflation. Section 4
sets out and Section 5 estimates a general hybrid model of inflation that nests all four theories
of the Phillips curve allowing for possible ARCH effects and shifting means in the data.
Consistent with Castle (2010), Russell (2011), Russell et al. (2011) and Nymoen et al. (2012),
we find that once we account for the shifts in the mean rate of inflation, there is no evidence
that expected inflation as commonly measured in the New Keynesian literature plays a
significant role in the dynamics of inflation. We also find that the data is inconsistent with the
standard interpretations of both the Friedman-Phelps and hybrid models of inflation. In
contrast, we find empirical evidence that the Phillips curve proposed in Section 3 that
incorporates expectations based on knowledge of the statistical process of inflation is

consistent with the data.
2. ‘MODERN’ THEORIES OF THE PHILLIPS CURVE

‘Modern’ theories of the Phillips curve are ‘expectation’ based and incorporate an inflation

equation written in general form as:
ﬂtZWE{ﬂ}+5zzt )

where the rate of inflation in period t, ,;, depends on expected inflation, E(;r) conditioned
on available information and a ‘forcing’ variable, z,.2 The latter is measured in a number of

ways in the literature including the unemployment rate, the gap between the unemployment
rate and some measure of its long-run value, the gap between output and its potential level,
real marginal costs, labour’s income share and the markup of prices over unit labour costs.
Since Friedman (1968) and Phelps (1967), all three theories believe on an empirical level at

least that the ‘correct’ long-run value of y is one so that the long-run Phillips curve is

‘vertical’. Leaving aside the different forcing variables, what differentiates these models of

& Equation (1) is general in the sense that the time subscripts associated with the expectations operator, (1),

are ignored as they differ between the three modern theories of the Phillips curve.



inflation is how expected inflation is dealt within the inflation equation. We now briefly

describe the F-P, NK and hybrid theories so as to identify what determines the size of  in

equation (1) in each model.
2.1  The Friedman-Phelps Phillips Curve

The expectations augmented Phillips curve of Friedman (1968) and Phelps (1967) assumes

adaptive expectations of the form:

E {ﬂ-t } =E_ {”t—l} +n (”t—l -E., {ﬁt—l}) (2)

where a fixed proportion, n, of the errors in the expectation of inflation are eradicated in each
period. Cagan (1956) is the first to incorporate adaptive expectations into estimated models

of inflation and refers to 7 as the ‘coefficient of expectations’ which represents how quickly

expected rates of inflation adjust to actual rates of inflation. Backward induction of adaptive
expectations implies that expected inflation is a geometrically declining distributed lag of all

past rates of inflation such that:

Ei . {ﬂt } = Zﬂ(l - 77)i i 3)

where > 77(L-7) =1. Substituting equation (3) into (1) to replace E () provides;

i=0
T = 277(1_ 77)i T+ 90,7, (4)
i-L

On a practical level equation (4) cannot be estimated with an infinite number of lags. Using

the Kyock (1954) transformation we can truncate the number of lags and re-write (4) as:

T = (1 - 77) T, +Nm,+0,2, =7, +6, 7 5)



which can be thought of as the F-P Phillips curve. Other possible transformations include that
of Almon (1965) and the rational distributed lag function of Lucas and Rapping (1969).°
However, to conform with the F-P Phillips curve the lagged inflation terms must sum to one
over the truncated number of lags so that there is no trade-off in the long run between the

nominal variable, 7, and the real variable, z, .

Note three aspects of equation (5). One, the predication that the sum of the dynamic terms
equals 1 is a direct result of the assumption of adaptive expectations and not due to any
underlying optimising behaviour of the agents in the model. Two, adaptive expectations have
a long acknowledged (at least in the rational expectations literature) unappealing implication
that agents make systematic errors in their price expectations while they are converging on a
new long-run rate of inflation. And three, the desire for the dynamic inflation terms to sum to

one is so that long-run money neutrality is maintained in the model.
2.2 The New Keynesian Phillips Curve

The N-K Phillips curve responds to two of the perceived short-comings of the F-P Phillips
curve by providing optimising microeconomic foundations for the Phillips curve and allowing
agents to no longer make systematic errors in their expectations through the use of rational
expectations. While there are numerous versions of the NK model, the basic NK model of
Gali (2008) provides a general exposition of the NK Phillips curve and allows us to identify

the determinants of y in equation (1).%°

Gali’s basic NK model comprises households and firms. Households undertake inter-
temporal optimisation and are price takers in both goods and labour markets. In keeping with
a standard classical macroeconomic model, firms also optimise but in contrast with the
classical model firms set prices for a differentiated product and follow Calvo (1983) price

setting.

Nerlove (1956) combines the adaptive expectations of Cagan (1956) and the Koyck (1954) transformation
to provide the result shown in equation (5). For a clear survey of the econometrics of early distributed
lagged models see Griliches (1967).

10 Gali (2008) sets out a very clear and well-argued basic NK model. The nomenclature used here is the same

as that used by Gali where further details and extensions of the model can be found.



