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Abstract

This thesis presents the research of my PhD, which is the study of two-phase flows by

using the phase-field methods. The key point for this work is the thermodynamic con-

sistency. We begin by introducing an extension of the Model H to study the two-phase

flows with thermocapilliary effects, where we assume that the coefficient of the surface

tension is temperature dependent, and the classical energy equation is coupled with the

Model H. We then investigate numerically an established phase-field model (Quasi-

incompressible NSCH model) for the two-phase flows with varible density. We design

a numerical method where the energy law of the model is preserved at the discrete

level. Fianlly we develop a new model to study the two-phase flows with thermocapil-

liary effects where the model allows the two fluids to have different physical properties

meanwhile maintaining the thermodynamic consistency. The pillbox argument is em-

ployed to show that our model can reduce to the sharp-interface model where the jump

conditions can be recovered.

xiii



Chapter 1

Introduction

Multiphase flows play an increasingly important role in many current scientific and en-

gineering applications. In recent years, there have been both extensive theoretical and

experimental studies, yet the area remains an active interdisciplinary research field.

Improved numerical algorithms have resulted in direct numerical simulations of mul-

tiphase phenomena leading to improvement in predicting the behaviour of multiphase

flows. The available numerical methods for multiphase flows can roughly be divided

into two categories: interface tracking and interface capturing methods. In interface

tracking methods, the position of the interface is explicitly tracked, which requires

meshes that track the interfaces and are updated as the flow evolves. Boundary inte-

gral methods (see the review [64]), front-tracking methods (see the review [118, 67]),

and immersed boundary methods (see the review [91]) are examples of this type. In

the context of the multiphase flow with thermocapillary (Marangoni) effects, e.g., the

thermocapillary migration and thermocapillary instabilities, several works have been

performed by using interface tracking methods. Here we refer [136, 20, 102] as exam-

ples for boundary-integral methods, [115, 94, 93, 128] for front-tracking methods, and

[99, 23] for immersed-boundary methods. In interface capturing methods, on the other

1



hand, the interface is not tracked explicitly, but instead is implicitly defined through

an interface function (e.g. level-set, color or phase-field function). This means that

the computations are based on fixed spatial domains and thus eliminate the problem of

updating the meshes encountered in interface tracking methods. For example, volume-

of-fluid (VOF) methods (see [104] for the review, and see [44, 88] as examples for ther-

mocapillary effects), level-set methods (see [95, 108] for the review, and see [58, 62]

as examples for thermocapillary effects) are of this type.

Another interface capturing method is the phase-field method, or diffuse-interface

method (see the review [8, 40, 75]), which has now emerged as a powerful method to

simulate many types of multiphase flows, including drop coalescence, break-up, rising

and deformations in shear flows [68, 78, 79, 26, 85, 15, 130, 77, 131, 35, 109, 65, 54],

phase separation [15, 76, 74], contact line dynamics [69, 59, 45, 16, 71], and dy-

namics of interface with surfactants adsorption [120, 116] and thermocapillary effects

[70, 24, 25, 113, 55, 53]. Phase-field methods are based on models of fluid free en-

ergy which goes back to the work of van der Waals [121], Gibbs [46] and Cahn et:

al: [28, 27]. The basic idea for phase-field method is to treat the multiphase fluid as

one fluid with variable material properties. An order parameter is employed to char-

acterize the different phases, which varies continuously over thin interfacial layers

and is mostly uniform in the bulk phases. Sharp interfaces are then replaced by the

thin but non-zero thickness transition regions where the interfacial forces are smoothly

distributed. A set of governing equations of the fluid flows of the whole computa-

tional domain can be derived variationally from its energy density field, where the

order parameter fields satisfy an advection-diffusion equation (usually the advective

Cahn-Hilliard equations) and are coupled to the Navier-Stokes equations through extra

reactive stresses that mimic surface tension.

The classical phase-field model, in the case of two incompressible, viscous Newto-

nian fluids, is the so-called Model H [63], which couples fluid flow with Cahn-Hilliard

2



diffusion through a conserved parameter. It has been successfully used to simulate

complicated mixing flows involving a binary incompressible fluid with the same den-

sities for both components (see [29] for example). Gurtin et al: [56] re-derived this

model in the framework of classical continuum mechanics and showed that it is con-

sistent with the second law of thermodynamics in a mechanical version based on a

local dissipation inequality.

One of the fundamental assumptions when deriving Model H is that the binary fluid

is incompressible, more precisely, its total density as well as the densities for each

component are constant. Therefore this model is restricted to the density matched case

and cannot be used for the case if the two incompressible fluids have different densi-

ties. To treat the problems with small density ratios, a Boussinesq approximation is

often used, where the small density difference is neglected except in the gravitational

force. The achieved model maintains thermodynamic consistency (see [65] as an ex-

ample). This approach however is no longer valid when the density ratio is not small.

Several generalizations of Model H for the case of different densities have been pre-

sented and discussed by Lowengrub and Truskinovsky [87], Boyer [26], Ding et al:

[35], Shen and Yang [110], and most recently by Abels et al: [2]. Benchmark com-

putations for three of them, namely the models of Boyer [26], Ding et al: [35], and

Abels et al: [2], were carried out by Aland and Voigt [5]. Thermodynamic consistency

however could only be shown for the models proposed in [2, 87]. Antanovskii [12]

derived a quasi-incompressible phase-field model for two-phase flow with different

densities. The extended model was presented by Lowengrub and Truskinovsky [87],

where they employed the pressure rather than density as an independent variable and

worked with a Gibbs free energy. In their model, the two fluids of different densities

are assumed to be mixed and compressible along the interfacial region (introducing the

3



quasi-incompressibility into the model). The flow in the interfacial region is in gen-

eral nonsolenoidal (Ñ �v 6= 0), resulting in an expansion or contraction flow. Thermo-

dynamic consistency is maintained within the resulting system (quasi-incompressible

NSCH) where the Navier-Stokes equations are coupled with the Cahn-Hilliard equa-

tions, and the kinetic fluid pressure and variable density are introduced into the chem-

ical potential. Very recently, a numerical method for the quasi-incompressible NSCH

system with a discrete thermodynamic law (energy law) was presented by Guo et: al:

[54], where the quasi-incompressibility (the non-solenoidal velocity) near interfaces

was captured. Namely, the numerical results reveal that away from interfaces the fluid

is incompressible, while near interfaces waves of expansion and contraction are ob-

served (See chapter 4 for details).

Another assumption for Model H is that the fluid flow is isothermal. However, for the

case that considers thermocapillary (Marangoni) effects, the surface tension gradient

is produced by the inhomogeneous distribution of the temperature, so that the system

can’t be assumed to be isothermal and the transport of temperature field can’t be ig-

nored. The extension of Model H to the non-isothermal case was presented by Jasnow

and Vinals [70], where, to study the thermocapillary migration of droplets, a constant,

externally imposed temperature gradient is considered. Several other works, as men-

tioned above, have also been devoted to the use of the phase-field method to simulate

the dynamics of interface with thermocapillary effects [24, 25, 113, 55]. For most of

these models, the system equations of flow field (the Navier-Stokes equations with ex-

tra stress) and phase-field (the advective Cahn-Hilliard equations) are usually derived

from the free energy functional that depends on temperature. The energy equations,

however, were not derived together with the system equations. Instead, the classical

energy transport equations are incorporated into the system directly, or the tempera-

ture fields are assumed to be fixed so that the energy equations are not needed. In

these treatments, thermodynamic consistency can be hardly achieved. It turns out that
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the concept of thermodynamic consistency plays an important role for the phase-field

modeling. As the phase-field model can be derived through variational procedures,

thermodynamic consistency of the model equations can serve as a justification for the

model. In addition, it ensures the model to be compatible with the laws of thermody-

namics, and to have a strict relaxational behaviour of the free energy, hence the models

are more than a phenomenological description of an interfacial problem. In [12], An-

tanovskii presented a phase-field model to study the thermocapillary flow in a gap,

where to obtain a free energy that depends on the temperature, the Cahn-Hilliard gra-

dient term associated with the phase-field is introduced into the entropy functional of

the system, which leads to a corresponding extra term appearing in the energy equation.

The resulting system of equations were derived together through the local balance laws

and thermodynamic relations, which maintains thermodynamic consistency. A similar

gradient entropy term was considered by Anderson and McFadden [7] to study a sin-

gle compressible fluid with different phases near its critical point. In their work, the

phase-field model was derived through a thermodynamic formalism [107] based on

entropy generation. Through a similar thermodynamic framework, Verschueren et al:

[122] presented a phase-field model for two-phase flow with thermocapillary effects

in a Hele-Shaw cell. The system equations maintains thermodynamic consistency, in

which the energy equation contains an extra term associated with the variations of

the phase field. In [53], Guo et al: developed a new phase-field model for two-phase

flows with thermocapillary effects, where the model equations are derived through the

theromdynamic framework based on the entropy generation that guarantees thermody-

namic consistency. (See chapter 5 for details).

