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SUMMARY
Phenotypic screening identified a benzothiophene compound with activity against Leishmania donovani, the
causative agent of visceral leishmaniasis. Using multiple orthogonal approaches, oxidosqualene cyclase
(OSC), a key enzyme of sterol biosynthesis, was identified as the target of this racemic compound and its en-
antiomers. Whole genome sequencing and screening of a genome-wide overexpression library confirmed
that OSC gene amplification is associated with resistance to compound 1. Introduction of an ectopic copy
of the OSC gene into wild-type cells reduced susceptibility to these compounds confirming the role of this
enzyme in resistance. Biochemical analyses demonstrated the accumulation of the substrate of OSC and
depletion of its product in compound (S)-1-treated-promastigotes and cell-free membrane preparations,
respectively. Thermal proteome profiling confirmed that compound (S)-1 binds directly to OSC. Finally,
modeling and docking studies identified key interactions between compound (S)-1 and the LdOSC active
site. Strategies to improve the potency for this promising anti-leishmanial are proposed.
INTRODUCTION

The protozoan parasites Trypanosoma cruzi, Trypanosoma
brucei, and Leishmania spp. are the causative agents of the
vector-borne diseases African sleeping sickness, Chagas dis-
ease, and the leishmaniases. Collectively, these diseases are
responsible for more than 50,000 fatalities annually and the
loss of more than 4,600,000 disease-adjusted life years
(www.who.int/leishmaniasis/burden). Trypanosomatid dis-
eases are principally diseases of poverty and inflict an enor-
mous economic burden on some of the poorest countries on
earth. Over the past 5 years, treatment options for African
sleeping sickness have improved immeasurably with the intro-
duction of nifurtimox-eflornithine combination therapy (NECT)
to replace the more toxic organo-arsenical, melarsoprol
(Priotto et al., 2009) and the licensing of the oral drug fexinida-
zole as an alternative to more complex parenteral regimens
such as NECT (Pelfrene et al., 2019). Improved therapeutics,
alongside robust surveillance screening programs and vector
control measures, has significantly reduced cases of African
sleeping sickness, raising hopes that this disease may be elim-
inated as a public health problem in the near future (Barrett,
Cell Chemical Biology 28, 711–721, M
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2018). Unfortunately, new drugs for Chagas disease and leish-
maniasis have been more difficult to develop. Current drugs
suffer from a range of serious problems, including severe
toxicity (Aldasoro et al., 2018; Soto and Soto, 2006), emerging
drug resistance (Croft et al., 2006; Mueller et al., 2007), and
poor efficacy (Jackson et al., 2010; Yun et al., 2009). New
drugs that are safer, efficacious, and suitable for use in
resource-poor settings are urgently required for the treatment
of these neglected tropical diseases.

The principal goals of anti-trypanosomal drug discovery
programs are to develop novel therapeutics that demonstrate
improved efficacy with minimal host toxicity, are suitable for
single-dose oral administration, and have the potential for
use in a future combination therapy. However, progress has
been hindered by the lack of robustly validated drug targets
in T. cruzi and Leishmania donovani or Leishmania infantum,
causative agents for Chagas disease and visceral leishmani-
asis, respectively. As a consequence, almost all compounds
currently in drug development pipelines for both diseases
evolved from primary hits identified through whole-cell
(phenotypic) screening of compounds (www.dndi.org) (Don
and Ioset, 2014). Phenotypic approaches, although effective,
ay 20, 2021 “ 2021 The Author(s). Published by Elsevier Ltd. 711
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Chemical structures
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do not provide information regarding the mechanism(s) of ac-
tion (MoA) or specific molecular target(s) of active compounds.
This information can be invaluable in the development of these
compounds into selective and potent anti-parasitic agents, by
addressing issues such as poor pharmacokinetic properties
and host toxicity. MoA studies can also play a pivotal role in
the management of drug discovery portfolios. For instance,
compounds that act via mechanisms previously confirmed
as unsuitable for drug development can be efficiently de-prior-
itized (Riley et al., 2015; Wall et al., 2018). Compound series
found to inhibit the same molecular target(s) can be prioritized
and rationalized, thus mitigating against the overpopulation of
pipelines with compounds acting via the same mechanism
(Wall et al., 2020). Furthermore, knowledge of the target
pathway can be of potential value in optimizing drug combina-
tion therapy.

Here, we use orthogonal genetic, molecular, and biochem-
ical approaches to determine the MoA of a benzothiophene
compound demonstrating promising anti-leishmanial activity.
Our comprehensive studies reveal that this compound specif-
ically targets oxidosqualene cyclase (OSC), a key enzyme in
the sterol biosynthetic pathway of these parasites. The
712 Cell Chemical Biology 28, 711–721, May 20, 2021
implications of developing compounds
with this MoA as anti-leishmanials of
the future is discussed.

RESULTS

Compound selection
GSK’s Kinetoboxes are three open-ac-
cess compound collections assembled
following high-throughput phenotypic
screening of 1.8M compounds against
T. brucei, L. donovani and T. cruzi
(Peña et al., 2015). TCMDC-143498
(compound 1, Figure 1), also known as
GSK2920487A, is included in the
T. cruzi box, having demonstrated
promising activity against the intracel-
lular stage of the parasite (half maximal
effective concentration [EC50] value of
0.8 mM). Interestingly, this compound
was also moderately active against
L. donovani axenic amastigotes and
promastigotes (EC50 values of 20 mM
and 0.5 mM, respectively) while demon-
strating limited activity against mamma-
lian cell lines (HepG2) (Table 1). The
principal aim of our current study was
to gain an understanding of the mecha-
nism of action and/or molecular target(s)
of compound 1 to facilitate the develop-
ment of more potent and selective ver-
sions of this compound. Our studies
focused on using multiple unbiased
approaches to determine the MoA of this compound in
L. donovani.

Resistance generation followed by whole genome
sequencing
As a first step toward identifying the molecular target(s) of com-
pound 1, L. donovani promastigote cell lines resistant to this
benzothiophene were selected. Starting at 0.5 mM (13 EC50),
five independent clonal lines of compound-susceptible para-
sites were exposed to stepwise increasing levels of compound
1 for a total of 120 days, until they were routinely growing at
concentrations equivalent to >203 the established EC50 value
(12 mM) (Figure 2A). The five independently generated resistant
cell lines were cloned by limiting dilution and clones were as-
sessed for susceptibility to compound 1. The resulting clones
were between 18- and 51-fold less sensitive to compound 1
than the wild-type (WT) parental clone (Figure 2B and Table
S3). In each case, the resistance demonstrated by each clone
was stable over at least 10 passages in culture in the absence
of compound.

Genomic DNA recovered from the five resistant clones was
analyzed by whole genome sequencing (WGS). Notably, copy



Table 1. Collated EC50 values for compound 1 and related analogues

Compound

EC50 values, mM

Promastigotes Axenic amastigotes Intramacrophage HepG2

Compound 1 0.5 ± 0.02 20 ± 4 39 ± 8 >50

(R)-1 2.6 ± 0.1 >50 >50 >50

(S)-1 0.4 ± 0.01 17 ± 3 31 ± 7 >50

BIBX-79 0.5 ± 0.01 >50 ND 5 ± 0.4

EC50 values represent the weighted mean ± standard deviation of at least two biological replicates (n R 2) with each biological replicate comprised of
three technical replicates. The exception is intramacrophage amastigotes EC50 values, where data represent the mean ± standard deviation of two
technical replicates and representative of two biological replicates. ND, not determined.
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number variant analysis revealed that all five resistant clones
maintained amplified fragments of, or indeed entire copies
of, chromosome 6. Resistant lines RES I, RES III, and RES
IV had two additional copies of chromosome 6 compared
with WT, while RES V maintained three additional copies (Fig-
ure 2C). RES I also maintained an additional 13 copies of a
30.9 kb region of chromosome 6. Furthermore, RES II resis-
tant parasites had amplified a 44.3-kb fragment of chromo-
some 6, maintaining more than 34 extra copies of this chro-
mosomal fragment compared with WT, drug-sensitive cells.
Rationalizing the regions of chromosome 6 amplified in resis-
tant clones indicates that a fragment encoding two complete
gene-coding sequences is common to all. This coincident
chromosomal fragment encodes oxidosqualene cyclase
(OSC, LdBPK.06.2.000670) and a hypothetical protein (HP,
LdBPK.06.2.000680).

A total of six single nucleotide polymorphisms (SNPs) encod-
ing amino acid changes, relative to our parental clone, were iden-
tified in the genomes of compound 1-resistant parasites (Table
S4); however, no SNP was common to all cell lines. Notably, in
RES V, a single heterozygous SNP was identified in the gene
encoding OSC. This SNP encodes a Cys to Phe mutation at po-
sition 778 in this enzyme, a key component of the sterol biosyn-
thetic pathway of L. donovani.