In the basic NK model there is a representative infinitely-lived household that seeks to

maximise its objective function:
E Y A'U(C.N) (6)

where C, is a consumption index and N, is the hours of employment. The utility function, U,

is continuous and twice differentiable, and ' is the discount rate in period t that households

apply to future consumption and employment decisions. Assuming there is a continuum of
goods represented by the interval [0, 1] the household budget constraint in period t can be

represented as:
1
[RG)C (i)di + QB <B , +WN, +T, (7)
0

where P, (i) is the price of the differentiated goods represented by the interval [0, 1], W, is the
nominal wage rate, B, is the quantity of riskless discount bonds that are purchased in period t
and mature with price Q,, in t+1 and T, are lump sum taxes net of lump sum non-labour

income. The decision for households is somewhat complicated because they have to

simultaneously optimise their consumption, C,, over time and over the range of differentiated

goods within each period.

Gali demonstrates that the log-linear optimal labour and consumption decisions from this

model can be approximately described by:
W, — P, =0C + @n (8)
1
C = Et{cnl}_g(rt - Et{”t+1}_p) )

where lower case variables are in natural logarithms, p=—log g is the discount rate and

= —log Q, is the riskless nominal interest rate.



Firms in the NK model are assumed to lie on a continuum indexed i <[0,1] and produce

differentiated goods, Y (i), using identical technology, A, and with a production function:

Yo(i)= AN (i) (10)

Following Calvo (1983), individual firms reset prices optimally in each period with
probability 1 — 6 which is independent of the time that has elapsed since the firm last

changed prices.

From these basic building blocks, Gali shows an approximate log-linear form of the dynamics

of aggregate prices can be described as:
7 == 0)(p; - pis) (12)

where p; is the optimal price set by firms that reset prices in period t. Equation (11)

suggests that inflation in period t in the NK model is due to the deviation between the

aggregate price index and the optimal price. The optimal price can then be shown to be:

P /U"' 1 ﬂ@ i {mct+k\t pt+k} (12)

k=0

where u is the log of the desired markup, g is the discount factor for the firms nominal

future returns and equal to the discount rate of households, and mc is the real marginal costs
of production. Equation (12) suggests that the firm when optimally adjusting prices will
choose a desired markup, x, over a weighted average of marginal costs in the current and

future periods where the weights are the probabilities that the price is unchanged over each

horizon, 6.

Finally, Gali demonstrates that the NK inflation equation is:

= BE A — Ak (13)



where ‘7" indicates the deviation from the steady state values of inflation and the markup,

A= @-0)a-po) . 1@ and the model is solved around a zero steady state rate of

0 l-a+ae

inflation. Equation (13) is the NK Phillips curve in inflation-markup space but similar NK
Phillips curves can be derived in inflation-output gap and inflation-unemployment rate gap
space. Consequently, the defining feature of the NK model is that current inflation depends

on the discounted value of expected inflation.

For our purposes there are three aspects to this basic NK Phillips curve to be noted. One, the
basic NK curve is solved around the steady state of zero inflation and does not explicitly
explain how inflation adjusts to changes in the steady state rates of inflation. Two, g is the
discount rate and therefore a parameter inherent to the personal characteristics of the agents in
households and firms. And three, the discount rate g is slightly less than 1. If households
and firms are risk neutral, face a symmetrical loss function in the region of the optimum price,
p*, and their expectations about future prices are unbiased then assuming a real interest rate

of four per cent per annum the quarterly value of £ is in the order of 0.99.
2.3 The Hybrid Phillips Curve

One of the drawbacks to the NK model noted early on by Fuhrer and Moore (1995), Roberts
(1997) and Gali and Gertler (1999) among others is that it implies that reducing inflation is
costless if agents are rational and forward looking and that this appears inconsistent with the
general observation that anti-inflation policies are associated with large costs to aggregate
output. It was also noticed that contrary to the predictions of the NK Phillips curve, lagged
inflation plays a significant role in the dynamics of United States inflation. These empirical

observations led to the hybrid Phillips curve:

7, =(1-@)BE AT+ b7y — A1k O<g<1 (14)

10



which is a convex combination of the NK and F-P Phillips curves.** Note two aspects of the
hybrid Phillips curve. One, the curve does not have explicit optimising micro-foundations.
And two, in as much as g ~1 in the NK model the dynamic inflation terms sum to one is
imposed with no reference to any theory. Instead this constraint is based on prior beliefs

handed down from the original F-P and NK theories that the ‘true’ empirical value for y in

equation (1) is one so that the long-run Phillips curve is vertical.
3. EXPECTATIONS CONSISTENT WITH THE STATISTICAL PROCESS OF INFLATION

The F-P, NK and hybrid theories imply that agents on a fundamental level make systematic
errors by believing that the set of all possible statistical processes for inflation is a singleton
set containing inflation is an integrated (or near integrated) process. Consider the general
expectations operator in equation (1) based on available information. Given the agents in
these theories are extremely sophisticated and rich in information as argued above, these same
agents for fifty or more years fail to notice that inflation is a bounded variable and therefore
not an integrated process.® We therefore hypothesise that the set of information available to
agents includes knowledge of key aspects of the statistical process of inflation and that the

expectations operator should be consistent with that knowledge.

Assuming the general inflation equation (1) is a valid description of the dynamics of inflation

we can write:

Ty = Yo+ ViEidmed + vaze + ¢ (15)

where inflation in period t is dependent on the expected rate of inflation in period t

conditioned on information available in period t — 1, a forcing variable z, and an i.i.d. error

1 Roberts (1997) argues the formation of expectations is partly rational and partly adaptive. The lagged

inflation term in the hybrid model can therefore be interpreted as due to a subset of agents who use adaptive
expectations when setting prices.