Several numerical methods have been used to solve the phase-field model includ-

ing spectral methods ([30, 36, 79, 85, 110, 127]), adaptive moving mesh methods

([89, 18, 133, 134]), finite element methods and adaptive finite element methods ([31,

37, 42, 48, 65, 131, 132]) and finite difference methods ([32, 76, 77]), and we refer
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to [43] and references therein for some recent discussions on adaptive methods for

the long time simulation of the Cahn-Hilliard equation. In particular, the phase-field

model can be derived from an energy variational approach. With thermodynamic con-

sistency, an energy law is naturally associated with the well-posed nonlinearly coupled

system. Note that the energy law can be preserved in the fully discretized system. It

is highly desirable to have a numerical scheme that preserves the accurate energy law

at the discrete level, in order to ensure the stability of the numerical algorithm and the

accuracy of the solution, especially when a rapid change or a singularity occurs in the

solution, such as occurs in non-Newtonian hydrodynamic systems ([83, 84]). When

the underlining energy law is preserved in the fully discretized system, it is also pos-

sible to use a relatively coarse mesh in the simulation. Consequently such a method

can reduce the cost of computations while resolving the prominent features of the flow.

Recently, Hua et al: [65] introduced a C0 finite elements formulation for a phase-field

model in which the energy law of the system was well preserved at the discrete level.

They obtained more accurate results for interface motion on coarser grids than another

scheme that does not obey the energy law at the discrete level.

In this thesis, we will focus on two aspects of the generalizations of the classical phase-

field model for two-phase flows (Model H). One is the variable density flows where

the two fluids are assumed to have different densities. The other one is the two-phase

flows with thermocapillary effects. In chapter 2, we present background for phase-

field modelling, thermocapillary effects and continuum mechanics. In chapter 3, we

develop a phase-field model for two-phase flows with thermocapillary effects by using

an energetic variational procedure, where the two fluids are assumed to have the same

densities. Through the examples of thermocapillary convection in the two-layer fluid

system, we show that our phase-field model can reflect the mechanism of the threom-

capillary convection appropriately. In chapter 4, we present a numerical method for
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an established model for two-phase flows with variable density (quasi-incompressible

NSCH model by Lowengrub & Truskinovsky [87]). We first show that the energy

law (thermodynamic consistency) can be derived from the model equations. Under

the weak formulation, we design a C0 finite element method and a special temporal

scheme where the energy law is preserved at the discrete level. Such a discrete energy

law (almost the same as the continuous energy law) for this variable density two-phase

flow model has never been established before with C0 finite elements. Some numeri-

cal experiments are carried out using the adaptive mesh to investigate the scenario of

coalescing and rising drops with differing density ratio. The snapshots for the evolu-

tion of the interface together with the adaptive mesh at different times are presented to

show that the evolution, including the break-up/pinch-off of the drop, can be handled

smoothly by our numerical scheme. In chapter 5, we develop a thermodynamically

consistent phase-field model for two-phase flows with thermocapillary effects, which

allows for the binary incompressible fluid (quasi-incompressible fluid) to have differ-

ent densities, viscousities and thermal conductivities for each component. This model

can be seen as a non-isothermal extension of the quasi-incmopressible NSCH model

(Lowengrub & Truskinovsky [87]). The model equations, including the Navier-Stokes

equation with extra stress, an advective Cahn-Hilliard equation and energy equation are

derived under a thermodynamic framework (Anderson and McFadden [7]). To the best

of our knowledge, such a thermodynamically consistent phase-field model for binary

incompressible fluid with thermocapillary effects, which allows for different physical

properties of each component is new. To validate our model, we first show that ther-

modynamic consistency are maintained in both models. We also show that our model

equations satisfy the Galilean invariance and the Onsager’s reciprocal relations. We

then analyze the model in the sharp-interface limit to show that the governing equa-

tions and interfacial conditions of the classical sharp-interface model can be recovered

from our phase-field models, which reveals the underlying physical mechanisms of
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phase-field model. To validate our model, we also compute two examples, including

thermcapillary convection in a two-layer fluid system and thermocapillary migration

of a bubble in a medium fluid. The numerical results for both examples are consis-

tent with the corresponding analytical solutions [98] or theoretical predictions [129].

Moreover, another example is computed to study the effects of the Marangoni number.

Finally, concluding remarks and discussion about future work are given in chapter 6.
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Chapter 2

Background

2.1 Phase-field methods

2.1.1 Surface energy and Cahn-Hilliard equations

In phase-field models, the interface is represented as a thin layer of finite thickness

and an auxiliary phase-field function is used to indicate the phases. The phase-field

function varies smoothly between distinct values in both phases and the interface can

be associated with an intermediate level set of the phase-field function. Phase fields

can be constructed by physical arguments if one has an expression for the free energy

of the system. A typical choice for the energy associated to a fluid-fluid interface is the

Cahn-Hilliard free energy given by:

Es =
Z

W

1

e
F(f)+

e

2
jÑf j2: (2.1)

Here W is the computational domain, f is the phase field (mass or volume concentra-

tion of one phase, or the concentration differences between the two phases), e is related
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to the thickness of the diffuse interface, F(f) = f2(f2� 1)=4 is the double well po-

tential having local minima in those values of f which represent the bulk phases. The

second term in (2.1) is the squared gradient energy that was introduced by Cahn &

Hilliard [28, 27] to describe the process of phase separation.

In a system described by Eq.(2.1), thermodynamic equilibrium can be characterized

by a state of the phase variable f that minimizes the Cahn-Hilliard free energy. This

requires the variational derivative of Es to vanish, such that

dEs

df
=

1

e

¶F(f)

¶f
� eDf = 0: (2.2)

Here we define the chemical potential by

m =
dEs

df
=

1

e

¶F(f)

¶f
� eDf : (2.3)

Since f represents a concentration or the concentration difference, it must satisfy the

conservation law

¶f

¶ t
=�Ñ � J; (2.4)

where the flux term J can be defined through Fick’s law

J = MÑm; (2.5)

and M is a constant standing for the mobility of the diffuse interface. Combing Eqs.(2.3),

(2.4) and (2.5) gives the Cahn-Hilliard equation

¶f

¶ t
=�Ñ �

 

MÑ(
1

e

¶F(f)

¶f
� eDf)

!

: (2.6)
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In the 1D case, we assume the boundary conditions

f(�a) = 0; f(b) = 1: (2.7)

where a and b are the boundary of this 1D problem. The solution at equilibrium for

Eq.(2.2) with respect to (2.7) can then be given as

f =
1

2
tanh

 
x

2
p

2e

!

+
1

2
;

where we can see that the interface thickness really depends on how we define it, e.g., it

could be the width of the set fxjf(x)2 [0 : 2;0 : 8]g or the set fxjf(x)2 [0 : 05;0 : 95]g.

For f(x) between these two ranges the thickness of interface would be 4�10 times of

the value. Therefore e is a small parameter related to the interface thickness.

2.1.2 Phase-field model for two-phase flows

In the context of the binary fluid flows, the Navier-Stokes equation is typically coupled

with the advective Cahn-Hilliard equation, where an extra stress tensor appears in NS

equation to mimic the surface tension. The classical phase-field model, in the case of

two incompressible, viscous Newtonian fluids, is the so-called Model H [63]. In the

case of constant physical properties (density, viscosity and surface tension), the model
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reads:

¶tu +(u �Ñu)+Ñp�mÑ �D(u)+ s̃eÑ � (Ñf 
Ñf) = g(x); (2.8)

Ñ �u = 0; (2.9)

¶tf + u �Ñf =�Ñ � (MÑm); (2.10)

m = s̃e�1F(f)� s̃eDf ; (2.11)

with the boundary conditions may be posed at ¶W

u = 0; no slip; (2.12)

n �Ñc = 0; n �Ñm = 0; no flux; (2.13)

in the domain W. n �Ñm = 0 is the no flux boundary condition for m . Here u, p, f and

m are the velocity, pressure, phase-field variable and chemical potential, respectively.

The function F(f) = f2(f2�1)=4 is the double well potential energy, such that f � 1

in W1 and f � 0 in W2, M is a constant standing for the mobility of the diffuse interface,

m is the viscosity and g is the body force. The parameter e is related to the thickness

of the diffuse interface, s̃ is the surface tension which is related to the physical surface

tension s through a ratio parameter h , such that s = hs̃ (See section 5.6.6 for details).

2.2 Thermocapillary effects

When the interface separating two fluids is exposed to a temperature gradient, the vari-

ations of surface tension along the interface leads to shear stresses that act on the fluid

through viscous forces, and thus induce a motion of the fluids in the direction of the

temperature gradient. For most of the fluids, the surface tension generally decreases
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with the increasing temperature, and is normally a linear decreasing function of tem-

perature, such that

s(T ) = s0�sT (T �T0); (2.14)

where s0 is the interfacial tension at the reference temperature T0, sT is the rate of

change of interfacial tension with temperature, defined as sT = ¶s(T )=¶T . The non-

uniformity of surface tension then drives the fluids to move from the region with higher

temperature to that with lower temperature. This effect is known as the thermocapillary

(Marangoni) effect [80], and it plays an important role in various industrial applications

involving microgravity [112] or microdevices [33], where the surface forces become

dominant.