Screening of compound 1 against an L. donovani
genome-wide overexpression library
As a parallel unbiased approach to investigate MoA, compound
1 was also screened against our genome-wide cosmid-based
overexpression library (Corpas-Lopez et al., 2019). The principle
behind this gain-of-function approach is that overexpression of a
drug target can result in resistance to the corresponding drug by
increasing the pool of functional protein or by reducing free drug
through binding. L. donovani promastigotes were transfected
with a pooled population of cosmids containing genomic DNA
fragments of between 35 and 45 kb. The final transfected library
provides a >15-fold genome coverage with 99% of genes repre-
sented. The library was selected with 1 mM (23 EC50) compound
1 for 5 days and for a further 4 days at 2 mM. Following compound
selection, cosmids maintained by the ‘‘resistant’’ parasite popu-
lation were harvested and analyzed by next-generation
sequencing. Mapping of overexpressed inserts to an assembled
L. donovani genome revealed that 87% of all mapped reads
aligned to a 54.5-kb region on chromosome 6 (Figures 2D and
2E). This region is composed of 10 genes (Table S5); however,
only two genes were flanked by all the opposing barcodes:
LdBPK.06.2.000670 encoding OSC and LdBPK.06.2.000680
encoding HP. Collectively, these data support our WGS analysis
and the hypothesis that one of these proteins may be the molec-
ular target of compound 1 or a key resistance determinant.

Target validation
To interrogate the potential role(s) of each protein in the MoA of
compound 1, cell lines overexpressing both putative targets
were generated. Elevated levels of HP and OSC in these trans-
genic promastigotes, compared with WT, were confirmed by
label-free MS quantification (Figure S1). While overexpression
of HP had little or no effect on the potency of compound 1 (Fig-
ure 3A), cells overexpressing OSC were ~10-fold less sensitive
to compound 1 in comparison to WT. These data identify OSC
overexpression as the driver of compound 1-resistance and
identify this enzyme as the likely target of this benzothiophene.
Next, we investigated the role of the OSC (Cys778Phe) muta-
tion identified in RES V in resistance (Figure 3B). Promastigotes
overexpressing the mutated version of this cyclase demon-
strated the same level of susceptibility to compound 1 as
WT. The fact that cells bearing elevated levels of this mutated
enzyme remain susceptible to compound 1 not only rules out
this mutation as playing any role in resistance, but also sug-
gests that the mutated version of this enzyme may be
nonfunctional.

OSC, also known as lanosterol synthase or ERG7, is a key
enzyme in sterol biosynthesis, catalyzing the cyclization of 2,3-
oxidosqualene to lanosterol (Figure 4A). A number of specific in-
hibitors of OSC have been described in the literature (Mark et al.,
1996; Morand et al., 1997; Phillips et al., 2019) with a variety of
different applications such as anti-fungal (Rose et al., 1996),
anti-microbial (Hinshaw et al., 2003), and anti-cancer agents
(Liang et al., 2014, 2016; Maione et al., 2015). Most notably,
Buckner and colleagues (2001) have demonstrated that inhibi-
tors of OSC can be potent inhibitors of T. cruzi growth in vitro.
Consequently, we assessed the potency of an established
OSC inhibitor, BIBX-79 (Mark et al., 1996), to evaluate potential
cross-resistance against our transgenic and resistant cell lines.
Indeed, OSC-overexpressing promastigotes were 10-fold less
susceptible to BIBX-79 than WT (Figure 3C), demonstrating an
equivalent level of resistance to that seen with compound 1.
Similarly, all compound 1-resistant clones (RES I-V) were
cross-resistant to BIBX-79 (Table S3). The cross-resistance pro-
files shared by compound 1 and BIBX-79 are entirely consistent
with a shared mechanism of action and support OSC as the mo-
lecular target of both compounds in L. donovani.
Cell Chemical Biology 28, 711–721, May 20, 2021 713



Figure 2. Target deconvolution studies with compound 1
(A) Schematic representation of the generation of compound 1-resistant cell lines in L. donovani. Each passage of cells in culture (circles, lines 1-V) is indicated
with cell lines I-V indicated in black, green, gray, blue, and red, respectively.
(B) EC50 values for compound 1 were determined for WT (white circles) and cloned resistant cell lines I–V (black, gray, blue, red, and green circles, respectively).
These curves are the nonlinear fits of data using a two-parameter EC50 equation provided by GraFit. An EC50 value of 0.7 ± 0.01 mM was determined for
compound 1 against WT promastigotes. EC50 values for resistant clones I–V were 23 ± 4, 16 ± 0.3, 13 ± 1, 11 ± 1, and 14 ± 6 mM, respectively. These EC50 curves
and values are from one biological replicate, composed of two technical replicates. Collated datasets reporting the weighted mean ± SD of multiple biological
replicates are summarized in Table S3.
(C) Copy number variations in resistant clones relative to WT. Amplification of chromosome 6 (or fragments) are evident in all resistant clones. Resistant clones are
indicated as follows: RES I (blue), RES II (black), RES III (green), RES IV (pink), and RES V (cyan); WT clone is shown in red. OSC (LdBPK.06.2.000670) and HP
(LdBPK._006.2.000680) green bars; other genes, yellow bars.
(D) Genome-wide map indicating cosmid library hits from screening of compound 1. A single primary hit was identified, indicated in blue.
(E) Focus on primary ‘‘hit’’ on chromosome 6. OSC and HP genes shown as green bars; other genes, as yellow bars. The blue/pink and black/green peaks indicate
independent cosmid inserts in different orientations.
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Stereochemistry of compound 1
Compound 1 has a chiral center at the 3-position of the piperidine
ring, thus previously reported screening data associated with this
benzothiozine has been obtained with a racemate (1:1 mixture of
R and S enantiomers) (Peña et al., 2015). In order to profile the
biological activity of the individual enantiomers, semi-preparative
chiral chromatography was used to separate both enantiomers of
compound 1. The absolute stereochemistry of the enantiomer
eluted first following chromatographic separation (retention
time 11.9 min) was established by X-ray crystallography to be R
(Figure S2 and Table S1). Therefore, the enantiomer eluted in
peak 2 (retention time 15.5 min) is compound (S)-1. The enantio-
meric excess values of the separated samples of (R) and (S) were
measured by chiral HPLC and found to be >99.7% and 98.6%,
respectively, indicating that both samples were of excellent opti-
cal purity. The potency of each enantiomer was then determined
against the various developmental stages of L. donovani and also
against the transgenic cell lines developed in the course of our
studies (Tables 1 and S3). While both enantiomers appear to spe-
cifically target OSC, as evidenced by reduced sensitivity in cell
lines overexpressing this enzyme, in all assays, the S enantiomer
714 Cell Chemical Biology 28, 711–721, May 20, 2021
was found to be at least 10-fold more potent than (R)-1. Of partic-
ular note, (S)-1 demonstrated activity against intramacrophage
amastigotes (31 ± 7 mM, Table 1), while (R)-1 was inactive at all
concentrations tested.

Evidence of target engagement
Our cumulative data provide compelling circumstantial evidence
that OSC is the molecular target of compound 1 in L. donovani.
Here, we sought to provide biochemical evidence of the inhibi-
tion of this enzyme by compound 1 and to investigate the
broader effects on sterol biosynthesis. Thin-layer chromatog-
raphy (TLC) was used to separate and then identify specific ste-
rols in compound-treated and untreated promastigotes. Cells
were treated with compound 1 (racemate), compound (S)-1,
BIBX-79, or posaconazole for 96 h. Posaconazole targets sterol
14a-demethylase (CYP51), the enzyme immediately down-
stream of OSC that uses lanosterol as a substrate to produce
4,4-dimethylcholesta-8,14,24-trien-3b-ol. Neutral lipids were
then extracted and separated by TLC alongside 2,3-oxidosqua-
lene, lanosterol, and ergosterol standards (Figures 4B and S3). In
keeping with our assertion that compound 1 and its enantiomers



Figure 3. Validation of OSC as the molecular target of compound 1
(A) Dose–response curves for WT (white), OSC-overexpressing (black), and HP-overexpressing (gray) clones treated with compound 1. EC50 values of 0.6 ± 0.01,
5 ± 0.1, and 0.6 ± 0.03 mM were determined for WT, OSC-overexpressing, and HP-overexpressing promastigotes, respectively.
(B) EC50 values for WT (white), OSC-overexpressing (black), and OSCC778F-overexpressing (gray) promastigotes treated with compound 1 were 0.5 ± 0.01, 6 ±
0.3, and 0.4 ± 0.02 mM, respectively.
(C) EC50 values for WT (white) and OSC-overexpressing cells (black) treated with BIBX-79 were 0.6 ± 0.01 and 6 ± 0.2, respectively. All EC50 curves and values are
from one biological replicate, composed of two technical replicates. Collated datasets reporting the weighted mean ± SD of multiple biological replicates are
summarized in Table S3.
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inhibit OSC, promastigotes treated with (S)-1 were found to
accumulate significant amounts of the substrate of this enzyme,
2,3-oxidosqualene, in comparison with untreated cells. Similarly,
promastigotes treated with BIBX-79 were also found to accumu-
late this substrate. Levels of lanosterol, the product of OSC,
would be reasonably expected to decrease in the presence of
an OSC-specific inhibitor; however, lanosterol was below the
limits of detection in the majority of our TLC studies, even in un-
treated parasites. This is likely due to the rapid turnover and
generally low basal levels of lanosterol, a substrate for the zy-
mosterol biosynthetic pathway (Figure 4A). Indeed, lanosterol
is only visible, at very modest levels, in parasites treated with
the CYP51-specific inhibitor posaconazole. In T. cruzi, CYP51
has been identified as a promiscuous drug target, with up to
80% of screening hits found to inhibit this enzyme (Riley et al.,
2015). Previous studies report that compound 1 does not inhibit
CYP51 in in vitro assays (Peña et al., 2015). The fact that the ste-
rol signature of our posaconazole-treated promastigotes is
distinct from that seen with compound 1-treated parasites sup-
ports this observation.