2 It s ironic that the very great majority of work estimating Phillips curves since Friedman (1968) and Phelps

(1967) make use of estimators that are unbiased only if inflation is a stationary process with a constant
mean which is in direct conflict with the important prediction of these models that the data should be
integrated. More recently when the data is treated as integrated the researchers fail to notice that the
inflation is bounded and so unlikely to be ‘truly’ integrated.

11



term .. For generality we assume the forcing variable is dependent on lagged values of itself

and contemporaneous inflation such that:
Zy = 8121 + $m Ve (16)

And therefore:

_ & 1
Ze= oy ™t G v (17

where L is the lag operator. Given the simultaneous nature of inflation and the forcing
variable this suggests that expected inflation, E,_;{m.}, depends on the expected values of

both inflation and the forcing variable such that:

E,_i{m} = Eq{asme + auz.} (18)

Substituting for z; in equation (18) using equation (17) we arrive at:

E,_1{me} = E1{&m (19)

Py
(1-LB1) 1

if expectations are unbiased. Equation (19) implies that the expected value of inflation,

where we assume that the expected value of the error term is zero and § = a3 +

E;_,{m:}, can be based on past inflation alone and not on past values of the forcing variable.
This means that past values of the forcing variable contain no further information over and
above that already incorporated in past values of inflation. In contrast, the inflation equation
(15) suggests that the contemporancous forcing variable contains ‘new’ information which

arrives in period t.

Turning now to modelling the expectations of inflation. We can write the expectations

operator in equation (15) as:

E q{n} = f(e) (20)

where f (@) describes the dynamic inflation process. Valid functional forms for f(e) depend
in part on what we assume agents ‘know’ when forming their expectations of inflation. We
12



assume that agents know from experience that (i) inflation is a stationary process around a
shifting mean, (ii) shocks to inflation are mean zero and stationary; and (iii) other agents are
not identical to themselves. The latter implies that agents recognise that the observed mean
reversion process of inflation is an aggregation of the disparate adjustment processes of non-
identical agents. And consequently, the best an agent can hope for if we eschew the
unrealistic assumption of full information is for the agent to understand the average
adjustment process of all agents in the economy. Furthermore, without full information
agents can only infer the characteristics of the statistical process of inflation from the
published aggregate inflation data and not from a detailed understanding of all the non-

identical agents in the economy.

The idea that agents only understand the mean reversion process of aggregate measures of
inflation suggests that agents only need to be able to approximate that process. Therefore, for
simplicity of exposition, assume inflation in continuous time follows an arithmetic Poisson-

Gaussian mean reversion process around a shifting mean of the form:
dr = (@™ — n)dt + odw (21)

where inflation, m, is from a standard normal distribution, 7™ is the long-run mean rate of
inflation in regime m which is subject to discrete shifts due to changes in monetary policy, ©

is the speed of adjustment back to the mean rate of inflation, o is the volatility of inflation,

1
dw = edtz is an increment of a Wiener process in continuous time and ¢ is the standard

normal distribution.
The shifts in mean are introduced into the inflation process described by equation (21) as:
dan™ = g(+) (22)

where g(x) describes the discrete adjustment process of the shifting mean. The size of the
mean shift and its associated probability distribution are difficult to estimate by agents and
economists alike as the shifts in mean are ‘rare’ events and so there is a lack of data. In our
case there appears to be nine shifts in mean over a period of fifty years. One practical
approach is to assume the mean reversion process described by equation (21) is independent
of the shifts in mean. This implies that the Wiener process, dw, driving inflation back to its

13



mean is uncorrelated with the discrete shifts in mean in equation (22), di,. A defence of the
independence assumption is provided below. On a practical level, if we assume
independence, we can then estimate the mean reversion process on its own and equation (21)
collapses to an Uhlenbeck and Ornstein (1930) (U-O) process also known as the Dixit and
Pindyck (1994) model:

dr = 1(T— m)dt + odw (23)

The U-O process has a number of useful properties. First, Dixit and Pindyck (1994)
demonstrate that equation (23) is the continuous time version of a first order autoregressive

process in discrete time where in the limit when At — 0 the AR(1) process is:
Ty —Tig = T(1— e )+ (67" —Dm_q + € (24)

where €, is normally distributed with mean zero and standard deviation o.. We can therefore

estimate the parameters in equation (24) with a discrete time AR(1) model such that:
T[t = a + (1 + b) T[t—l + Et (25)

where the mean rate of inflation is 7 = — %, the adjustment process T = —In(1 + b), and

) ~ ~ In(1+b
the variance 6 = 4, Q (5)2 )1
+ —_

where g, is the standard error from estimating equation (25).

The appropriateness of estimating the mean reversion process independently of the process
driving the shifts in mean rests on the validity of assuming the two processes are independent
and therefore uncorrelated. Consider the nature of a mean shift and the information contained
in lagged values of inflation. Begin by assuming that a regime of N periods has a constant
mean rate of inflation. If agents can forecast the shift in mean k periods before the end of the
regime then inflation in the last k periods of the regime will begin to adjust to its new mean

and therefore have a different mean to the first N — k periods of the same regime. This

14



contradicts the initial assumption that the inflation regime has a constant mean.** Therefore,
in an inflation regime where inflation has a constant mean it is not possible to forecast the
impending shift in mean and the assumption that the two processes are independent is valid
along with estimating the mean reversion process on its own. This conclusion conforms to
our general understanding of structural breaks in that they cannot, or at the very least, are very

difficult to forecast by the available information prior to the break.