One example for thermocapillary effects is the thermocapillary convection in a two-

layer fluid system (thermocapillary instabilities), where the system is typically con-

fined between two parallel plates and subjected to a temperature gradient. Due to the

perturbations in the temperature, velocity field as well as the interface position, surface

tension gradients will occur at the interface and drive the fluid to motion. The instabili-

ties then set in and leads to the convective motion, where a typical convection pattern is

the hexagonal cell formation found by Bénard [14]. The thermocapillary instabilities

are widely studied which can be traced back to some pioneering works performed by

Block [22], Pearson [97], and Sternling and Scriven [111, 106]. Literature reviews of

recent experimental and analytical work on instabilities in thermocapillary convection

are provided by Schatz and Neitzel [105], Davis [34] and Andereck et al: [6].

The mechanism of thermocapillary convection in a two layer fluid system, which is

heated from above has been summarized by Johnson and Narayanan [72] (Figure 2.1).

In both diagrams, the two-layer fluid systems are all heated from above, with a con-

stant temperature gradient between two horizontal plates. In the upper diagram (Case

1), a perturbation in the interface towards the low temperature side is assumed (bottom
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boundary). This local temperature reduction of interface lowers the surface tension

and leads to a surface tension gradient along the interface due to its temperature de-

pendence, with the largest surface tension in the centre of the interface. For the upper

layer, this local gradient drags the fluid towards the centre of the interface. This is then

replaced by hot fluid flowing downward from the top boundary to the edge of the in-

terface, reinforcing the perturbation. Meanwhile, as the flow of lower fluid is coupled,

there is upwelling of cold fluid from the bottom boundary to the edge of the interface,

which tends to lower the local temperature and dampen the perturbation.

The lower diagram (Case 2 in Figure 3.1) just shows the opposite scenario, in which

the perturbation in the interface towards the high temperature side (top boundary) is

assumed. Again, the convection sets in, with the flow in the upper layer reinforcing the

instability and reducing it in the lower layer.

Another example for thermocapillary effects is the thermocapillary migration of

drops, where the drops are set in a liquid possessing a temperature gradient, and will

move toward the hot region due to the thermocapillary effects. The thermocapillary

migration of a drop was first examined experimentally by Young et al: [129], who de-

rived an analytical expression for the terminal velocity of a single spherical drop in a

constant temperature gradient by assuming the convective transport of momentum and

energy are negligible. Since then, extensive works were carried out experimentally,

analytically and numerically in order to investigate this phenomenon, where many of

them are summarized by Subramanian and Balasubramaniam [112]. In chapter 3 and

5, we will study the thermocapillary effects for two-phase flows by using phase-field

models.
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Case 2

Figure 2.1: Sketch for two cases of Marangoni-Bénard convection in a two-layer fluid
system heated from above.
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2.3 Continuum mechanics

In this section, we introduce the basic knowledge of the continuum mechanics, which

would be used in Chapter 3 and Chapter 5.

2.3.1 Tensor algebra

We first give a brief introduction to the tensor algebra. In order to represent vectors

and tensors in component form, we first introduce a right-handed system of rectangular

Cartesian axes Ox1x2x3, and the unit basis vectors ê1, ê2, ê3. In terms of this basis, an

arbitrary vector v can be given in component form by

v = v1ê1 + v2ê2 + v3ê3 =
3

å
i=1

viêi: (2.15)

For simplicity, we agree that whenever a subscript appears exactly twice in a given

term, that subscript will take on the values 1, 2, 3 successively, and the resulting terms

summed. In the tensor algebra, this assumption is called “summation convention”.

Therefore Eq.(2.15) can be written as

v =
3

å
i=1

viêi = viêi; (2.16)

where we have deleted entirely the summation symbol å. For the basis vectors, we

have the following properties

êi � ê j =

8
>><

>>:

1 if i = j;

0 if i 6= j:
(2.17)
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Therefore, we introduce the Kronecker delta defined by

di j =

8
>><

>>:

1 if i = j;

0 if i 6= j;
(2.18)

and we have that

êi � ê j = di j (i; j = 1;2;3): (2.19)

Further, the dot product of vector u �v may be written as

u �v = uiêi � v jê j = uiv jêi � ê j = uiv jdi j = uivi: (2.20)

We now introduce the permutation symbol ei jk, which can be given as

ei jk =

8
>>>>>><

>>>>>>:

1 if numerical value of i jk appear as in the sequence 12312;

�1 if numerical value of i jk appear as in the sequence 32132;

0 if numerical value of i jk appear as in any other sequence :

Now, based on the above definition, the cross product of the basis vectors êi (i = 1;2;3)

can be written as

êi� ê j = ei jkêk (i; j;k = 1;2;3) (2.21)

And further the vector cross product becomes

u�v = uiêi� v jê j = uiv jêi� ê j = ei jkuiv jêk: (2.22)
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2.3.2 Particles, configurations, deformation and motion

Continuum mechanics considers the material bodies in the form of gas, liquids or

solids. We begin by describing the model used to represent such material bodies.

We first define a material body B as the set of elements X , called particles or material

points, which can be put into a one-to-one mapping correspondence with the points of

a regular region of physical space. Note that whereas a particle of classical mechanics

has an assigned mass, a continuum particle is essentially a material point for which a

density is defined. The specification of the position of all of the particles of B with

respect to a fixed origin at some instant of time is said to define the configuration of

the body at that instant. Mathematically, this is expressed by the mapping

x = k(X); (2.23)

in which the vector function k relates the position of x to each original particle X of

the body. Here we assume that this mapping is uniquely invertible and differentiable

as many times as required (two or three times). The inverse can be written as

X = k�1(x): (2.24)

A motion of body B is a continuous time sequence of displacements that carries the set

of particles X into various configurations in a stationary space. Such a motion may be

expressed by the equation

x = k(X ; t) (2.25)

which gives the position x for each particle X at any time t, where t 2 [0;+¥). The

initial configuration which the body occupies at time t = 0, is normally chosen as the

reference configuration. The current configuration is the one which the body occupies
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at the current time t.

2.3.3 Material and spatial coordinates

Consider the reference configuration prescribed by some mapping function F, and the

position vector (material coordinates) X of particle X can be represented as

X = F(X): (2.26)

Here the position vector X can be expressed in terms of the base vectors as

X = XAÎA; (2.27)

where the component XA are the material coordinates, or referential coordinate of the

particle X , and IA are the unit vectors. Moreover, we define an inverse mapping

X = F�1(X): (2.28)

Substituting into Eq.(2.25). we obtain

x = k[F�1(X); t] = c(X; t); (2.29)

which defines the motion of the body in physical space relative to the reference config-

uration prescribed by the mapping function F. In particular, at t = 0, Eq. (2.29) defines

the initial configuration which is often adopted as the reference configuration, and this

results in the initial spatial coordinates being identical with the material coordinates,

such that

x = c(X;0) = X (2.30)
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at time t = 0. Note that Eq.(2.29) maps the particle at X in the reference configuration

onto the point x in the current configuration at time t, this can be expressed as

x = xiêi; (2.31)

where the components xi are called the spatial coordinates of the particles. For Eq.(2.29),

it is common practice in continuum mechanics to write these equations in the alterna-

tive forms

x = x(X; t); (2.32)

where the symbol x on the right-hand side of the equation represents the function

whose arguments are X and t, while the same symbol on the left-hand side represents

the value of the function, that is, a point in space. We shall use this notation frequently

in the text that follows.

The velocity v of the particle along its path can then be defined as the time rate of

change of position,

v =
dx

dt
=

¶ c(X; t)

¶ t
=

¶x(X; t)

¶ t
: (2.33)

Here we assume that no two particles can occupy the same location in space at a given

time, and furthermore, in the smooth motions we consider here, any two particles arbi-

trarily close in the reference configuration remain arbitrarily close in all other configu-

rations. Therefore, the function c in Eq.(2.29) must be single-valued and continuous,

and must possess continuous derivatives with respect to space and time to whatever

order is required, usually to the second or third. Moreover, we assume the inverse
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function as

X = c�1(x; t) (2.34)

to be endowed with the same properties as c . Then the Jacobian determinant J can be

defined as

J = j
¶xi

¶XA
j= j

¶ ci

¶XA
j; (2.35)

and the mathematical condition that guarantees the existence of such an inverse func-

tion is the non-vanishing of the Jacobian deternimant, say J 6= 0.

2.3.4 Lagrangian and Eulerian descriptions

If a physical property of the body B such as its density r , or velocity v, is expressed

in terms of the material coordinates X, and the time t, we say that property is given by

the referential or material description. When the referential configuration is taken as

the actual configuration at time t = 0, this description is usually called the Lagrangian

description. For examples, we have

r = r(XA; t) or r = r(X; t); (2.36)

and

vi = vi(XA; t) or v = v(X; t): (2.37)

In contrast, if the properties r and v are given as functions of the spatial coordinates x

and time t, we say that those properties are expressed by a spatial description, or as it
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is sometimes called, by the Eulerian description. In view of Eq. (2.34) it is clear that

Eq.(2.36) and Eq.(2.37) may be converted to express the same properties in the spatial

description, such that

r = r(X; t) = r[c�1(x; t); t] = r(x; t); (2.38)

and

v = v(X; t) = v[c�1(x; t); t] = v(x; t): (2.39)

We note that in the material description, attention is focused on what is happening

to the individual particles during the motion, whereas in the spatial description the

emphasis is directed to the events taking place at specific points in space.