Crude, cell-free membrane preparations were obtained by
subjecting L. donovani promastigotes to nitrogen cavitation.
Our aim was to use this cell-free, membrane system to focus
solely on the reaction catalyzed by OSC, an established mem-
brane protein. 2,3-oxidosqualene (OSC substrate) was added
to these washed membranes prior to incubation at 37� C for 24
h. Sterols were then extracted, separated, and identified by
TLC (Figure 4C). The production of lanosterol (OSC product)
was clearly evident in assays supplemented with exogenous
2,3-oxidosqualene, confirming that OSC was active in these
L. donovani membrane preparations. Lanosterol was unde-
tectable in assays not supplemented with substrate. Most
importantly, the production of lanosterol by membrane prepa-
rations supplemented with 2,3-oxidosqualene was ablated by
the presence of the established OSC-inhibitor BIBX-79 and
compound (S)-1 at a range of concentrations. Collectively,
these data provide direct, biochemical evidence that com-
pound (S)-1 inhibits the ergosterol biosynthetic pathway
specifically at the 2,3-oxidosqualene to lanosterol step cata-
lyzed by OSC.

Finally, thermal proteome profiling (TPP) was used as an
approach to confirm the direct binding of compound (S)-1 to
OSC. TPP is based on the principle that binding of a drug to its
protein target can significantly alter the thermal stability of that
protein (Jafari et al., 2014). Briefly, L. donovani promastigotes
were treated with compound (S)-1 (103 established EC50 value)
or DMSO vehicle. Lysates of treated promastigotes were then
prepared and maintained in the continuous presence of com-
pound or vehicle. Aliquots of each lysate were then incubated
at designated temperatures (33–69� C), and for each tempera-
ture, insoluble (denatured) proteins were removed. The resulting
soluble protein samples were reduced, alkylated, and digested
with trypsin prior to derivatization with tandem mass tags.
Pooled peptides were fractionated by HPLC and analyzed by
LC/MS-MS prior to identification and quantitation. The melting
points of each identified protein were then established. Full
melt curves were established for 5,083 proteins, representing
68.3% coverage of the L. donovani proteome. The top 10 pro-
teins demonstrating thermal shift in the presence of compound
(S)-1 and confirmed as legitimate ‘‘hits’’ by nonparametric anal-
ysis of response curves (NPARC), are summarized in Table S6.
LdOSC ranks as the fifth strongest ‘‘hit’’ in this unbiased, prote-
ome-wide analysis, with individual melt curves revealing that the
thermal stability of this enzyme increased by an average of 3.4� C
in the presence of compound (S)-1 (Figure 4D). These data
confirm that compound (S)-1 interacts directly with OSC and,
in combination with our other studies, identifies LdOSC as the
molecular target of this benzothiophene compound.

Molecular modeling
With the aim of understanding the molecular basis for the supe-
rior potency of compound (S)-1 and identifying key interactions
within the active site of LdOSC, a homology model was gener-
ated using the structure of the human OSC orthologue com-
plexed with lanosterol as a template (Thoma et al., 2004). The
consensus Ld-human OSC sequence used to build the model
Cell Chemical Biology 28, 711–721, May 20, 2021 715



Figure 4. Effect of compound 1 on the sterol
biosynthesis in L. donovani
(A) Sterol biosynthetic pathway of L. donovani.
(B) Sterols extracted from WT promastigotes (lane
1); promastigotes treated with compound 1
(racemate) (lane 2), compound (S)-1 (lane 3), BIBX-
79 (lane 4), and posaconazole (lane 5) for 96 h and
analyzed by normal phase silica TLC. Ergosterol,
lanosterol, and 2,3-oxidosqualene standards
(1 mg$mL� 1) were run in parallel and the unsatu-
rated double bonds of separated lipids were
stained with iodine vapor. Bands representing 2,3-
oxidosqualene and lanosterol are indicated by blue
and red arrows, respectively.
(C) The activity of L. donovani OSC was monitored
in cell-free membrane preparations by TLC. Crude
membrane preparations were treated as follows:
2,3-oxidosqualene (OSC substrate) added and
sterols immediately extracted (lane 1); no additions
and sterols immediately extracted (lane 2); 2,3-
oxidosqualene added, incubated at 37� C for 24 h
and sterols extracted (lane 3); 2,3-oxidosqualene
and compound (S)-1 (equivalent to 13 EC50 value)
added, incubated at 37� C for 24 h and sterols ex-
tracted (lane 4); 2,3-oxidosqualene and compound
(S)-1 (equivalent to 33 EC50 value) added, incu-
bated at 37� C for 24 h and sterols extracted (lane
5); 2,3-oxidosqualene and compound (S)-1
(equivalent to 13 EC50 value) added, preparation
incubated at 37� C for 24 h and sterols extracted
(lane 6); 2,3-oxidosqualene and BIBX-79 (equiva-
lent to 33 EC50 value) added, incubated at 37� C for
24 h and sterols extracted (lane 7). Bands repre-
senting lanosterol (OSC product) are indicated by
red arrows.
(D) TPP melt curves for L. donovani OSC following
incubation with compound (S)-1 (red) or vehicle
(0.1% DMSO, black). Data from technical repli-
cates (circles and squares) are shown, and the
mean shift in melting temperature (DTm) for OSC
was 3.4� C.
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was derived from a multisequence alignment of several OSCs
and squalene cyclases (SC) from different organisms. The hu-
man and parasite enzymes share 40% sequence identity and
56% sequence similarity. This level of homology is well within
the range required to generate a model of sufficient quality to
support ligand binding studies. In general, the overall sequence
similarity of this class of enzymes is relatively low. However,
these enzymes are characterized by a number of functionally
relevant QX2-5GXW consensus sequence motifs that are present
in their C-termini (QW motifs) (Poralla et al., 1994). These motifs
were used to guide and verify the sequence alignments. The N-
terminus of L. donovani OSC (up to the QW7 motif) aligns poorly
with OSC and SC sequences from other organisms. Thus, our
modeling efforts focused on the C-terminus of the protein,
which, with the exception of a 50-amino acid insertion between
QW6 and QW7, aligns well with hOSC, and encompasses the
lanosterol binding site. Indeed, the lanosterol binding site is
particularly well conserved. Specifically, of the 31 amino acids
within 5 �A of lanosterol, 23 residues are identical (74%) and
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five of the remaining eight share similar properties (19%)
(Figure S4).

The generated homology model was refined, optimized (see
STAR methods), and used to investigate the binding modes of
compounds (S)-1 and (R)-1 by molecular docking. The
S enantiomer generated the best docking score:
� 14.4 kcal$mol� 1 compared with � 12.7 kcal$mol� 1 obtained
for (R)-1. The top scoring poses for both enantiomers were
used to evaluate changes in binding free energy (DGbind). In
keeping with our crystallographic and potency data, the S enan-
tiomer was confirmed as having a higher affinity for the active
site of OSC with a DGbind of � 80.7 kcal$mol� 1 compared with
a value of � 73.9 kcal$mol� 1 for (R)-1. The most favorable binding
pose for (S)-1 is characterized by formation of a salt bridge with
the carboxylate of the catalytic Asp723 through the positively
charged nitrogen atom of the methylimidazole moiety (Figure 5).
The imidazole moiety of compound 1 has a calculated pKa value
ranging between 7.8 and 8.6, suggesting that it is protonated at
physiological pH. The model indicates that this positive charge is



Figure 5. Docking of compound (S)-1 into a homology model of the L. donovani OSC active site
(A) Induced-fit docking pose of compound (S)-1. The ligand is represented as green sticks. The hydrogen bonds between the ligand and Asp723 and Tyr318 are
shown as a yellow dotted line.
(B) 2D ligand interaction diagram based on the best-scoring docking pose for compound (S)-1.
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further stabilized by p-cation interactions with the aromatic sys-
tems of Trp657 and Trp847. The carbonyl oxygen is hydrogen
bonded to the Tyr318 side chain hydroxyl group and the aro-
matic systems at the extremes of the molecule are involved in
two p-stacking interactions: the first between the methylimida-
zole ring and the indole ring of Trp657 and second between
the benzothiophene moiety and the aromatic ring in Phe973 (Fig-
ure 5). It should be noted that our model of OSC indicates that
residue Cys778, mutated to Phe in our resistant cell lines RES
V, is between 12 and 19 �A from the lanosterol binding site. The
remoteness of this mutation from the binding site is consistent
with it playing no direct role in resistance to compound 1.