Return now to the expectations operator in equation (20). Defining the current value of
inflation, m,, and assuming that inflation follows the U-O process described in equation (23)

then the expected value of inflation at any future time ¢t + j is:**

E(reyj) = T+ (mp— Me ™™ (26)
with associated variance:

V(re;— ©) ==(1—e29) (27)

Note that as j becomes large the expected value of inflation converges on its mean, 7, and the

2
variance converges on Z—T

Finally, substituting for f(e) in equation (20) using equation (25) and for E,_; {m;} in

equation (15) provides the statistical process consistent (SPC) Phillips curve:
=@, + 7" +0,1, (28)
where 0 < @ < 1 and expected inflation in period t is believed by agents to follow a mean

reverting process around a shifting mean. Assuming i.i.d shocks to inflation the criticism of

the F-P model that agents make systematic errors in expected inflation is not observed in

3 It may be that the transition between two stable regimes is made up of many small shifts in mean which we

cannot identify empirically with available techniques. However, the logic remains that each small shift is
not able to be forecasted from information contained in the previous regime.

14 See appendix 3 for a brief derivation of equations (26) and (27).
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equation (28) as inflation differs from the expected path of inflation only by mean zero

random shocks.
4. A STRUCTURAL BREAK GARCH HYBRID PHILLIPS CURVE

To examine the empirical validity of the three ‘modern’ and the SPC theories of the Phillips
curve outlined above we estimate a GARCH hybrid Phillips curve allowing for structural

breaks of the form:
Ty = 8+ 8Ec(eyq) + OpMe—q + Sutte + Xi=1PmDm + € (29)

where in the ‘mean’ equation (29) inflation, z,, depends on expected inflation, E,(z,.,),
conditioned on information available at time t, lagged inflation, =, ,, a ‘forcing’ variable of
the markup, 4, , shift dummies representing the m inflation ‘regimes’, D,,, and an error term,

€¢, due to the random errors of agents and the shocks to inflation. The conditional ‘variance’

equation is specified as a GARCH(1, 1) process:
0 = wo+ w05+ ael (30)

where the conditional variance, o?, is a linear function of a constant, w,, past forecast
variances (the GARCH term, ¢ ;) and past squared residuals from the mean equation (the
ARCH term, €2 ,)."> The ‘mean’ equation can be estimated asymptotically consistently with
two stage least squares (2SLS) but it will not be an efficient estimator when w, and « are

non-zero and the model does not account for the heteroscedasticity in the data.

The three ‘modern’ theories of the Phillips curve are nested within the hybrid Phillips curve
and can be thought of in terms of restrictions to equations (29). In the F-P Phillips curve

o0; =0 and 6, =1 and agents are purely backward looking. At the other extreme, the NK

Phillips Curve of Clarida, Gali and Gertler (1999) and Svensson (2000) imply agents are

> The conditional variance is the one-period ahead forecasted variance conditioned, or based, on past

information. The GARCH model was introduced simultaneously by Bollerslev (1986) and Taylor (1986).
Note that Engle’s (1982) ARCH model is a special case of the GARCH model where w, = 0.
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purely forward-looking and ¢, =1-d and &, =0 where d is the discount rate. Finally, in

the hybrid models of Gali and Gertler (1999) and Gali, Gertler and Lopez-Salido (2001)

agents are both backward and forward looking and 6, + 8, =1-d.

Our SPC Phillips curve set out in Section 3 is also nested within the mean equation (29). If

0,=0, 0<6, <1and ¢, # 0 then the inflation data conforms with the Phillips curve where

expectations are consistent with the statistical process of inflation and inconsistent with the F-
P, NK and hybrid theories of inflation.

41 The Data

The model is estimated with quarterly seasonally adjusted United States data for the period
March 1960 to December 2010. Inflation is measured as the quarterly change in the natural
logarithm of the gross domestic product (GDP) implicit price deflator at factor cost. In
keeping with much of the recent NK and hybrid literatures the forcing variable is measured as
the natural logarithm of the price series divided by unit labour costs which is equivalent to the

inverse of labour’s share of national income measured at factor cost.
4.2 Expected Inflation and the Markup

Expected inflation, E, (), is conceptually the forecasted value of inflation based on

information available at time t which is assumed to be based on the data published in period
t — 1. The forecasted value of inflation is obtained by regressing inflation on lags of inflation
and the markup for periods t — 2 to t — 5. For models that include the regime dummies these
are also included in the regression. The regression is estimated using ordinary least squares
and the static forecast of inflation is included in the estimation of the model with a lead of one

period, n[ +1- To overcome simultaneity bias we also replace the contemporaneous markup

term with its static forecast, y[ , from regressing the markup on itself and inflation for periods
t —1tot—4 as well as the shift dummies in models where they are included. This means
that the ordinary least squares estimates of the mean equation (29) are equivalent to 2SLS

estimates of the model.
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5. ESTIMATING UNITED STATES SHORT-RUN PHILLIPS CURVES
5.1  The Short-run Phillips Curve