2.3.5 The material derivative

We first use a general symbol p to represent any physical or kinematic property of a

continuum body, (e.g., scalar, vector or tensor property). We then have the material

description

p = p(X; t); (2.40)

or spatial description

p = p(x; t): (2.41)

The material derivative of any such property is the time rate of change of that property

for a specific collection of particles (one or more) of the continuum body. This deriva-

tive can be thought of as the rate at which p changes when measured by an observer
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travelling with the particle or group of particles. We use the differential operator d=dt,

or the superpositioned dot ˙ to denote a material derivative. When p is given in the ma-

terial description of Eq.(2.40), the material derivative is simply the partial derivative

with respect to time,

d

dt
[p(X; t)] =

¶

¶ t
[p(X; t)]; (2.42)

where, as it is mentioned above, the material coordinates X do not change with time.

For the spatial form, we note that the particle will change the position, and we must

use the chain rule of differentiation of the calculus to obtain

d

dt
[p(x; t)] =

¶

¶ t
p(x; t)+

¶

¶xi
p(x; t)

dxi

dt
; (2.43)

where the first term on the right-hand side gives the change occurring in the property at

position x, known as the local rate of change; the second term results from the particles

changing position in space and is referred to as the convective rate of change. Having

in mind of the definition of the velocity, Eq.(2.43) may be written as

d

dt
[p(x; t)] =

¶

¶ t
p(x; t)+

¶

¶xi
p(x; t)vi =

¶

¶ t
p(x; t)+ v �Ñp(x; t); (2.44)

from which we deduce the material derivative operator for properties expressed in the

spatial description

d

dt
=

¶

¶ t
+ v �Ñ; (2.45)

where Ñ is the gradient operator.
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2.3.6 Deformation gradients

In deformation analysis we confine our attention to two stationary configurations, the

initial (referential) and the final deformed configuration, and we ignore the sequence

between the two configurations. Accordingly, the mapping function is not dependent

upon time as a variable, so that Eq.(2.29) takes the form

x = c(X): (2.46)

We now consider two neighboring particles of the body situated at two points P and Q

in the referential configuration, such that Q is located with respect to P by the relative

differential position vector

dX = dXAIA: (2.47)

Under the mapping of function c , the particles originally at P and Q move to the

position p and q, respectively, in the deformed configuration such that their relative

position vector is now

dx = dxiei: (2.48)

As we assume the mapping function x in Eq.(2.46) is continuous, so that

dxi =
¶ ci

¶XA
dXA = xi;AdXA; (2.49)

where xi;A = FiA is called the deformed gradient tensor or the deformation gradient.

Therefore Eq.(2.49) can be written as

dx = FdX; (2.50)
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where F = (FiA) is a matrix from Eq.(2.35), we obtain that

det(F) = J: (2.51)

2.3.7 Material derivative of volumes

We consider a volume element dV � defined in the referential configuration. Recall that

the magnitude of the scalar triple product equals the area of a parallelogram with the

vectors for sides, we have that the volume element defined in the referential configura-

tion

dV � = dX(1) �dX(2)�dX(3) = eABCdX (1)
A dX (2)

B dX (3)
C ; (2.52)

and for the deformed volume element be given by

dV = dx(1) �dx(2)�dx(3) = ei jkdx(1)
i dx(2)

j dx(3)
k : (2.53)

Note that to derive Eq.(2.52) and Eq.(2.53), we have used the following identity for the

vector dot and cross product

IA � IB� IC = eABC: (2.54)

For the motion x = x(X; t), dx = FdX so the current volume is the box product

dV = [FdX(1);FdX(2);FdX(3)] = ei jkxi;Ax j;Bxk;CdX (1)
A dX (2)

B dX (3)
C = JdV �; (2.55)

25



which gives the current volume element in terms of its original size. Here we have

used the following identity

ei jkxi;Ax j;Bxk;C = eABCdet(F) = eABCJ (2.56)

To determine the time rate of change of dV, we take the material derivative as follows

[90]

(dV )� = J̇dV � = JÑ �vdV � = Ñ �vdV (2.57)

where, for the incompressible fluid flow, we have that

Ñ �v = 0 (2.58)

Let P be any scalar, vector, or tensor property of the collection of particles occupying

the current volume V , we then have the expression in the terms of the integral,

P(t) =
Z

V
p(x; t)dV; (2.59)

where p represents the distribution of the property per unit volume and has continuous

derivatives as necessary. The material derivative of this property is given in both spatial

and material forms,

dP(t)

dt
=

d

dt

Z

V
p(x; t)dV =

d

dt

Z

V �
p[x(X; t); t]JdV � (2.60)

Since V � is a fixed volume in the referential configuration, the differentiation and in-

tegration commute, and the differentiation can be performed inside the integral sign.
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Using chain rule, we obtain,

dP(t)

dt
=

d

dt

Z

V �
p[x(X; t); t]JdV � =

Z

V �

d

dt

 

p[x(X; t); t]J

!

dV �

=
Z

V �

 

ṗ[x(X; t); t]J + p[x(X; t); t]J̇

!

dV �

=
Z

V �

 

ṗ[x(X; t); t]+ vk;k p[x(X; t); t]

!

JdV �

=
Z

V

 

ṗ[x(X; t); t]+ vk;k p[x(X; t); t]

!

dV (2.61)

where we have used the identity JdV � = dV to convert back to the spatial formulation.

With the help of the material derivative operator given in [90], the above equation can

be written in the form

dP(t)

dt
=
Z

V

 
¶ p[x(X; t); t]

¶ t
+ v �Ñp[x(X; t); t]+ (Ñ �v)p[x(X; t); t]

!

dV

=
Z

V

 

pt +Ñ � (vp)

!

dV (2.62)

This gives the material derivative within a control volume.
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Chapter 3

Continuous finite element schemes for

a phase-field model in two-layer fluid

thermocapillary (Bénard-Marangoni)

convection computations

3.1 Introduction

In this chapter, we study a phase-field model for a two-layer fluid where the temper-

ature dependence of both the density (buoyancy forces) and the surface tension (ther-

mocapillary effects) is considered. The phase-field model consisting of a modified NS

equation, an advective Cahn-Hilliard equation and an energy transport equation is de-

rived through an energetic variational procedure. An appropriate variational form and

a continuous finite element method are adopted to maintain any possible underlying

energy law to its greatest extent. Several examples for Bénard-Marangoni convection

in an Acetonitrile and an n-Hexane two-layer fluid system heated from above will be

28



computed to justify our phase-field model. In addition, an interesting numerical exper-

iment will be performed to show the competition between the thermocapillary effects

and the buoyancy forces.

3.2 A phase-field model with thermocapillary effects

and energetic variational procedure

We consider a phase-field model with thermocapillary effects for mixtures in two

isotropic fluids of different densities because of their simplicity in the practical im-

plementation. After applying the Bousssinesq approximation (where the small density

difference is neglected except that in the gravitational force) and assuming that two

fluids hold the same physical properties, i.e. dynamic viscosity, thermal conductivity,

the governing system of equations can be given as the following:

r0

�
ut +(u �Ñ)u

�
+Ñp�mÑ �D(u)

+Ñ �
�

l (q)Ñf 
Ñf +
l (q)

2
jÑf j2 I +l (q)F(f)I

�
= s(f ;q); (3.1)

Ñ �u = 0; (3.2)

ft +(u �Ñ)f + gD
�

Df � f (f)
�

= 0; (3.3)

r0cp

�
qt +(u �Ñ)q

�
= kDq ; (3.4)

where the vector u represents the velocity of the fluid mixture, p is the hydrostatic pres-

sure, f represents the “phase” of the mixture (f = 1: fluid 1; f =�1: fluid 2), and q

stands for the temperature, m is the dynamic viscosity coefficient, D(u) =1=2((Ñu)+(Ñu)T)

is the stretching tensor, f (f) is the variation of the bulk mixing energy density F(f) =

(jf j2� 1)=4e2, in which the e is related to the capillary width (width of the mixing
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layer), l = es = e(s0�s1(q �q0)), s is the surface tension parameter s , where s ,

by Eötvös rule [96], is a linear function of the temperature with s0 and s1 being the

constant, and q0 is the reference temperature. The term Ñf 
Ñf is the usual tensor

product, i.e. (Ñf 
Ñf)i j = ÑifÑ jf , I is the identity matrix, s(f ;q) =�r(f)h(q)gj

stands for the buoyancy force with gravity g, where the density function of mixtures is

defined as r(f) = (r1(1�f)=2 + r2(1 + f)=2) with the density r1 and r2 for fluid 1

and fluid 2 respectively, h = (1�a(q�q0)) according to the temperature-dependence

of density. In addition, g represents the elastic relaxation time of the system, cp is the

specific heat capacity and k the heat conductivity coefficient.

The initial conditions for the system is given as

u
��
t=0 = u0; f

��
t=0 = f0; q

��
t=0 = q0; (3.5)

and the Dirichlet boundary condition for u(= bu), and the Neumann boundary condi-

tion for f in the Cahn-Hilliard equation: Ñf �n = 0;ÑDf �n = 0, where n is the unit

outward normal vector of the boundary.

When taking the surface tension l as a constant (isothermal case), and neglecting the

energy transport equation (3.4), the above system equations reduce to the classical

phase-field model, Model H, that was employed to study binary incompressible fluid

flows (e.g., [65, 85]). For the homogeneous case (i.e. the buoyancy force is negligible

s(f) = 0 and the boundary value bu = 0), the system obeys an energy dissipation law.