Assessing the essentiality of OSC
Previous studies have provided conflicting evidence regarding
the essentiality of enzymes involved in sterol biosynthesis across
different Leishmania species. For instance, sterol 14a-demethy-
lase (CYP51) has been demonstrated as essential for survival in
L. donovani (McCall et al., 2015), but not in L. major (Xu et al.,
2014). Here, our aim was to assess the essentiality of OSC in
L. donovani promastigotes for the first time using a classical
gene replacement strategy (Figure 6A). In the first instance, a sin-
gle copy of OSC was successfully replaced in WT parasites with
either a puromycin (PAC, puromycin N-acetyltransferase) or hy-
gromycin (HYG, hygromycin phosphotransferase) drug resis-
tance gene via homologous recombination. Attempts were
made to directly replace the second allelic copy of OSC in these
single-knockout cells (SKO) with either HYG or PAC directly or in
cells constitutively expressing an ectopic copy of OSC. Despite
recovering more than 40 putative nulls, resistant to selection with
both hygromycin and puromycin, all of these clones retained a
genomic copy of OSC. Indeed, both allelic copies of OSC were
only successfully replaced in promastigotes bearing an ectopic
copy of the gene (Figures 6B and S5). Our failure to replace
both the endogenous copies of OSC, except in the presence
of an ectopic copy of the gene, strongly suggests that this
enzyme is essential for the promastigote stage of L. donovani.
The current absence of a robust and reliable inducible-expres-
sion system in Leishmania, compatible with use intramacro-
phage, precludes our investigation of OSC essentiality in the
more relevant amastigote stage of the parasite.

DISCUSSION

Our current study highlights the power of using orthogonal ap-
proaches to elucidate mechanisms of compound action. Several
lines of evidence presented here establish OSC, a key enzyme of
sterol biosynthesis, as the primary target of compound 1 and its
enantiomers. WGS and screening of our genome-wide overex-
pression library confirmed that elevated levels of OSC in Leish-
mania promastigotes are associated with resistance to
compound 1. The generation of OSC-overexpressing parasites,
through introduction of an ectopic copy of the gene into WT cells,
led to a precipitous drop in susceptibility to compound 1, thus
confirming the direct role of this enzyme in resistance. Cells
treated with these compounds accumulate significant amounts
of 2,3-oxidosqualene, the established substrate of OSC.
L. donovani membrane preparations supplemented with 2,3-ox-
idosqualene produced lanosterol, while this activity was ablated
by incubation with the established OSC-specific inhibitor BIBX-
79, as well as in the presence of compound (S)-1. Finally, TPP
was used as an unbiased approach to confirm that compound
(S)-1 directly and specifically interacts with this enzyme of sterol
biosynthesis.

Sterols perform a vital function in maintaining the structural
integrity of cellular membranes. OSC catalyzes the most com-
plex step in the production of mature sterols, the cyclization of
2,3-oxidosqualene to form lanosterol. In higher eukaryotes
(including humans), the predominant sterol is cholesterol; how-
ever, the membranes of kinetoplastid parasites, such as
Cell Chemical Biology 28, 711–721, May 20, 2021 717



Figure 6. Assessing the essentiality of OSC in L. donovani promastigotes
(A) Schematic representation of the OSC locus in OSC single-knockout (HYG) and (PAC) cells. Black bars represent the 50 UTR region upstream of the open
reading frame of OSC, which was used as a probe in Southern blot analysis. NsiI sites with expected fragment sizes are shown.
(B) Southern blot analysis of NsiI-digested genomic DNA (~5 mg) from WT L. donovani (LdBOB) cells, OSC single-knockout clones, attempted double knockout
and a ‘‘rescued’’ DKO clone (OSCOE-DKO) . The DIG-labeled 50 UTR of OSC was used as a probe. This Southern blot was stripped and re-probed using a DIG-
labeled fragment of OSC as a probe (see Figure S5).
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Leishmania, more closely resemble those of fungi in composi-
tion, with ergosterol and ergostane-based sterols most abun-
dant (Haughan et al., 1995). Indeed, kinetoplastids are unable
synthesize cholesterol de novo (Roberts et al., 2003) and the
different sterol composition of parasite membranes compared
with that of their mammalian hosts has long been considered
exploitable for drug discovery. Of particular note, posaconazole,
which targets CYP51, the enzyme immediately downstream of
OSC, was recently assessed in phase II clinical trials for Chagas
disease (Molina et al., 2014). Despite initially positive results,
92% of patients taking part in this trial relapsed in the subse-
quent 10 to 12 months. Buckner and colleagues (Buckner
et al., 2001; Hinshaw et al., 2003) have a long-standing interest
in developing OSC inhibitors as antimicrobials, particularly tar-
geting T. cruzi, with the most promising demonstrating low nM
activity against the mammalian (amastigote) stage of the para-
site. Several studies have demonstrated that Leishmania are
susceptible to antifungal inhibitors of sterol biosynthesis, such
as terbinafine (squalene epoxidase inhibitor) (Bahamdan et al.,
1997; Berman and Gallalee, 1987; Goad et al., 1985) and ketoco-
nazole (CYP51 inhibitor) (Berman, 1981; Berman et al., 1984).
Ketoconazole and fluconazole, another CYP51 inhibitor, have
shown promise for the treatment of cutaneous leishmaniasis in
clinical trials (Alrajhi et al., 2002; Saenz et al., 1990). Collectively,
these studies demonstrate the suitability of sterol biosynthesis
as a target for anti-leishmanial drug discovery.

Despite being unable to synthesize cholesterol, T. brucei,
Leishmania spp. and T. cruzi have demonstrated an ability to
scavenge this sterol from their hosts (Coppens et al., 1988; De
Cicco et al., 2012; Pereira et al., 2011). Indeed, uptake of exog-
enous cholesterol, via endocytosis of low-density lipoprotein
(LDL) particles, is essential for the survival of bloodstream-form
T. brucei (Coppens et al., 1995). The fact that kinetoplastids
can use host-derived cholesterol raises the possibility that this
may provide a route for parasites to circumvent the effects of
sterol biosynthesis inhibition and reduce the efficacy of drugs
targeting this metabolic pathway. In support of this hypothesis,
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studies with L. amazonensis showed that promastigotes treated
with a variety of sterol biosynthesis inhibitors responded by
increasing endocytosis of LDL (Andrade-Neto et al., 2011).
Furthermore, the potency of these inhibitors could be somewhat
modulated by varying access to exogenous cholesterol. In our
current study, we did not observe this phenomenon, finding
instead that varying levels of fetal calf serum in culture medium
(5%–20%), an exogenous source of cholesterol, had little or no
effect on the potency of compound 1 against promastigotes (Fig-
ure S6). It should also be noted that scavenged cholesterol alone
cannot satisfy promastigote and amastigote sterol requirements
(Roberts et al., 2003), thus de novo synthesis of ergosterol-
based sterols is essential.

Compound 1 and its enantiomers demonstrate a notable
drop-off in potency against axenic and intramacrophage amas-
tigotes, compared with promastigotes. Initially, we hypothesized
that this reduced potency may be due to the sparing effect of
cholesterol scavenged from the macrophage, as discussed
above. However, this would not explain the drop in potency
seen with amastigotes cultured axenically in the absence of a
host cell. The imidazole moiety of compound 1 has a calculated
pKa value range of between 7.8 and 8.6, suggesting that a pro-
portion of this benzothiophene will be protonated at physiolog-
ical pH. Intramacrophage amastigotes reside within acidified
parasitophorous vacuoles at pH 5.5 and axenic amastigotes
are cultured in media that closely mimics this environment. At
pH 5.5, the levels of protonated compound 1 will be considerably
higher than those in promastigote cultures (pH 7.4). This posi-
tively charged moiety is likely to adversely affect compound 1
permeability and thus the increased levels of protonation in
amastigote cultures may be at least partially responsible for
the observed drop in potency. With this in mind, one strategy
to improve the potency of compound (S)-1 could be to replace
the methylimidazole with a bioisostere with a lower pKa. For
instance, the hOSC inhibitor BIBB515 has a dihydrooxazole moi-
ety in this position (Lenhart et al., 2003) and a calculated pKa

value in the range of 5.44 to 4.72. Another potential strategy to
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improve potency is to exploit a hydrophobic channel within the
active site of LdOSC. Interestingly, both the terminal aliphatic
chain of lanosterol and the p-bromo phenyl moiety of the
hOSC inhibitor Ro 48-8071 extend in a hydrophobic channel
that ultimately leads to the cell membrane (Thoma et al., 2004)
(Figure S7). Based on our docking studies, positions 6 and 7 of
the benzothiophene ring provide the right vector to exploit this
channel and this has the potential to increase the potency of
these inhibitors. Our intention is to investigate hydrophobic sub-
stituents to occupy this area.