So as to retrieve the standard results in the literature we begin by estimating the mean
equation (29) restricting the parameters on the regime shift dummies and ARCH terms to be
zero. Columns 1 and 2 in Table 1 report the hybrid and F-P models respectively which are in
general consistent with the standard Phillips curve literature. In column 1 we see that without
the breaks in mean and the ARCH effects the sum of the dynamic inflation terms are
insignificantly different from 1 and the expected inflation term is larger than lagged inflation
which is interpreted in the hybrid Phillips curve literature as forward looking agents
dominating backward looking agents in the setting of prices. Note however that the forcing
variable is insignificant and that the models suffer from some serial correlation and
considerable heteroskedasticity. Similarly when we restrict the lead in inflation to zero the
estimates reported in column 2 are in general consistent with the F-P model with the estimated
coefficient on the sum of the lagged inflation terms large (0.8079) but significantly less than

1. Again the model suffers from considerable heteroskedasticity.

Columns 3 and 4 of Table 1 report the GARCH(Z, 1) hybrid and F-P Phillips curves without
the inclusion of shift dummies to account for the shifts in mean inflation. We find that the
ARCH components are strongly significant as in the standard ARCH inflation literature.
Without accounting for the shifts in mean the ARCH methodology appears to be statistically
valid however the estimates of the hybrid Phillips curve are not materially affected from those

reported in columns 1 and 2 in the same table.'®

Turning now to the models that incorporate breaks in the mean rate of inflation. Table 2 re-
estimates the models incorporating the shift dummies that represent the ten identified inflation
regimes. In column 1 we find that accounting for the shifts in mean the lead in inflation is
now insignificant. Furthermore, in the F-P model that excludes the lead in inflation the lag in
inflation is significantly less than one by a wide margin. Note also that both estimated models
continue to suffer from heteroskedasticity.

6 Modelling the ARCH process increases the efficiency of the estimates but does not alter the expected values

of the estimated parameters of the ‘mean’ equation.
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Columns 3 and 4 of Table 2 account also for the heteroscedasticity in the data and report the
estimates of our full GARCH models with structural breaks. We see that the general
estimates of the mean model are largely unaffected but the ARCH and GARCH terms remain
significant. Note that with the expected inflation term excluded the single lag in inflation is
significant with an estimated value of 0.2431 which continues to be significantly less than one
by a wide margin. The final model strongly rejects the restrictions of the F-P, NK and hybrid
models and strongly accepts the restrictions consistent with the alternative model of the

Phillips curve where expectations are consistent with the statistical process of inflation.
5.2  The Long-run Phillips Curve

The structural breaks models reported in Table 2 are effectively estimating ten short-run
Phillips curves for the ten mean, or long-run, rates of inflation observed in the data. Given the
de-meaned data are stationary it is not surprising that the sum of the dynamic inflation terms
are less than one in the models reported in Table 2. This does not mean that the long-run
Phillips curve is not vertical. To identify the long-run Phillips curve we need to estimate the
long-run value of the markup for each long-run value of inflation which is assumed to equal
the mean rate of inflation in each regime. The long-run value of the markup can then be
calculated from equation (29) as:

- 106, -4)- 0] (31)

where the coefficients are their estimated values from the ‘mean’ equation in Table 2. In our
case the long-run value of the forcing variable, z™, is equivalent to the mean markup in each

regime.'’

Assuming the ten combinations of the long-run values of inflation and the markup lie along
the long-run Phillips curve we provide two estimates of the long-run curve in Table 3. The

first is the linear curve,

Y Our estimate of the shift dummy in each regime is @, =7 (1—5} —3b)—5'u 4" which when

substituted into equation (31) means that the long-run value of the forcing variable in each regime is its
mean value.
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m

" =a,+ oy 1" (32)

which reveals there is a significant negative inflation-markup long-run Phillips curve.
However, if the long-run Phillips curve is not vertical then it must be non-linear as increases
in the mean rate of inflation would eventually violate the lower boundary condition of the
definition of the markup. We therefore also report in Table 3 a non-linear long-run Phillips

curve:

z" :ﬂoexl:)(ﬂlﬁm) (33)

in Table 3. Again we find a significant negative non-linear relationship between inflation and

the markup.
5.3 A Visual Representation of the Estimates

Graph 2 provides a visual representation of the estimates from the GARCH(1,1) structural
breaks SPC Phillips curve model (i.e. column 4 in Table 2) The large crosses are the ten
combinations of the long-run rates of inflation and the markup. The negative sloping non-
linear solid line indicated as LRPC is the estimated exponential long-run Phillips curve from
Table 3. The thin negatively sloping lines are the short-run Phillips curves for each of the ten
inflation regimes once the inflation dynamics have been exhausted and the ARCH terms are at
their mean levels. These short-run curves are drawn for the actual range of the markup for
each inflation regime. The actual realisations of inflation and the markup are also shown

where the symbols identify which regime the data is drawn from.

From the graph we see the negative slope to both the short-run and long-run Phillips curves.
We see that a shock to inflation is initially associated with a large fall in the markup in the
short run. With time firms adjust prices and the markup partly recovers. However, the higher

mean rate of inflation is associated with a lower mean markup in the long run.
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6. ARE THE RESULTS ROBUST?