Multiplying (3.1) by u and (3.3) by�(Df� f (f)), the corresponding system gives the

following energy estimate [65, 85]:

dE

dt
=�

 

mjjÑujj2L2(W) +lgjjÑ(Df � f (f))jj2L2(W)

!

; (3.6)
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where

E =
1

2
r0jjujj2L2(W) +

l

2
jjÑf jj2L2(W) +l

Z

W
F(f); (3.7)

is the total energy of the reduced system.

In the case of l as a function of both the time and space, we can still consider the

following action functional [113]:

A(x) =
Z T

0

Z

W0

(
r0

2
jxt(X; t)j2�l (x(X; t))

"
1

2
jF�T ÑXf(x(X; t); t)j2

+ F(f(x(X; t); t))

#)

JdV �dt; (3.8)

where W0 is the initial domain occupied by the fluid, X can be viewed as the La-

grangian (initial) material coordinate and x(X; t) the Eulerian (reference) coordinate.

The Jacobian matrix J and the control volume V � are introduced in section 2.3.7. Fur-

ther the notation f(x(X; t); t) and l (x(X; t); t) indicates that f and l are transported

by the flow field. For an incompressible fluid, we look at the volume preserving flow

map x(X; t) such that

xt(X; t) = u(x(X; t); t); x(X;0) = X; (3.9)

and F = ÑXx, as introduced in section 2.3.6, is the deformation tensor satisfying the

following property [57, 90, 101]:

ÑX = F�1Ñx; Ñx = F�T ÑX; (3.10)

where the corresponding Jacobin determinant J = detF = 1 due to the incompressible

constraint.

Based on the least action principle, the linear momentum equation shall be the least
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action state. Here, a one parameter family of maps xh is employed, such that,

x0 = x and
dxh

dh
= y; (3.11)

where y is an arbitrary vector field that yjt=0;T = 0 (see [21] as an example). The

deformation tensor Fh , again, satisfies the property (3.10). The Jacobian Jh = detFh =

1 or Ñ �y = 0 due to the incompressible constraint.

Applying the least action principle dA(x) = 0, say dA(x)
dh = 0jh=0, we can obtain the

following:

d

dh

����
h=0

A(x) =
d

dh

����
h=0

Z T

0

Z

W0

(
r0

2
jxh

t (X; t)j2�l (xh(X; t))

"
1

2
jÑxh f(xh(X; t); t)j2

+ F(f(xh(X; t); t))

#)

JdV �dt = 0: (3.12)

Further computation for the kinetic energy part leads to [126]:

d

dh

����
h=0

Z T

0

Z

W0

r0

2
jxh

t (X; t)j2JdV �dt =
Z T

0

Z

W0

r0xt(X; t) �ytJdV �dt: (3.13)

Integrating by parts gives us that

Z T

0

Z

W0

r0xt �ytJdV �dt =�
Z T

0

Z

W0

r0xtt �yJdV �dt

=�
Z T

0

Z

W0

r0ut(x(X; t); t) �yJdV �dt

=�
Z T

0

Z

Wt
r0

�
ut + x(X; t)t �Ñxu

�
�ydV dt

=�
Z T

0

Z

Wt

 

r0

�
ut + u �Ñu

�!

�ydV dt; (3.14)
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where we have used Eq.(2.55). The elastic energy part leads to:

d

dh

����
h=0

Z T

0

Z

W0

(

�l (xh(X; t))

"
1

2
jÑxh f(xh(X; t); t)j2 + F(f(xh(X; t); t))

#)

JdV �dt

=
Z T

0

Z

W0

(

�

"
1

2
jF�T ÑXf(x(X; t); t)j2 + F(f(x(X; t); t))

#

F�T ÑXl (x(X; t); t) �y

�l (x(X; t); t)

"

F�T ÑXf(x(X; t); t) �
d

dh

����
h=0

 

Ñxh f(xh(X; t); t)

!

+ F�T ÑXF(f(x(X; t); t)) �y

#)

JdV �dt

=
Z T

0

Z

W0

(

�

"
1

2
jF�T ÑXf(x(X; t); t)j2 + F(f(x(X; t); t))

#

F�T ÑXl (x(X; t); t) �y

�l (x(X; t); t)

"

F�T ÑXf(x(X; t); t) �
d

dh

����
h=0

 

Ñxf(xh(X; t); t)Ñxh x

!

+ F�T ÑXF(f(x(X; t); t)) �y

#)

JdV �dt

=
Z T

0

Z

W0

(

�

"
1

2
jF�T ÑXf(x(X; t); t)j2 + F(f(x(X; t); t))

#

F�T ÑXl (x(X; t); t) �y

�l (x(X; t); t)

"

F�T ÑXf(x(X; t); t) �

 
d(Fh)�T

dh

����
h=0

ÑXf(x(X; t); t)

+ F�T ÑXF�T ÑXf(x(X; t); t) �y

!

+ F�T ÑXF(f(x(X; t); t)) �y

#)

JdV �dt

=
Z T

0

Z

Wt

(

�

"
1

2
jÑxf(x; t)j2 + F(f(x; t))

#

Ñxl (x; t) �y

�l (x; t)

"

Ñxf(x; t) �

 

�ÑT
x yÑxf(x; t)+Ñx

�
Ñxf(x; t)

�
�y

!

+ÑxF(f(x; t)) �y

#)

dV dt
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=
Z T

0

Z

Wt

(

�

"
1

2
jÑf j2 + F(f)

#

Ñl �y

�

"

Ñ �

 

lÑf 
Ñf

!

�y +l

 

Ñf �Ñ
�

Ñf � y
�

+ÑF(f)

!

�y

#)

dV dt

=
Z T

0

Z

Wt

(

�Ñ �

 

lÑf 
Ñf +
l

2
jÑf j2I +lF(f)I

!

�y

)

dV dt: (3.15)

Here we have used the property of the invertible matrix that ([50] P 171):

d(Fh)�T

dh
=�(Fh)�T

d(Fh)T

dh
(Fh)�T : (3.16)

Further computation gives that:

�(Fh)�T
d(Fh)T

dh
(Fh)�T

����
h=0

=�F�T ÑT
XyF�T =�(ÑXyF�1)T F�T =�ÑT

x yF�T ;

(3.17)

where the property (3.10) is used. By substituting (3.14), (3.15) into (3.12), we arrive

at:

Z T

0

Z

Wt

("

r0

�
ut +

�
u �Ñ

�
u
�

+Ñ �

 

lÑf 
Ñf +
l

2
jÑf j2I +lF(f)I

!#

�y

)

dV dt = 0:

(3.18)

Having in mind that y is an arbitrary divergence free vector field, (3.18) can only be

valid provided that :

r0(ut +(u �Ñ)u)+Ñp +Ñ � (lÑf 
Ñf +
l

2
jÑf j2 I +lF(f)I) = 0: (3.19)
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Assuming the surface tension parameter is a linear function of temperature, and adding

the viscous term and the external forces term together as complement, we finally get

the momentum equation (3.1):

r0(ut +(u �Ñ)u)+Ñp�mÑ �D(u)+Ñ �
�

l (q)Ñf 
Ñf +
l (q)

2
jÑf j2 I

+l (q)F(f)I
�

= s(f ;q):

Note that the similar energetic variational procedures were also used in [81, 85, 113,

126].

3.3 Non-Dimensionalization

Consider a two-layer fluid in a two-dimensional domain, W, sketched in Figure 3.1. To

simplify the study of thermocapillary effects, we non-dimensionalize the phase-field

model (3.1)-(3.4) as follows. Let the distance between the plates d = d1 +d2 denote the

length scale. The velocity scale is chosen to be k=d, where k = k=rcp is the thermal

diffusivity, k the thermal conductivity and cp the specific heat capacity. This then

gives d2=k and mk=d2 as time and stress scales, in which m is the dynamic viscosity.

Correspondingly, the interface length is non-dimensionalized by ē = e=d, q̄ = (q �

q0)=ql is chosen as the temperature scale, where e and q are the dimensional parameter

and variable in the dimensional system (3.1)-(3.4), q0 is the reference temperature ( in

the present work, it is set to be zero), ql is the temperature difference between the top

and bottom boundaries. Dropping the bar notations, the non-dimensional phase-field
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model with the thermocapillary effects can be rewritten as :

1

Pr

�
ut +

�
u �Ñ

��
u +Ñp�Du +Ñ �

�� 1

Ca
�Maq

��
Ñf 
Ñf +

jÑf j2

2
I + F(f)I

��

= rr(Raq �G)j; (3.20)

Ñ �u = 0; (3.21)

ft +
�

u �Ñ
�

f + PeD
�

Df � f (f)
�

= 0; (3.22)

qt +
�

u �Ñ
�

q = Dq ; (3.23)

where the non-dimensional parameters are the Prandtl number, Pr, the capillary num-

ber, Ca, the Marangoni number, Ma, the Galileo number, G, the Rayleigh number, Ra,

and the Peclect number, Pe, defined by

Pr =
n

k
; Ca =

mk

es0d
; Ma =

es1qld

mk
; G =

gd3

nk
; Ra =

gad3ql

nk
; Pe =

k

gd2;

in which n = m=rl is the Kinematic viscosity. When comparing our non-dimensional

parameters (i.e. capillary number, Ca, and Marangoni number, Ma) with those in the

sharp interface model (see [115] as example), the capillary width e is considered in

our parameters to reflect the effects of the mixing layer of non-zero width. The density

ratio, rr, appearing in the system to be evaluated, is

rr =

�
1 +f

�

2
+

�
1�f

�

2

r2

r1
;

so that, in liquid 1(f = 1) rr = 1 , and rr = r2=r1 in liquid 2 (f = �1). In addition,

for the main system in the isothermal case, we non-dimensionalize the energy of the

system (3.6),

E =
1

2
r0jjujj2L2(W) +

l

2
jjÑf jj2L2(W) +l

Z

W
F(f)
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by rescaling Ē = E�d2=am�1=d2 based on the energy scale given in [87]. Dropping

the bar notation, we can obtain:

E =
1

2Pr
jjujj2L2(W) +

1

2Ca
jjÑf jj2L2(W) +

1

Ca

Z

W
F(f); (3.24)

and the corresponding non-dimensional energy dissipation law:

dE

dt
=�

 

jjÑujj2L2(W) +
Pe

Ca
jjÑ(Df � f (f))jj2L2(W)

!