In summary, these data confirm that compound 1 and its en-
antiomers specifically target OSC in L. donovani. We establish
OSC as genetically essential for the survival of these parasites.
Modeling and docking studies identify key interactions made
between compound (S)-1 and the OSC active site. In addition,
we outline potential strategies to improve potency. Future
studies should focus on evolving compounds within this series
to achieve sub-mM potency against the mammalian stages of
L. donovani prior to assessing the most promising compounds
in vivo. It should be noted that compound 1 also demonstrates
promising potency against intracellular T. cruzi (EC50 in the
range 0.6–1 mM [Peña et al., 2015]). The failure of clinical trials
with posaconazole for Chagas disease have left some in drug
discovery reticent to pursue inhibitors of sterol biosynthesis.
Nevertheless, future studies should also investigate the poten-
tial of these OSC-specific inhibitors for the treatment of Amer-
ican trypanosomiasis.

SIGNIFICANCE

Visceral leishmaniasis (kala-azar) is a serious vector-borne
disease afflicting people, particularly in parts of Asia, Africa,
and Latin America. There are approximately 300,000 new
cases and an estimated 20,000 deaths each year, making it
the world’s second biggest parasitic killer after malaria. In
95% of cases, death can be prevented by timely and appro-
priate drug therapy; however, current treatments are far
from ideal. Clinically used anti-leishmanials suffer from a
number of serious issues, including the need for hospitaliza-
tion, prolonged therapy, parenteral administration, high
cost, variable efficacy, severe toxic side effects, and resis-
tance. Thus, there is a pressing need for better, safer effica-
cious drugs that are fit-for-purpose in resource-poor
settings. Unfortunately, anti-leishmanial drug discovery
has been hindered by a lack of robustly validated drug tar-
gets in these parasites. This has limited target-focused
screening programs and has increased reliance on pheno-
typic screening of parasites to identify start points for drug
discovery. This approach has proved effective, however, a
lack of information regarding the mechanism(s) of action
or specific molecular target(s) of these active compounds
can prove a barrier to the optimization of these early lead
compounds. Here, we used multiple, unbiased approaches
to identify the molecular target of a promising phenotypic
hit as OSC, a key enzyme in sterol biosynthesis. Identifying
the target of this benzothiophene enabled structure-
focused strategies to improve potency to be proposed.
Furthermore, this knowledge can inform future drug combi-
nations and be exploited for de novo , target-based drug dis-
covery. This illustrates the great value of comprehensive
mechanism of action studies as an integrated part of a
drug discovery program.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Compound 1 GSK TCMDC-85 143498

Compound 1 Enamine Z1139335838

BIBX-79 Enamine Z1768160684

Posaconazole Sigma Aldrich Cat# SML2287

Resazurin Sigma Aldrich Cat# R7017

G418 disulfate salt Sigma Aldrich Cat# A1720

Puromycin N-acetyltransferase Invitrogen Cat# ant-pr-1

Hygromycin 180 phosphotransferase Invitrogen Cat# ant-hg-1

Nourseothricin antibiotic Jena Bioscience Cat# AB-101

BamHI-HF restriction enzyme New England Biolabs Cat# R3136

SwaI restriction enzyme New England Biolabs Cat# R0604

SmaI restriction enzyme New England Biolabs Cat# R0141

Octyl b-D-glucopyranoside Sigma Aldrich Cat# O8001

Na-Tosyl-L-lysine chloromethyl ketone
hydrochloride

Sigma Aldrich Cat# T7254

cOmplete�, Mini, EDTA-free Protease Inhibitor
Cocktail

Sigma Aldrich Cat# 11836170001

Bradford Reagent Supelco Cat# B6916

2,3-Oxidosqualene Sigma Aldrich Cat# 41043

Lanosterol Sigma Aldrich Cat# L5768

Ergosterol Sigma Aldrich Cat# PHR1512

Methanol Sigma Aldrich Cat# 34860

Chloroform VWR Chemicals Cat# 22711.260

Iodine Sigma Aldrich Cat# 207772

Heptane CHROMASOLV� Fischer Scientific Cat# 34873

Diethyl ether Fischer Scientific Cat# D/2400/21

Acetic acid (glacial) VWR Chemicals Cat# 20104.334P

Lysyl Endopeptidase�, Mass
Spectrometry Grade

Alpha Labs (Wako) Cat# 125-02543

Trichloroacetic acid solution 6.1 N Sigma-Aldrich Cat# T0699

HPTLC silica gel 60 Supelco Cat# 1055470001

Critical commercial assays

Human T Cell NucleofectorTM Kit Lonza Cat# VPA-1002
RNeasy Mini Kit Qiagen Cat# 74104
Luna� Universal One-Step RT-qPCR Kit New England Biolabs Cat# E3005
PCR DIG Probe Synthesis Kit Roche Cat# 11636090910
TMT10plex� Isobaric Mass Tagging Kit Thermo Cat# 90111

Deposited data

Sequencing of genome-wide cosmid library
screening

European Nucleotide Archive (ENA) PRJEB37256

Whole genome sequencing of resistant
cell lines

European Nucleotide Archive (ENA) PRJEB37435

Mass spectrometry data Proteomics Identification Database (PRIDE) PXD023780

X-ray structural data Cambridge Crystallographic Data
Centre (CCDC)

2027159

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: cell lines

LdBOB cosmid-based genome-wide
overexpression library

(Corpas-Lopez et al., 2019) N/A

LdBOB (MHOM/SD/62/1S-CL2D) RES I-V
clones

This paper N/A

OE-LdOSC-pIR1SAT This paper N/A

OE-LdHP-pIR1SAT This paper N/A

KO-LdOSC-PAC cassette This paper N/A

KO-LdOSC-HYG cassette This paper N/A

Experimental models: organisms/strains

Leishmania donovani LdBOB
(MHOM/SD/62/1S-CL2D)

(Goyard et al., 2003)

Oligonucleotides

Summarised in Tables S1 and S2 This paper University of Dundee oligonucleotide
synthesis service

Primer SDM-LdOSC-F 50-GACA
CGCGGCCCGGCGTACTTCGA
GCTGCTGGACTGTGCGG-30

In house University of Dundee oligonucleotide
synthesis service

Primer SDM-LdOSC-R 50- CCGCACAG
TCCAGCAGCTCGAAGTACG
CCGGGCCGCGTGTC-30

In house University of Dundee oligonucleotide
synthesis service

Oxidosqualene cyclase (LdOSC,
LdBPK.06.2.000670)

Commercial synthesis (GeneArt, Invitrogen) Custom synthesis

Hypothetical protein (LdHP,
LdBPK.06.2.000680)

Commercial synthesis (GeneArt, Invitrogen) Custom synthesis

Recombinant DNA

pIR1-SAT plasmid Kindly provided by Professor Stephen
Beverley Washington University

N/A

Software and algorithms

GRAFIT version 5.0.4 Erithacus Software http://www.erithacus.com/grafit/
Artemis genome browser Wellcome Sanger https://www.sanger.ac.uk/tool/artemis/
MaxQuant software Mav Plank Institute http://maxquant.org/
Schrödinger suite (2019-3 release) Schrödinger, LLC, New York, NY, 2020 https://www.schrodinger.com/
Moka - Molecular Discovery (Milletti et al., 2007) https://www.moldiscovery.com/

software/moka/
Bowtie2 (Langmead and Salzberg, 2012) http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml
Samtools v1.9 (Li et al., 2009) http://www.htslib.org/
BCFtools v1.9 (Li et al., 2009) https://samtools.github.io/bcftools/
Artemis v16.0.0 Wellcome Sanger https://www.sanger.ac.uk/tool/artemis/
RITseq.py - Python script for sequence
mapping

(Glover et al., 2015) Nature methods

Adobe Illustrator CS5.1 Adobe https://www.adobe.com/
Adobe Photoshop CS5.1 Adobe https://www.adobe.com/
Inkscape vector graphics Editor 0.48 Inkscape https://inkscape.org/
Excel 365 Microsoft https://www.office.com/

ll
OPEN ACCESSArticle
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the Lead Contact, Susan Wyllie (s.wyllie@dundee.ac.uk).
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Materials availability
Materials and reagents are available from the authors upon reasonable request.

Data and code availability
Genomic datasets generated during this study are available at European Nucleotide Archive [https://www.ebi.ac.uk/ena] deposited
under the accession numbers PRJEB37256 and PRJEB37435, respectively. Proteomics datasets generated during this study are
available at Proteomics Identification Database [https://www.ebi.ac.uk/pride/] deposited under the accession number
PXD023780. X-ray structural data generated during this study are available at the Cambridge Crystallographic Data Centre
[https://www.ccdc.cam.ac.uk/] deposited under the accession number 2027159.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture conditions
A clonal Leishmania donovani cell line LdBOB (derived from MHOM/SD/62/1S-CL2D) was grown as either promastigotes or axenic
amastigotes in media-specific for each developmental stage, as previously described (Goyard et al., 2003). Axenic amastigotes were
grown at 37� C in 5% CO2 and promastigotes were grown at 28� C.