There are two important dimensions to the robustness of the estimates presented above. First,
are the results robust to the plethora of ARCH methodologies that have developed since
Engle’s (1982) paper? To this end the models were re-estimated using EGARCH, PARCH
and IGARCH estimation techniques. It is found that the estimates are not affected in any

meaningful way by this range of ARCH type models.

The second dimension is the number of breaks in mean. Some observers might feel
uncomfortable about the number of breaks identified in the inflation data and that this is in
some way driving the results. However, Perron (1989) demonstrates that if the number of
identified breaks in mean is too small then this introduces a positive bias in the estimates of
the dynamic inflation terms. Russell et al. (2011) demonstrates empirically that the bias due
to the unaccounted breaks in mean disproportionally affects the estimated coefficient on the
lead of inflation. Consequently, if too few regimes have been identified in the empirical
analysis above then this makes it more and not less difficult to obtain the general results

reported above.

On the other hand, too many breaks may be incorporated in the analysis above. In particular,
one might argue that inflation is a highly persistent process with only one or two breaks in
mean and that the large number of breaks employed in the estimation introduces a negative
bias to the estimated dynamic terms. Russell et al. (2011) demonstrates that as the number of
optimally chosen invalid breaks increases in the analysis of highly persistent data there is
indeed a negative bias to the estimates of persistence. However, the biased estimate of
persistence has a lower boundary which is considerably above the estimated persistence
reported in Table 2. We can therefore confidently argue that the low estimates of persistence
that we identify are not due to the over-breaking of highly persistent data and that the reported

estimates are economically meaningful and robust to the number of identified breaks.

7. CONCLUSION

To retrieve the standard empirical results of the F-P, NK and hybrid literatures requires us to
impose a very small number of breaks, possibly only two, on the model of inflation when

using the last fifty years of United States inflation data. The argument that the ‘true’ number
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of breaks is this small and that there has only been three short-run Phillips curves over the
same period is hard to sustain. This is because the entire dialog that supports the existing
modern Phillips curve theories considers agents to be very sophisticated and information rich.
Consequently, any accommodation by central banks to shocks from whatever source will be
quickly identified by these sophisticated agents leading to a shift in the expected, long-run,
and therefore mean rates of inflation as well as a corresponding shift in the short-run Phillips
curve. Furthermore, if there have only been two structural breaks in the mean rate of United
States inflation then this implies that the Federal Reserve Bank of America has
accommodated (even a little bit) only two shocks over this fifty year period. Given the
difficulties inherent in setting monetary policy with incomplete information this implication
would appear difficult to accept. Therefore, at the most fundamental conceptual level the F-P,
NK and hybrid theories of the Phillips curve that are populated with very sophisticated agents
are incompatible with the argument that there have been very few breaks in the mean rate of
inflation over the past fifty years. Alternatively if a more believable larger number of breaks
are included in the empirical model so as to conform to the level of sophistication of the
agents then these same models are highly inconsistent with the inflation data. In particular,
the analysis above suggest that once we account for the shifts in mean inflation there is no
significant empirical evidence that the model defining expected rate of inflation in the New
Keynesian and hybrid theories plays a significant role in inflation dynamics. Furthermore, the
standard interpretation of the Friedman and Phelps Phillips curve is also not supported by the
data. In contrast, the United States data is consistent with a form of expectations formation

that assumes that agents know the statistical process of inflation, that is, a SPC Phillips Curve.
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APPENDIX1 DATA APPENDIX

The United States data are seasonally adjusted and quarterly for the period March 1960 to December
2010. The United States national accounts data are from the National Income and Product Account
tables from the United States of America, Bureau of Economic Analysis. The aggregate data were
downloaded via the internet on 27 April 2011. The data are available at www.BillRussell.info.

Variable

Details

Inflation

Nominal gross domestic product (GDP) at factor cost is nominal GDP (Table
1.1.5, line 1) plus subsidies (NIPA Table 1.10, line 10) less taxes (NIPA Table
1.10, line 11). The ‘price’ series is the GDP implicit price deflator at factor cost
calculated as nominal GDP at factor cost divided by constant price GDP at 2005
prices (NIPA Table 1.1.6, line 1). Inflation is the first difference of the natural
logarithm of the price series. Note that Graph 1 shows the estimated inflation
regimes multiplied by 400 to provide an ‘annualised’ rate of inflation.

The Markup

Calculated as the natural logarithm of nominal GDP at factor cost divided by
compensation of employees paid (NIPA Table 1.10, line 2).
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APPENDIX 2 IDENTIFYING THE INFLATION REGIMES

The Bai and Perron (1998) algorithm identifies the dates of k breaks in the inflation series so as to
minimises the sum of the squared residuals and thereby identify k+1 ‘inflation regimes’. The
estimated ‘shifting means’ model is:

T =Veu T T (A2.1)

where 7, is inflation and y, , is aseries of k +1 constants that estimate the mean rate of inflation in
each of k+1 inflation regimes and z, is a random error. The model is estimated with a minimum

regime size (or ‘trimming rate’) of 12 quarters (6 per cent of the total sample) and the final model is
chosen using the Bayesian Information Criterion. The model is estimated using quarterly United
States inflation data for the period March 1960 to December 2010. The estimated breaks are reported
in Table A2. The Bai-Perron technique was estimated using baiperron.src and multiplebreaks.src
programmes written by Tom Doan on RATS 7.2.