: (3.25)

3.4 Weak Form

As it can be implemented easily and many existing codes may be incorporated to re-

duce various complications, a C0(conforming) finite element method will be employed

to solve the problem. To use this method, we will reformulate the phase-field model to

obtain a weak form where both trial and test functions are involved with only the first

order derivatives.

We first consider the Cahn-Hilliard phase-field equation (3.22):

ft +
�

u �Ñ
�

f + PeD
�

Df � f (f)
�

= 0:

Due to the bi-harmonic operator in the equation, it is necessary to introduce an extra

variable and use the mixed formulation to arrive at the weak form. Hence Eq.(3.22)

can be rewritten into the following system (e.g., [65, 127, 131]):

ft +
�

u �Ñ
�

f =
Pe

e2D
�

w + cf
�

; (3.26)
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w =�e2Df +
�

f2�1� c
�

f ; (3.27)

where the positive constant c is introduced to enhance the stability of the numerical

method (see [131] as an example).

Now we consider the momentum equation (3.20):

1

Pr

�
ut +

�
u �Ñ

��
u +Ñp�Du +Ñ �

�� 1

Ca
�Maq

��
Ñf 
Ñf +

jÑf j2

2
I + F(f)I

��

= rr

�
Raq �G

�
j: (3.28)

A further computation for the surface tension part shows:

Ñ �
�� 1

Ca
�Maq

��
Ñf 
Ñf +

jÑf j2

2
I + F(f)I

��

=�Ma
�

Ñq �Ñf
�

Ñf +
� 1

Ca
�Maq

�
DfÑf +

� 1

Ca
�Maq

�
ÑjÑf j2

�MaÑq
jÑf j2

2
�MaÑqF(f)+

� 1

Ca
�Maq

�
ÑF(f): (3.29)

Note that a second order derivative term is present in the momentum equation, which

implies that a C1 finite element method would normally be required to solve the prob-

lem. To avoid this case, we rewrite (3.27) as follows:

Df =�
1

e2

�
w + cf

�
+

1

e2

�
f2�1

�
f : (3.30)

Now the surface tension term can be rewritten as:

Ñ �
�� 1

Ca
�Maq

��
Ñf 
Ñf +

jÑf j2

2
I + F(f)I

��

=
�
�MaÑq �Ñf

�
Ñf �

� 1

Ca
�Maq

�� 1

e2

�
w + cf

��
Ñf +

� 1

Ca
�Maq

�
ÑjÑf j2
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�MaÑq
jÑf j2

2
�MaÑqF(f)+ 2

� 1

Ca
�Maq

�
ÑF(f): (3.31)

Substituting the above relation to the momentum equation (3.20), we end up with a

modified N-S equation without Df .

Let W be a bounded domain in R2, suppose ¶W is the boundary of W, which is suffi-

cient smooth (for example, Lipschitz-continuous). The following spaces are denoted

as W1;3(W) = (W 1;3(W))2;W1;3
b = fu 2W1;3(W);u = bu, on Wg;L2(W) = (L2(W))2

and L2
0(W) = fp 2 L2(W);

R
W pdx = 0g:

By multiplying test functions v, y , c and z to the equation (3.20), (3.26), (3.27)

and (3.23), respectively, the weak form for the system reads : Find u 2W1;3
bu

(W); p 2

L2
0(W);f 2W1;3(W);w 2W1;3(W) and q 2W1;3(W) :

Z

W

 
1

Pr
ut �v +

1

Pr

�
u �Ñ

�
u �v +Ñu : Ñv� p

�
Ñ �v

�
�Ma

�
Ñq �Ñf

��
Ñf �v

�

�
1

e2

� 1

Ca
�Maq

��
w + cf

��
Ñf �v

�
+ Ma

jÑf j2

2

�
Ñq �v

�

�
� 1

Ca
�Maq

�
jÑf j2

�
Ñ �v

�
�MaF(f)

�
Ñq �v

�

+ 2
� 1

Ca
�Maq

�
f (f)

�
Ñ �v

�!

dx =
Z

W

 

rr

�
Raq �G

�
j �v

!

dx; (3.32)

Z

W

 �
Ñ �u

�
q

!

dx = 0; (3.33)

Z

W

 

fty +
�

u �Ñ
�

fy +
Pe

e2Ñ
�

w + cf
�
�Ñy

!

dx = 0; (3.34)

Z

W

 

wc� e2Ñf �Ñc�
�

f2�1� c
�

fc

!

dx = 0; (3.35)

Z

W

 

qtz +
�

u �Ñ
�

qz +Ñq �Ñz

!

dx = 0: (3.36)
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In the homogenous case, taking v = u, q = p, y =
�

w + cf
�

=Ca and c = ft=e2Ca in

(3.32) (3.34) and (3.35) respectively and summing them up, we obtain the following

energy law for the isothermal case,

d

dt

 
1

2Pr
jjujj2L2 +

1

2Ca
jjÑf jj2L2 +

1

Ca

Z

W
F(f)

!

=�

 

jjÑujj2L2 +
Pe

e4Ca
jjÑ(w + cf jj2L2

!

: (3.37)

3.5 Numerical Methods

For our computations, a finite difference scheme in time and a conformal C0 finite

element method in space are used to approximate the solutions of the weak problem. In

the temporal direction, since phase-field models are highly nonlinear, explicit-implicit

(or semi-implicit) first order schemes are usually adopted, where a part of the nonlinear

term is treated explicitly and the rest is treated implicitly. We will use a modified

midpoint scheme [65, 83, 84], which is originally designed for a liquid crystal model,

to compute the advective Cahn-Hilliard equations. With this method, a discrete energy

law can be obtained and consistent to the continuous one. However, Hua et. al. [65]

observed some non-physical oscillations of the solution at the interface defined by

f = 0, which were caused by the time discretization using this midpoint method. A

remedy was proposed that a lower order scheme (say, implicit backward Euler) was

used at the initial time step and the modified midpoint scheme for other ones. The

corresponding algorithm will be adopted in the present work.

Let

W = W1;3
bu

(W)�L2
0(W)�W 1;3(W)�W 1;3(W);
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then we seek the weak solutions of the resulting variational forms in Wh = Uh�Ph�

Hh�Th, which is a subspace of W given by a finite element discretization of W, Wh
0

represents the space Wh satisfying the homogeneous Dirichlet boundary condition.

If (un
h; pn

h;fn
h ;wn

h ;q n
h ) 2Wh is an approximation of u(tn) = u(nDt); p(tn) = p(nDt),

f(tn) = f(nDt), w(tn) = w(nDt) and q(tn) = q(nDt) at time tn with Dt representing

the time step size, then the approximation at time tn+1 = (n + 1)Dt can be denoted

as, (un+1
h ; pn+1

h ;fn+1
h ;wn+1

h ;q n+1
h ) 2Wh and can be computed by the following finite

element methods:
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for all (v;q;y;c;z ) 2Wh
0, where un+1

t̄ = 1
Dt (un+1

h �un
h);un+ 1

2
h = 1

2(un+1
h + un

h);

pn+ 1
2

h = 1
2(pn+1

h + pn
h);fn+1

t̄ = 1
Dt (f

n+1
h �fn

h );fn+ 1
2

h = 1
2(fn+1

h +fn
h );wn+ 1

2
h = 1

2(wn+1
h +

wn
h );q n+1

t̄ = 1
Dt (q

n+1
h �q n

h );q n+ 1
2

h = 1
2(q n+1

h +q n
h ), and the other two terms,

Fh(fn+1
h ;fn

h ) = 1
16e2 ((jfn+1

h j2� 1) + (jfn
h j

2� 1))2, gh(fn+1
h ;fn

h ) = 1
4((jfn+1

h j2� 1) +

(jfn
h j

2� 1))(fn+1
h + fn

h ), are the approximations of the nonlinear function F(f) and

g(f) = (jf j2�1)f respectively.

Note that, the divergence free equation (3.39) will be replaced by the following formu-

lation corresponding to the penalty method:

Z

W

 

(Ñ �un+ 1
2

h +d pn+ 1
2

h )q

!

dx = 0; (3.43)

in which a small term containing the pressure is added. In our computations, the co-

efficient d is chosen to be 10�6 to enforce the divergence free condition. When it is

necessary to use a larger d in order to improve the stability and accuracy a sequential

regularisation formulation (see [82]) may be used to replace the penalty formulation.