METHOD DETAILS

Chemistry

The enantiomers of (R/S)-1 were separated by chiral preparative-HPLC (performed by NEOMED Institute, Montréal). Full experi-
mental details and analytical data for all compounds are shown below.

Absolute stereochemistry was determined by X-ray crystallography (Dr Alan Kennedy, University of Strathclyde, Glasgow). Briefly,
a sample of the enantiomer that eluted first during HPLC purification was recrystallised by slow evaporation from heptane/toluene,
and structural solution of the resultant crystals demonstrated that peak 1 was the R enantiomer. Crystallographic data were
measured using a Bruker D8 Venture instrument. The structure was refined to convergence against F2 using all unique reflections
and the program SHELXL-2014 as utilised within the WINGX GUI. All non-H atoms were refined anisotropically and H atoms were
refined in riding modes, with the exception of H atoms in water molecules. These were refined independently and isotropically.
Selected crystallographic data are presented in Table S1 and full structural details in cif format can be obtained from the Cambridge
Crystallographic Data Centre (CCDC) via https://www.ccdc.cam.ac.uk/structures/. The database reference number is CCDC
2027159.

Chemistry - compound purification
1H-NMR, 19F-NMR, and 2D-NMR spectra were recorded on a Bruker Avance DPX 500 spectrometer (1H at 500.1 MHz, 19F at 470.5
MHz). Chemical shifts (d) are expressed in ppm recorded using the residual solvent as the internal reference in all cases. Signal split-
ting patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br), or a combination thereof. LC-MS
analyses were performed using an Agilent Technologies 1200 series HPLC connected to an Agilent Technologies 6130 quadrupole
LC/MS connected to an Agilent diode array detector. High-resolution electrospray measurements were performed on a Bruker Dal-
tonics MicrOTOF mass spectrometer.
(R/S)-(4-fluorobenzo[b]thiophen-2-yl)(3-(5-methyl-1H-imidazol-1-yl)piperidin-1-yl)methanone ((R/S)-1)
Purchased from Enamine (Product ID Z1139335838), off-white solid. MS (ES+): m/z (%) 344 (100) [M+H]+, 687 (9) [2M+H]+. HRMS
(ES+): calcd. for C18H19F1N3O1S1 [M+H]+ 344.1227, found 344.1233 (1.5 ppm).
Chiral separation of (R/S)-(4-fluorobenzo[b]thiophen-2-yl)(3-(5-methyl-1H-imidazol-1-yl)piperidin-1-yl)methanone
((R/S)-1)
The individual enantiomers of (R/S)-1 (88 mg) were separated on a ChiralPak IA column (103250 mm, 5 mm) connected to a Minigram
semi-preparative SFC system (mobile phase 25:75 MeOH +10 mM ammonium formate: CO2, 10 mL/min). The same HPLC system
and conditions were used to determine the enantiomeric excess of each separated enantiomer.
e3 Cell Chemical Biology 28, 711–721.e1–e8, May 20, 2021

https://www.ebi.ac.uk/ena
https://www.ebi.ac.uk/pride/
https://www.ccdc.cam.ac.uk/
https://www.ccdc.cam.ac.uk/structures/


ll
OPEN ACCESSArticle
(R)-(4-fluorobenzo[b]thiophen-2-yl)(3-(5-methyl-1H-imidazol-1-yl)piperidin-1-yl)methanone ((R)-1) (peak 1, retention time
11.9 min, e.e. >99.7%): off-white solid (29 mg). Note, on standing the material would turn into a semi-solid, likely due to formation
of the hydrate. 1H-NMR (DMSO-d6): d 7.89 (d, 1H, J=8.5 Hz, ArH), 7.77 (d, 1H, J=0.5 Hz, ArH), 7.51-7.46 (m, 1H, ArH), 7.26 (dd,
1H, J=10.5, 8.5 Hz, ArH), 7.20 (br s, 1H, ArH), 6.76 (br s, 1H, ArH), 4.50-4.00 (m, 3H), 3.4-3.0 (m, 2H), 2.29 (s, 3H, CH3), 2.10-2.04
(m, 1H, CHH), 2.03-1.95 (m, 1H, CHH), 1.89-1.82 (m, 1H, CHH), 1.76-1.67 (m, 1H, CHH). Note, many of the aliphatic peaks are broad
probably due to restricted bond rotation. Note, residual formate from the HPLC purification was also observed. 19F{1H}-NMR (DMSO-
d6): d -117.4. MS (ES+): m/z (%) 179 (76) [M- 3-(5-methyl-1H-imidazol-1-yl)piperidine]+, 262 (39) [M- 5-methyl-1H-imidazole]+, 344
(100) [M+H]+.

(S)-(4-fluorobenzo[b]thiophen-2-yl)(3-(5-methyl-1H-imidazol-1-yl)piperidin-1-yl)methanone ((S)-1) (peak 2, retention time
15.5 min, enantiomeric excess. 98.6%): off-white solid (21 mg). Note, on standing the material would turn into a semi-solid, likely
due to formation of the hydrate. 1H-NMR (DMSO-d6): d 7.89 (d, 1H, J=8.5 Hz, ArH), 7.77 (d, 1H, J=0.5 Hz, ArH), 7.51-7.46 (m, 1H,
ArH), 7.26 (dd, 1H, J=10.5, 8.5 Hz, ArH), 7.20 (br s, 1H, ArH), 6.76 (br s, 1H, ArH), 4.50-4.00 (m, 3H), 3.4-3.0 (m, 2H), 2.29 (s, 3H,
CH3), 2.09-2.05 (m, 1H, CHH), 2.03-1.95 (m, 1H, CHH), 1.88-1.83 (m, 1H, CHH), 1.76-1.67 (m, 1H, CHH). Note, many of the aliphatic
peaks are broad most likely due to restricted bond rotation. Note, residual formate from the HPLC purification was also observed. 19F
{1H}-NMR (DMSO-d6): d -117.4. MS (ES+): m/z (%) 179 (100) [M- 3-(5-methyl-1H-imidazol-1-yl)piperidine]+, 262 (21) [M- 5-methyl-
1H-imidazole]+, 344 (15) [M+H]+. [a]20

D = +53.3 (c 1.00, CH2Cl2).
Chiral HPLC chromatograms and NMR spectra for (R/S)-1, (R)-1 and (S)-1 are available upon request.

Drug sensitivity assays
To examine the effects of compounds on parasite growth, promastigote and axenic amastigotes were seeded in 96-well plates at 5 3
104 and 2 3 105 parasites mL-1, respectively. Parasites were exposed to test compounds over a range of concentrations (two-fold
serial dilutions). Cells were incubated for 72 h, after which resazurin was added to each well to a final concentration of 50 mM before
measuring fluorescence (excitation of 528 nm and emission of 590 nm), after a further 2-3 h incubation. Data were processed using
GRAFIT (version 5.0.4, Erithacus Software) and fitted to a 2-parameter equation to determine the effective concentration inhibiting
growth by 50% (EC50):

y =
100

1 +
�

½I�
EC50

� m

In this equation, [I] represents the inhibitor concentration, and m is the slope factor. Experiments were performed at least in three
independent biological replicates for each parasite species with the data presented as the weighted mean ± standard deviation.
Intra-macrophage drug sensitivity assays were determined, as previously described (Wyllie et al., 2012).

Cosmid library screening
The construction of our cosmid-based genome-wide overexpression library in L. donovani has been described in detail previously
(Corpas-Lopez et al., 2019). Here, cosmid-containing L. donovani promastigotes were maintained at a minimum concentration of
3.33 x 105 cells mL-1 (1.5 x 107 cells in total) in the presence of 125 mg mL-1 G418. Compound 1 was added to the library at an initial
concentration equivalent to 2x the established EC50 value. Cell densities were monitored daily and the library was sub-cultured
before reaching 1 x 107 mL-1, with addition of fresh test compound. Resistant cells were harvested and cosmid DNA isolated as
described (Corpas-Lopez et al., 2019). After purification, cosmid DNA (30 mg in 100 mL Tris-buffer) was sequenced using an Illumina
HiSeq platform (Beijing Genomics Institute). Sequence reads were aligned to the L. donovani BPKLV9 genome sequence (v39.0, tri-
trypdb.org) and L. donovani BPK282A1 genome sequence (v39, tritrypdb.org) using Bowtie2 software (Langmead and Salzberg,
2012) with the following condition: very-sensitive-local. The aligned files were then manipulated using SAMtools (Li et al., 2009)
and a custom python script to identify reads with the following barcodes: 5’-GCGGCCGCTCTAGAACTAGT-3’ and 5’-
CTCTTAAAAGCATCATGTCT-3’ (for fragments in sense direction) or 5’-ACTAGTTCTAGAGCGGCCGC-3’ and 5’-AGACAT-
GATGCTTTTAAGAG-3’ (for fragments in anti-sense direction). Reads were then quantified using the Artemis genome browser
(Carver et al., 2012) and Excel then analysed as previously described (Corpas-Lopez et al., 2019). All associated datasets have
been deposited with the European Nucleotide Archive under the following accession number: PRJEB37256.