Table A2: Estimated Inflation ‘Regimes’ using the Bai-Perron Technique

Regime Aggregate Data Mean
Dates of the ‘Inflation Regimes’
1 March 1960 to September 1964 0.003166
2 December 1964 to September 1967 0.007450
3 December 1967 to December1972 0.011538
4 March 1973 to March 1978 0.018534
5 June 1978 to September 1981 0.021085
6 December 1981 to December 1984 0.010196
7 March 1985 to June 1991 0.007769
8 September 1991 to September 2003 0.004841
9 December 2003 to September 2007 0.008041
10 December 2007 to December 2010 0.003341
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APPENDIX 3  DERIVING THE CONDITIONAL MEAN AND VARIANCE OF Ty
Consider the general function:
U, = e"m,
Applying Ito’s lemma to equation (A3.1) we get:
= dU; = d(e™m,) = e™dm, + tme™dt
= e"dm, = d(em,) — tmeTtdt
The Ornstein-Uhlenbeck process for m, is:
dm; = (T — m)dt + odw,
= etdm, = e™trdt — e™ttdt + e®todw,
= d(e®tm,) — tre™dt = eTrdt — e™ttdt + eTtodw,
= d(e™m) = e rrdt + e*todw,
Taking an integral from time t = 0 to ¢ for equation (A3.4) gives:
et =1y + fttzo e ds + fttzo e™ odwy
And we can write equation (A3.5) in terms of r; as:

M = mpe T+ (1 —e ) + f;o e T 9odw,

(A3.1)

(A3.2)

(A3.3)

(A3.4)

(A3.5)

(A3.6)

The solution of the stochastic differential equation (A3.6) between sand t, if 0 < s < t and is:

T = e TS 4+ 77(1 — e7TS)) + ge ftt=s e dw,
The conditional mean and variance of ., ; given m, is therefore:
Et[T[t+j] =T+ (T — T)e ™

2 .
Var[m,] = Z—T(l —e™2U)

(A3.7)

(A3.8)

(A3.9)
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Table 1:

United States Phillips Curves — Assuming Constant Mean Inflation

Two Stage Least Squares GARCH
Hybrid Friedman-Phelps Hybrid Friedman-Phelps
1 2 3 4
MEAN EQUATION
.l 0.6638 0.6792
t+1 (3.8) {4.2}
Teq 0.2861 0.4258 0.2872 0.4478
(3.1) (4.4) {2.4} {5.0}
Ty 0.0698 0.0344
(0.8) {0.5}
T 3 0.1328 0.2023
(2.3) {2.8}
s 0.1795 0.1397
(2.2) {2.4}
yf -0.0141 -0.0470 0.0026 -0.0290
t (- 0.5) (- 2.8) {0.2} {2.0}
Constant 0.0075 0.0244 -0.0009 0.0156
(0.6) (2.9) {-0.1} {2.1}
Season (June) -0.0010 -0.0012 -0.0009
(-2.1) {-3.5} {-2.7}
Wald Tests Mean Equation
0 +0, 0.9498 0.8079 0.9663 0.8243]
o +06,=0 [0.0000] [0.0000] [0.0000] [0.0000]
o0 +6, =1 [0.6147] [0.0043] [0.6333] [0.0003]
VARIANCE EQUATION
ARCH_ 0.1643 0.1427
{2.2} {2.3}
GARCH 0.8182 0.8378
{11.9} {13.9}
Constant 0.0000 0.0000
{1.0} {1.2}
Wald Tests Variance Equation
Z“i +, 0.9825 0.9805
z o+ =1 [0.6461] [0.5849]
R2 0.77 0.76 0.76 0.76
Serial Correlation Tests
LM(1) [0.1156] [0.0171]
LM(1 to 4) [0.0387] [0.0460]
DW 2.11 1.93 2.10 1.95
Heteroscedasticity Tests
ARCH [0.0010] [0.0166] [0.4732] [0.5452]
White [0.0002] [0.0000] [0.5872] [0.6693]
B-P-G [0.0003] [0.0002] [0.4529] [0.7682]
Information Criteria
Akaike -8.7751 -8.7630 -8.9588 -8.9345
Schwarz -8.6924 -8.6640 -8.8264 -8.7696
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Table 2: United States Phillips Curves
Assuming Breaks in Mean Inflation