The divergence of the velocity, however, is no longer exactly zero after the above

replacement. In order to maintain the possible underlying energy law, a term 1
2(Ñ �

un+ 1
2

h )un+ 1
2

h is added in (3.38), corresponding to an additional zero term 1
2(Ñ �u)u to

(3.1) following the pseudo-compressibility method that was mentioned in [117].

Those three terms in (3.38), i.e. Fh(fn+1
h ;fn

h ), gh(fn+1
h ;fn

h ) and 1
2(Ñ � un+ 1

2
h )un+ 1

2
h ,

based on the modified midpoint scheme, are so designed that when taking the surface

tension coefficient as a constant (isotherm case, say, l1 = 0) and ignoring the external

forces term (e.g. the gravitational term), an accurate discrete energy law for the fully
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discrete system can still be derived:
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in which way, our methods are trying to maintain such a possible underlying energy law

at its greatest extent for the case where the surface tension is assumed to be temperature

dependent.

3.6 Implementation issues

In this section, we consider the iterative algorithm to compute the solutions of the mod-

ified midpoint scheme. Since the system (3.20)-(3.23) is a strongly coupling system,

including a modified N-S equation, an advective Cahn-Hilliard equation and an energy

transport equation, a linearisation is needed so that the solutions can be computed by

solving a linear system at each time step. In [113], Newton’s method was employed

to linearise a similar complicated system, which led to a linear system depending on

time. A different linear system had to be solved for every time step, indicating that

the process would be highly time-consuming. In the present work, a fixed point iter-

ation is used as a linearisation for all the nonlinear terms, so that we can get a linear

system which is symmetric and, more importantly, does not depend on time. Then the

Cholesky factorisation is needed only once to factorize the symmetric linear system at

the initial time step, since after that the coefficient matrix will remain the same. So the

solution of the implicit scheme can be computed as if it is an explicit scheme at any

time step other than the initial one.

The algorithm is designed as the following:
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Starting with (un; pn;fn;wn;q n) as the initial guesses at the (n + 1)th time step, we

can find the solutions (un+1
k+1; pn+1

k+1;fn+1
k+1 ;wn+1

k+1 ;q n+1
k+1 ) (which can be seen as approxi-

mations for un+1; pn+1;fn+1;wn+1 and q n+1, respectively) by interactively solving the

variational equations:

(a) for the initial estimate, the Backward Euler method is employed:
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(b) for the other iteration steps, a modified midpoint method is used. And then the
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resulting nonlinear system is solved by a fixed point iteration, evaluating all the non-

linear terms as the previous iteration.
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Considering the following stopping criteria for the iteration, if

(jjun+1
k+1�un+1

k jj2L2 + jjfn+1
k+1 �fn+1

k jj2L2 + jjwn+1
k+1 �wn+1

k jj2L2 + jjq n+1
k+1 �q n+1

k jj2L2)
1
2

6 tolerance; (3.55)

then the solutions for the (k + 1)th time step can be defined as

(un+1; pn+1;fn+1;wn+1;q n+1) = (un+1
k+1; pn+1

k+1;fn+1
k+1 ;wn+1

k+1 ;q n+1
k+1 ); (3.56)

otherwise, the current iteration would be continued. As it can be seen that the stiffness

matrix is independent of the time step n and the number s of the fixed point iterations,

and is symmetric if c = 0. Therefore in our computations, the Cholesky factorisation

was only used to solve the NS equations (3.50), (3.51), and the direct solver (UMF-

PACK) is used to solve the CH (3.52), (3.53) and heat equations (3.54). Moreover, the

system (3.50)-(3.51) for u and p, the system (3.52)-(3.53) for f and w and also (3.54)

for q are separated automatically, which means that fn+1
k+1 and wn+1

k+1 can be obtained

first by solving (3.52)-(3.53), then followed by solving (3.54) to obtain q n+1
k+1 , the NS

equation would be solved finally in order to get un+1
k+1 and pn+1

k+1. This procedure further

reduces the size of the system and the cost of computations. It could also be an efficient

way to achieve time-domain parallelization.

3.7 Numerical experiments for Bénard-Marangoni con-

vection for heating from above

Since two immiscible liquids (Acetonitrile and n-Hexane) share the similar physical

properties, the system consisting of an Acetonitrile and an n-Hexane can be solved by
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Property Acetonitrile n-Hexane
r(103 kgm�3) 0.776 0.655
n(10�6 m2s�1) 0.476 0.458
k(10�1 Jm�1s�1K�1) 1.88 1.20
cp(103 Jkg�1K�1) 2.23 2.27
a(10�3 K�1) 1.41 1.41
s0(10�3 Nm�1) 28.66 17.89
s1(10�5 Nm�1K�1) 12.63 10.22

Table 3.1: Physical properties of the Acetonitrile and n-Hexane.

our phase-field model, where all the properties (except the density) of the two liquids

can be assumed to be the same (here we employ the parameters of n-Hexane for both

fluids). We will compute a few examples for Bénard-Marangoni convection in such

a two-layer fluid system heated from above, with the physical properties reported by

Jule ([73], see the following table). Note that a similar simulation was also performed

by Cliffe and Tanvern [115], in which a sharp interface was assumed.

3.7.1 Mechanism for Bénard-Marangoni convection

The mechanism of heating from above, as sketched in Figure 3.1, has been summarized

by Johnson and Narayanan [72]. In both diagrams, the two-layer fluid systems are all

heated from above, with a constant temperature gradient between the two horizontal

plates. In the upper diagram (Case 1), a perturbation in the interface towards the low

temperature side is assumed (bottom boundary). This local temperature reduction of

interface lowers the surface tension and leads to a surface tension gradient along the

interface due to its temperature dependence, with the largest surface tension in the

centre of the interface. For the upper layer, this local gradient drags the fluid towards

the centre of the interface. This is then replaced by hot fluid flowing downward from

the top boundary to the edge of the interface, reinforcing the perturbation. Meanwhile,

as the flow of the lower fluid is viscously coupled, there is upwelling of cold fluid
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from the bottom boundary to the edge of the interface, which tends to lower the local

temperature and dampen the perturbation.

The lower diagram (Case 2 in Figure 3.1) just shows the opposite scenario, in which

the perturbation in the interface towards the high temperature side (top boundary) is

assumed. Again, the convection set in, with the flow in the upper layer reinforcing the

instability and reducing it in the lower layer.

As shown in Figure 3.1, a rectangular domain is defined that W = W1[W2 = [0;2]�

[0;1]. Let ¶W = ¶W1[¶W21[¶W22[¶W3[¶W41[¶W42 denote the boundary of Wr,

d = d1 +d2 is the distance between two horizontal plates, P1, P2 denote two intersection

points between boundary ¶W and the horizontal midline G, where G is also adopted as

the initial interface for the two-layer fluid. Now we give the boundary and initial

conditions for the problem.

Boundary and Initial conditions for velocity

uj¶W = 0; u0(x) = p0(x) = 0 (x 2W): (3.57)

Boundary and Initial conditions for phase

f jP1[P2 = 0; f j¶W1[¶W21[¶W41n(P1[P2) = 1; f j¶W3[¶W22[¶W42n(P1[P2) =�1; (3.58)

f0(x) = 1 (x 2W1); f0(x) =�1 (x 2W2); f0(x) = 0 (x 2 G): (3.59)

Since in the present work, the experiments are carried out to test our phase-field model

with thermocapillary effects, a Dirichlet boundary condition for f is assigned, im-

plying that the intersection points between the phase interface and boundary ¶W, on

which f = 0, are fixed. When it is necessary to consider the effects where the fluid-

fluid interface intersects the plates, the moving contact line problem will be involved.

The generalized Navier boundary condition for the velocity u and a dynamic boundary

condition for the phase variable f can be imposed to supplement the phase-field model
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Figure 3.1: Sketch for two cases of Marangoni-Bénard convection in a two-layer fluid
system heated from above.
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(see [45] as an example). Further, G is assumed to be the initial position of the interface

G = Gm +Gp;

where Gm is the midline of the domain, and Gp is the perturbation added in the interface.

Based on the work done by Tavener et. al. [115], a half cycle of a sine wave is added as

a perturbation, say, Gp = a1 sin(k�2px)+c1 for Case 1, and Gp = a2 sin(k�2px)+c2

for Case 2, where a1 = 0:1;c1 =�0:05;a2 =�0:1;c2 = 0:05 and k = 0:5.

Boundary and Initial conditions for temperature

For top heating and bottom cooling, the temperature boundary conditions for the two

horizontal plates can be given as:

q j¶W1 = 1; q j¶W3 = 0; (3.60)

since the two vertical plates are assumed to be adiabatic, Neumann boundary condi-

tions are specified:

dq

dx
j¶W2 =

dq

dx
j¶W4 = 0 (3.61)

for the two vertical plates. Note that the temperature boundary conditions are not

specified on ¶W21, ¶W22, ¶W41 and ¶W42.