Resistance generation
Compound-resistant cell lines were generated by subculturing a clone of wild-type L. donovani in the continuous presence of test
compounds. Starting at sublethal concentrations, drug concentrations in 5 independent cultures were increased in a stepwise
manner. When parasites were able to survive and grow in concentrations of compound 1 equivalent to >20x the established EC50

value, the resulting cell lines were cloned by limiting dilution in the presence of compound. Five clones (RES I–V) were selected
for further biological study.
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Whole genome sequencing and analysis
Genomic DNA was isolated from WT and resistant clones using a standard alkaline lysis protocol. Whole genomic sequencing was
performed using a HiSeq4000 next-generation sequencing platform (Beijing Genomics Institute, Hong Kong) and the resulting data
was analysed as described previously (Wall et al., 2020), except the newly released LdBPKLV9 genome was also used as a reference.
All associated datasets have been deposited with the European Nucleotide Archive under the following accession number:
PRJEB37435.

Generation of overexpression and knockout constructs
Oxidosqualene cyclase (LdOSC, LdBPK.06.2.000670) and hypothetical protein (LdHP, LdBPK.06.2.000680) overexpression con-
structs were assembled by inserting synthetic versions of each gene (GeneArt, Invitrogen) into the pIR1SAT vector via a BamHI
site. The resulting overexpression constructs (OE-LdOSC or OE-LdHP-pIR1SAT, respectively) were sequenced in-house to confirm
their accuracy. Primers used in sequencing are summarised in Table S2.

LdOSC gene replacement cassettes were synthesised, comprising the selectable drug resistance genes puromycin N-acetyltrans-
ferase (PAC) or hygromycin phosphotransferase (HYG) flanked by the 470 bp immediately upstream and downstream of LdOSC
gene. The accuracy of the resulting cassettes (KO-LdOSC-PAC and KO-LdOSC-HYG) were again verified by sequencing. Primers
used in sequencing are summarised in Table S2.

Generation of LdBOB transgenic cell lines
Overexpression constructs were linearised with SwaI and knockout constructs were digested with SmaI prior to transfection. Mid-
log-promastigotes (2 x 107 cells in total) were transfected with 5 – 10 mg of overexpression or knockout constructs using the Human T-
Cell Nucleofector kit and Amaxa Nucleofector electroporator (program V-033). Following transfection, cells were allowed to recover
for 16-24 h, before the appropriated drug selection (nourseothricin 100 mg mL� 1, hygromycin 50 mg mL-1 and puromycin 20 mg mL-1).
Cloned cell lines were generated by limiting dilution, maintained in selective medium and removed from drug selection for one pas-
sage prior to experiments.

Southern blot analysis of transgenic cell lines
The ORF and 50 UTR of OSC were amplified by PCR (using the primers listed in Table S2) with the PCR DIG Probe Synthesis kit
(Roche). The resulting digoxigenin (DIG)-labelled products were used as probes and Southern-blot analysis was carried out as pre-
viously described (Wyllie et al., 2009).

Protein quantification
L. donovani promastigotes WT and transgenic cell lines confirmed as overexpressing OSC and HP were grown for 72 h in roller bot-
tles, starting at an initial concentration of 1 3 105 cells mL� 1 (1.5 3 107 cells in total). Mid-log phase promastigotes were washed with
ice-cold PBS and harvested by centrifugation (1912 g, 15 min, 4� C). The cell pellets were resuspended in 8 mL of ice-cold lysis buffer
(1 mM EDTA, 1 mM DTT, 100 mM TLCK, and 13 Roche EDTA-free cOmplete protease inhibitor cocktail in 50 mM potassium phos-
phate buffer, pH 7.4), submitted to 3 freeze� thaw cycles in a dry ice/ethanol bath to biologically inactivate the parasites and followed
by cell disruption (Constant Systems, UK) at 30 kpsi. The resulting lysates were centrifuged (100,000 g, 20 min, 4 � C), supernatants
were collected, and the protein concentrations were determined using the Bio-Rad Protein Assay.

LC-MS/MS analysis
Analysis of peptides was performed on a Q Exactive� plus, Mass Spectrometer (Thermo Scientific) coupled to a Dionex Ultimate
3000 RS (Thermo Scientific). The following buffers were used: Buffer A (0.1% formic acid in Milli-Q water (v/v)) and Buffer B (80%
acetonitrile and 0.1% formic acid in Milli-Q water (v/v)). Samples (15 mL) were loaded at 10 mL min-1 onto a trap column (100 mm
3 2 cm, PepMap nanoViper C18 column, 5 mm, 100 Å, Thermo Scientific) that had been pre-equilibrated with Buffer A (98%). The
trap column was then washed for 5 min and switched in-line with a resolving C18 column (75 mm 3 50 cm, PepMap RSLC C18 col-
umn, 2 mm, 100 Å; Thermo Scientific). Peptides were eluted from the column at a constant flow rate of 300 nL min-1 with a linear
gradient of 2-35% Buffer B over 125 min, followed by 98% Buffer B for 127 min. The column was then washed with 98% Buffer B
for 20 min prior to equilibration in 2% Buffer B for 17 min. The Q Exactive plus was used in data-dependent mode. The scan cycle
comprised MS1 scan (m/z range from 335-1600, with a maximum ion injection time of 20 ms, a resolution of 70 000 and automatic
gain control (AGC) value of 1 3 106) followed by 15 sequential dependent MS2 scans (with an isolation window set to 1.4 Da, reso-
lution at 17500, maximum ion injection time at 100 ms and AGC 2 3 105). Stepped collision energy was set to 27 and fixed first mass
to 100 m/z. The spectrum was acquired in centroid mode and unassigned charge states, charge states above 6, as well as singly
charged species, were rejected. To ensure mass accuracy, the Q Exactive plus was calibrated on the day of analysis. LC-MS analysis
was performed by the FingerPrints Proteomics Facility (University of Dundee).

Data analysis
MS data analysis was performed using MaxQuant software (http://maxquant.org/, version 1.6.2.6a). Carbamidomethyl (C), oxidation
(M), acetyl (Protein N-term), deamidation (NQ) and Gln-> pyro-Glu were set as a variable modification. Proteins were identified by
searching a protein sequence database containing L. donovani BPK282A1 annotated proteins (downloaded from TriTrypDB 46,
e5 Cell Chemical Biology 28, 711–721.e1–e8, May 20, 2021
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http://www.tritrypdb.org). Label-free quantitation (LFQ) and ‘‘match between runs’’ features were enabled. Trypsin/P and LysC/P
were selected as the digestive enzymes with two potential missed cleavages. The FDR threshold for peptides and proteins was
0.01. FTMS MS/MS mass tolerance was set to 10 ppm and ITMS MS/MS mass tolerance was 0.6 Da. Protein abundance was ob-
tained from LFQ intensity values. LFQ intensities were calculated using at least 2 unique peptides. Data was visualised using Perseus
1.6.2.1 (https://maxquant.org/perseus/).

Site-directed mutagenesis
The custom-synthesised plasmid pMS containing LdOSC gene was used as a template for site-directed mutagenesis using the Quik-
Change II Site-Directed Mutagenesis Kit (Agilent), as per manufacturer’s instructions. Complimentary primers were designed to
generate a single nucleotide polymorphism (G2333T): SDM-LdOSC-F 50-GACACGCGGCCCGGCGTACTTCGAGCTGCTG-
GACTGTGCGG-30 and SDM-LdOSC-R 50-CCGCACAGTCCAGCAGCTCGAAGTACGCCGGGCCGCGTGTC-30. PCR conditions
were as follows: 1 cycle of 30 s at 95� C; and 16 cycles of 30 s at 95� C, 1 min at 55� C and 5 min at 68� C. The accuracy of the muta-
genesis was confirmed by sequencing.

Analysis of neutral lipids by thin-layer chromatography (TLC)
Promastigotes were incubated with compound 1, compound (S)-1, BIBX-79 or posaconazole at concentrations equivalent to 3x their
respective EC50 values. Depending on the level of compound treatment, the starting cell density of cultures varied between 1 3 103

cells mL� 1 and 8 3 105 cells mL� 1. After 96 h, 50 mL of each culture (mid-log) were washed 23 with phosphate-buffered saline
(3000g, 5 min, RT). Resulting pellets were resuspended in 1:2:0.8 parts of chloroform:methanol:water (v/v/v), homogenised and
left at room temperature overnight for extraction. The supernatant enriched with lipids was harvested following centrifugation
(3000g, 20 min), transferred to a new tube and subjected to a second round of extraction. The lower phase containing the total
pool of lipids was collected and the extract volume corresponding to 1 3 108 cells was dried under nitrogen.

Extracted lipids were dissolved in 30 mL chloroform, spotted onto HPTLC silica gel 60 plates (Sigma) and allowed to migrate in
heptane: ethyl ether: acetic acid (85:15:1, v/v/v). Ergosterol, lanosterol and 2,3-oxidosqualene standards (1 mg mL-1) were run in par-
allel. Following separation, the unsaturated double bonds of lipids were stained with iodine vapour.