Two Stage Least Squares GARCH
Hybrid Friedman- Hybrid Friedman-
Phelps Phelps
1 2 3 4
MEAN EQUATION
nf 0.1144 0.2366
t+1 (0.7) {1.0}
Tq 0.2196 0.2268 0.2311 0.2431
(2.3) (2.4) {3.6} {3.7}
llf -0.0871 -0.0960 -0.0292 -0.0473
t (- 2.6) (-3.5) {-1.2} {-2.3}
D;..Dyq, See Table 2b
Wald Tests Mean Equation
¢ +0, 0.3339 0.2268 0.4677 0.2431
o;+6,=0 [0.0821] [0.0182] [0.0575] [0.0002]
oy +0,=1 [0.0006] [0.0000] [0.0309] [0.0000]
Q1..010=0 [0.1218] [0.0000] [0.5276] [0.0000]
VARIANCE EQUATION
ARCH_ 0.1519 0.1468
{2.5} {2.4}
GARCH_; 0.8177 0.8236
{10.1} {10.4}
Constant 0.0000 0.0000
{1.2} {1.2}
Wald Tests Variance Equation
Zai + 0.9696 0.9704
zai +4,=1 [0.5276] [0.5377]
R? 0.80 0.80 0.80 0.80
Serial Correlation Tests
LM(1) [0.1455] [0.1459]
LM(1 to 4) [0.0371] [0.0800]
DW 2.08 2.08 2.09 2.10
Heteroscedasticity Tests
ARCH [0.0000] [0.0000] [0.0366] [0.0468]
White [0.0137] [0.0016] [0.3653] [0.2304]
B-P-G [0.0000] [0.0000] [0.2890] [0.2588]
Information Criteria
Akaike -8.9090 -8.9169 -9.0517 -9.0527
Schwarz -8.6931 -8.7176 -8.7860 -8.8036




Table 2b: United States Phillips Curves — Assuming Breaks in Mean Inflation
Estimated Dummy Variables in the Mean Equation

Two Stage Least Squares GARCH
Hybrid Friedman-Phelps Hybrid Friedman-Phelps
1 2 3 4
D, 0.0454 0.0502 0.0166 0.0263
(2.6) (3.7 {1.3} {2.6}
D, 0.0479 0.0530 0.0183 0.0288
2.7) (4.0) {1.4} {2.8}
D 0.0469 0.0522 0.0192 0.0300
(2.8) 4.3 {1.5} {3.2}
D, 0.0517 0.0577 0.0230 0.0354
(2.9) (4.6) {1.6} {3.6}
Ds 0.0547 0.0611 0.0254 0.0385
(3.0) 4.9 {1.7} {3.9}
Dg 0.0483 0.0536 0.0194 0.0303
(2.8) (4.2) {1.4} {3.0}
D, 0.0474 0.0526 0.0185 0.0290
(2.7) (4.0) {1.4} {2.9}
Dg 0.0458 0.0507 0.0169 0.0269
(2.7 (3.8) {1.3} {2.6}
Dy 0.0493 0.0546 0.0190 0.0298
(2.7) (4.0) {1.4} {2.8}
D, 0.0476 0.0526 0.0171 0.0272
(2.7) (3.7) {1.3} {2.6}

Notes to Tables 1, 2 and 2b

The models are estimated using quarterly data for the period March 1960 to December 2010 using 199 and 200
observations for the hybrid and F-P models respectively. Reported as (), { } and [ ] are t-statistics, z-statistics
and probability values respectively. See Appendices 1 and 2 for details concerning the data and the estimation
of the inflation regimes. Two-stage-least-squares estimates are estimated with ordinary least squares with the
lead in inflation and the markup replaced by their static ‘forecast’ values (see Section 4.2). Three seasonal
dummies were included and eliminated on a ‘5 per cent t-statistic criterion’. 2SLS models estimated with HAC
standard errors. ‘Seasonal June’ is a seasonal dummy for the June quarter. GARCH models estimated with
maximum likelihood estimator (Marquardt optimising algorithm).

Wald tests report the probability values of the associated F-statistic of the restriction. LM(1) and LM(1 to 4)
report the probability values of the Breusch-Godfrey LM test of serially correlated residuals for one lag and one
to four lags respectively. ARCH test is the Engle (1982) Lagrange multiplier test for autoregressive conditional
heteroskedasticity (ARCH) in the residuals. White tests the null hypothesis of no heteroskedasticity against
heteroskedasticity of unknown general form in the residuals (White, 1980). B-P-G is the Breusch-Pagan-
Godfrey test which is a Lagrange multiplier test of the null hypothesis of no heteroskedasticity against
heteroskedasticity of the form o = o2 h(z, a), where z, is a vector of the independent variables from the

mean equation (see Breusch and Pagan, 1979, and Godfrey, 1978). The null hypothesis of the heteroskedasticity
tests is no heteroskedasticity. Models estimated with Stata/SE 8.2, Eviews 7.1 and RATS 8.01.
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Table 3: Estimates of the Long-run Phillips Curve

Linear: 7" =01105-0.20890" o, .o
(9.4) (-9.0)

The estimated coefficient on T is zero is rejected, y’ =81.6327, prob-value = 0.0000.
Standard error of the regression: 0.0041.

Ln(z")=6.1276 — 22.6676 0"

70) (135) R O

Non-linear Exponential Model

The estimated coefficient on T is zero is rejected, 7 =184.3145, prob-value = 0.0000.
Standard error of the regression: 0.4124.

Notes: Numbers in () are t statistics . The models are estimated using ordinary least squares in Eviews 7.1 with
Newey-West HAC standard errors. The data are the 10 combinations of the long-run rate of inflation and long-
run markup.
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Graph 1: United States Annualised Quarterly Inflation, Seasonally Adjusted, March 1960 — December 2010
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Notes: Horizontal dashed lines indicate the ten inflation regimes identified by the Bai-Perron technique (see Appendix 2 for details). Annualised quarterly
inflation is measured as the change in the natural logarithm of the price index multiplied by 400.
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Graph 2: United States Inflation-Markup Phillips Curves
Quarterly March 1960 to December 2010
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