OSC cell-free assay
Mid-log promastigotes were harvested by centrifugation (3000g, 10 min, RT) and washed once with ice-cold phosphate-buffered
saline. Membrane-enriched lysates were prepared by nitrogen cavitation using a pre-chilled 45 mL Parr cell disruption vessel (406
PSI, 4� C), as described (Brown et al., 1996). Aliquots of membrane-enriched fractions (equivalent to 3 x108 cells) were suspended
in Buffer A (50 mM Hepes pH 7.4, 25 mM KCl, 5 mM MgCl2, 5 mM MnCl2, 0.1 mM TosLysCH2Cl, 1 mg/mL leupeptin) supplemented
with 20% glycerol, flash-frozen in liquid nitrogen and stored at � 80� C. Prior to assay, aliquots were defrosted on ice then diluted in
Buffer A supplemented with 0.8% of octyl b-D-glucopyranoside to the final volume of 600 mL. Substrate (2,3-oxidosqualene, 6 mg)
and/or test compounds (S)-1 and BIBX-79 were added at concentrations equivalent to 1, 3 or 103 their respective EC50 values.
Following incubation for 24h at 37 � C, lipids were extracted from each sample, spotted onto HPTLC silica gel and stained with iodine
vapour, as previously described.

Homology modelling
The full amino acid sequence of LdOSC (E9B8S7) was used to identify homologues through a BLAST homology search. The human
OSC (hOSC: P48449) demonstrated 40% sequence identity and 58% similarity to the parasite enzyme; and was chosen as a suitable
template for homology modelling. A 2.1Å crystal structure of hOSC complexed with lanosterol was used as the template structure
(PDB ID: 1W6K). In this structure, a lanosterol molecule is fully enclosed within the enzyme active site. To improve the modelling
of the enzyme binding site, lanosterol was also modelled into the active site of LdOSC. A multi-sequence alignment of 10 squalene
and oxidosqualene cyclases from different organisms was used to derive the Ld-human OSC sequence alignment used to build the
homology model. The alignment was further manually curated to move an insertion from an a-helix into a loop region. The LdOSC
model was generated and optimised using the protein prediction algorithm Prime and other tools available in the Schrödinger model-
ling platform (Schrödinger Release 2019-3: Schrödinger, LLC, New York, NY, 2020). After an initial restrained minimization using the
Protein Preparation Wizard tool, non-template loops were further minimised using the Refine Loops tool. The hydrogen bonding
network of the whole model was optimised reorienting the hydroxyl (Ser, Tyr), thiol (Cys) and the amide groups (Asn and Gln), as
well as the imidazole rings (His). In addition, the predicted protonation states of His, Asp and Glu, and tautomeric states of His
were also optimised. VSGB Solvation Model and the OPLS3e force field were used to minimise strain in the structure and to adjust
the placement of various groups.

Lysate production for thermal proteome profiling (TPP)
L. donovani promastigotes (5 3 107 parasites mL-1) were incubated in the presence of compound (S)-1 (equivalent to 103 the estab-
lished EC50 value) or vehicle (0.1% (v/v) DMSO) for 3h at 28� C. Parasites were then harvested (1912 g, 15 min, 4� C), washed once with
ice-cold phosphate-buffered saline and again harvested. The resulting cell pellets were resuspended in 8 mL of ice-cold lysis buffer
(1 mM EDTA, 1 mM DTT, 100 mM TLCK, 0.8% octyl b-D-glucopyranoside and 13 Roche EDTA-free cOmplete protease inhibitor
cocktail in 50 mM potassium phosphate buffer, pH 7.4) and then submitted to 3 freeze� thaw cycles in order to biologically inactivate
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the parasites. Cells were then lysed using the Constant Systems cell disruptor at 30 kpsi. The resulting lysates were centrifuged
(100,000 g, 20 min, 4 � C), supernatants collected, and protein concentrations determined, using the Bio-Rad Protein Assay. It should
be noted that each step of this process was carried out in the constant presence of compound (S)-1 (10 3 EC50) or DMSO, as
appropriate.

TPP assays
Lysates were adjusted to a final concentration of 1 mg/mL with Lysis Buffer. Aliquots (2 x 2 mL) were incubated at room temperature
for 30 min in the presence of compound 1 (S) (10x EC50 value) or vehicle (0.1% DMSO). Each 2 mL aliquot (drug and vehicle treated)
was further divided into 10 x 100 mL aliquots in 0.5 mL Protein LoBind tubes (Eppendorf) and incubated at the following temperatures
(33, 37, 41, 45, 49 , 53, 57, 61, 65 and 69� C) for 3 min, followed by incubation at RT for 3 min. Each sample was then placed on ice for
15 min, centrifuged (100,000 g, 20 min, 4� C), supernatants harvested, and protein concentrations determined.

TPP sample processing and analysis
All aspects of sample processing, fractionation by HPLC, LC-MS/MS, peptide and protein identification and quantitation were
described previously (Corpas-Lopez et al., 2019).

TPP data analysis
TPP experiments were analysed using the TPP Package available in Bioconductor, as previously described (Corpas-Lopez et al.,
2019; Franken et al., 2015). Briefly, raw protein abundance, calculated from normalized reporter ion intensities of all quantified pro-
teins, were log transformed and scaled between 0 and 1 by subtracting the global minimum and normalizing to the abundance at the
lowest temperature of each protein to yield fold changes. The melting curves were calculated using a sigmoidal fitting approach with
the TPP R package. This fitting was used to determine the melting point (Tm), defined as the temperature at which half of all proteins
were denatured. The melting point differences (DTm) were calculated by subtracting the Tm values of treated and untreated sample.
The sigmoidal melting curves were filtered according to the following criteria: melting curves must reach a relative abundance plateau
<0.3 and the coefficient of determination (R2) must be >0.8. In addition, non-parametric analysis of response curves (NPARC) was
performed (Childs et al., 2019). This procedure is based on non-parametric statistics, comparing two models (treated and control
curves) by their goodness of fit, allowing the detection of treatment-induced changes in the absence of the melting point, the central
parameter of the standard method. Proteins with a FDR-adjusted p-value <0.01 in one biological replicate are considered hits. The
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al.,
2019) partner repository with the dataset identifier PXD023780.

Induced-fit docking
Low energy conformers for both enantiomers of compound 1 were generated using LigPrep in the Schrödinger platform. The pro-
tonation state of each enantiomer at pH 7.4 was defined by MoKa from the Molecular Discovery suite (Milletti et al., 2007). The pre-
pared ligands were then docked into the binding pocket of the LdOSC model using the Schrödinger induced-fit docking protocol that
uses Glide, OPLS3e force field and Prime to minimize the poses in the binding site obtained for compound 1. A 20 Å cubic box cen-
tred on the centroid of the lanosterol ligand was used to generate the docking grid. No distance or hydrogen bond constraints were
applied. The default settings were modified to increase the conformational sampling of the aliphatic rings of each ligand by increasing
the energy window to 2.5 kcal mol� 1 and the non-planar conformation of the amide bonds were penalised. For the Prime Refinement
options the residues to be refined were at 6.0 Å from the ligand poses and no other residues were selected. For the redocking options
the Extra-Precision method was selected (XP).

Binding energies
The molecular mechanics energies, combined with the generalised Born and surface area continuum solvation (MM-GBSA), were
calculated using the following equation in Prime from Schrödinger with the VSGB Solvation model and OPLS3e force field:

DGbind = Ecomplex(minimised) - Eligand(minimised) - Ereceptor(minimised)

The Minimise Sampling method was also applied.

pKa calculations
A variety of different software packages including SciFinder (scifinder.cas.org), MoKa (https://www.moldiscovery.com/software/
moka/) and Epik (https://www.schrodinger.com/epik) were used to calculate pKa values for compounds within this study.

QUANTIFICATION AND STATISTICAL ANALYSIS

All potency data were analysed in GraFit using their 2- parameter fit. Details of replicates and data analysis for each experiment can
be found in the figure legends. Label-free quantitative proteomics experiments were analysed using MaxQuant software (http://
maxquant.org/, version 1.6.2.6a). The FDR threshold for peptides and proteins was 0.01. FTMS MS/MS mass tolerance was set
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to 10 ppm and ITMS MS/MS mass tolerance was 0.6 Da. Protein abundance was obtained from LFQ intensity values. LFQ intensities
were calculated using at least 2 unique peptides. Thermal proteome profiling experiments were analysed using the TPP Package
available in Bioconductor. Melt curves were calculated using a sigmoidal fitting approach with the TPP R package. Non-parametric
statistical analysis of response curves (NPARC) (Childs et al., 2019) involves the comparison two models (treated and control curves)
by their goodness of fit, allowing the detection of treatment-induced changes in the absence of the melting point, the central param-
eter of the standard method. Proteins with a FDR-adjusted p-value <0.01 in one biological replicate were considered hits.
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