The initial condition for temperature is given as:

q0(x) = AêT � r (x 2W); (3.62)

where a temperature gradient of the above form is imposed, A is a constant, êT is the

unit vector in the direction of the temperature gradient and r = (x;y) is the spatial

coordinate. Based on our top and bottom temperature boundary condition, a constant

temperature gradient between two horizontal plates is assumed, say, A = 1; êT = (0;1).
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Numerical Results

Considering the boundary and initial conditions (3.57)-(3.62), we compute a few ex-

amples for Bénard-Marangoni convection in an Acetonitrile and an n-Hexane system

heated from above to justify our phase-field model and further to demonstrate our

method. A 60�30 grid will be used for all the examples. The computations are car-

ried out with the help of the freefem++ platform ([61]) and MATLAB. We apply the

fixed point iterative method (cf. (3.45)-(3.49) and (3.50)-(3.54)) with a sufficiently

small tolerance. All computations are carried out using the P2 (piecewise polyno-

mial of degree two) finite element space for the velocity u, the phase variables f , w

and the temperature variable q , and the P1 finite element space for the pressure p.

All the computations are performed with the following parameter values if not other-

wise stated, Pr = 5:76;Ca = 10�3;G = 5�104;Ra = 2�103;rr = 1:2;e = 10�2;Pe =

2:5�10�3;d t = 10�4. Note that our numerical method works well and can converge

within several iteration steps (e.g., 10-15 iteration stpes) with this set of parameter val-

ues. However, when we chagne the parameter value (for example, increasing Pe or

reducing e), our numerical method seems to converge hardly. The reason is that as we

increase the value of Pe, the diffusivity of the diffuse interface is increased as well.

The fast changes of the interface can be a challenge to convergence of the numerical

methods. On the other hand, as we decrease the value of e , the thickness of the diffuse

interface is decreased correspondingly, a finer remeshment is required so that the thin

interfacial region can be resovled. Therefore, for a larger value of Pe a smaller time

step is suggested, and for a smaller value of e a finer mesh (especially for the interfacial

region) is required.
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Figure 3.2: Flow field with deformed interface and Streamlines for Bénard-Marangoni
convection with Ma = 80 in Case 1. Positive values of the stream function indicate
clockwise circulation and negative values indicate anti-clockwise circulation. Pr =
5:76;Ca = 2:5�10�3;G = 5�104;Ra = 2�103;rr = 1:2;e = 10�2 and Pe = 2:5�
10�3.
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Figure 3.3: Isotherms for Bénard-Marangoni convection with Ma = 80 in Case 1.
Pr = 5:76;Ca = 2:5� 10�3;G = 5� 104;Ra = 2� 103;rr = 1:2;e = 10�2 and Pe =
2:5�10�3.

3.7.2 Ma=80 for Case 1

We first compute an example for Case 1. The velocity field and the deformation of

the interface are shown on the left in Figure 3.2, while on the right is the streamlines.

As can be seen that, the Marangoni forces dominate the convection for Ma = 80. As

the two pairs of anti-rotating convection set in, the fluid is dragged from both the edge

to the middle of the domain, producing downwelling along the centreline of the lower

fluid and upwelling of the upper fluid. As time progresses, the pair of rolls in the upper

layer dominates the convection, leading to a slight deformation of the interface.

Figure 3.3 shows the corresponding isotherms. For t = 500d t, we can see that, the

isotherm lines in the upper and lower layers are distorted strongly further away from

each other along the centreline, and closer to each other along the edges. Due to

the strong heat convection in both layers, the local temperature of the middle of the

interface is kept lower than that of the edges, despite the slight deformation of the

interface.

3.7.3 Ma=80 for Case 2

This time, we compute the flow with the perturbation in Case 2, where all the values

of parameters including Marangoni number are kept the same as in x3.7.1.
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 psi 

IsoValue
-0.334759
-0.299404
-0.264049
-0.228694
-0.193339
-0.157984
-0.122629
-0.0872745
-0.0519196
-0.0165647
0.0187902
0.0541451
0.0895
0.124855
0.16021
0.195565
0.23092
0.266275
0.301629
0.336984

 psi 

t = 10d t

 

 

 psi 

IsoValue
-1.09088
-0.975644
-0.860409
-0.745174
-0.629939
-0.514704
-0.399469
-0.284233
-0.168998
-0.053763
0.0614721
0.176707
0.291942
0.407178
0.522413
0.637648
0.752883
0.868118
0.983353
1.09859

 psi 

t = 100d t

 

 

 psi 

IsoValue
-3.55038
-3.17602
-2.80167
-2.42731
-2.05296
-1.6786
-1.30425
-0.929894
-0.555539
-0.181185
0.19317
0.567525
0.941879
1.31623
1.69059
2.06494
2.4393
2.81365
3.18801
3.56236

 psi 

t = 400d t

 

 

 psi 

IsoValue
-3.86918
-3.46127
-3.05337
-2.64546
-2.23756
-1.82965
-1.42174
-1.01384
-0.605929
-0.198022
0.209885
0.617791
1.0257
1.4336
1.84151
2.24942
2.65732
3.06523
3.47314
3.88104

 psi 

t = 500d t

Figure 3.4: Flow field with deformed interface and streamlines for Bénard-Marangoni
convection with Ma = 80 in case 2. Positive values of the stream function indicate
clockwise circulation and negative values indicate anti-clockwise circulation. Pr =
5:76;Ca = 2:5�10�3;G = 5�104;Ra = 2�103;rr = 1:2;e = 10�2 and Pe = 2:5�
10�3.
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 theta 

t = 0

 theta 

t = 500d t

IsoValue
0.025
0.075
0.125
0.175
0.225
0.275
0.325
0.375
0.425
0.475
0.525
0.575
0.625
0.675
0.725
0.775
0.825
0.875
0.925
0.975

 theta 

Figure 3.5: Isotherms Bénard-Marangoni convection with Ma = 80 in case 2. Pr =
5:76;Ca = 2:5�10�3;G = 5�104;Ra = 2�103;rr = 1:2;e = 10�2 and Pe = 2:5�
10�3.

Figure 3.4 shows the reversed situation for Case 2. Again, there are two pairs of anti-

rotating convection. However, the fluid is dragged from the middle of the domain to

both of the edges. The isotherms, from Figure 3.5 for t = 500d t, are distorted closer

to each other in the middle, and further away on both of the edges of the interface.

Thus, we computed two cases of the Bénard-Marangoni convection in an Acetonitrile

and an n-Hexane two-layer fluid system heated from above, the computing results show

the physics of the convection and consequently, it justices that our phase-field model

derived from the energetic variational procedure reflects the mechanism of Bénard-

Marangoni convection in the two-layer fluid system.
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3.7.4 Thermocapillary-driven Convection

To validate our phase-field model numerically, we now investigate the thermocapillary-

driven convection in a heated micro-channel with two-layer superimposed fluids with

a planar interface [98]. Note that the dimensional formulations (3.1)-(3.1) will be

computed for this example. Our numerical results will be compared with analytical

solutions obtained in [98]. Note that a similar comparison are also carried out in section

5.7.3. Considering two-layer fluids (figure 3.6), where the heights of the fluid A (upper)

and fluid B (lower) are a and b, respectively, and the fluids are of infinite extension

in the horizontal direction. The physical properties of the fluids are their densities,

viscosities and heat conductivities. The temperature variations in the present study are

considered to be small enough so that the thermophysical properties of each fluid are

assumed to remain constant, with the exception of surface tension. The temperature of

the lower and upper plates are

T b(x;�b) = Th + T0 cos(wx) and T a(x;a) = Tc (3.63)

respectively, where Th > Tc > T0 > 0, and w = 2p=l is a wave number with l being

the channel length. The above temperature boundary conditions establish a tempera-

ture field that is periodic in the horizontal direction with a period of l. Therefore, it

is only sufficient to focus on the solution in one period, i.e.,�l=2 < x < l=2. In the

limit of zero Marangoni number and small Reynolds number, it is possible to ignore

the convective transport of momentum and energy. In addition, we assume that the

interface is to remain flat. By solving the simplified sharp-interface governing equa-

tions with the corresponding jump boundary conditions at the interface, Pendes et al,

[98] obtained the analytical solutions for temperature field T̄ (x;y) and stream-function
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Fluid A

Fluid B

a

b

! l / 2 l / 2

x

y

Figure 3.6: The schematic diagram showing two immiscible fluids in a microchannel.
The temperatures of the lower and upper plates are T b(x;�b) = Th + T0cos(kx) and
T a(x;a) = Tc, respectively, where Th > Tc > T0 and k = 2p=l is the wave number, and
a and b are the heights of the fluid A and B respectively.

ȳ(x;y), where for the upper fluid

T̄ A(x;y) =
(Tc�Th)y + k̃Tcb + Tha

a + k̃b
+ T0 f (a;b ; k̃) sinh(a�wy) cos(wx);

(3.64)

ȳA(x;y) =
Umax

w
1

sinh2(a)�a2

n
wy sinh2(a)cosh(wy)

�
1
2

h
2a2 +wy

�
sinh(2a)�2a

�i
sinh(wy)

o
sin(wx); (3.65)

and for the lower fluid

T̄ B(x;y) =
k̃(Tc�Th)y + k̃Tcb + Tha

a + k̃b
+ T0 f (a;b ; k̃)

h
sinh(a)cosh(wy)

�k̃sinh(wy)cosh(a)
i

cos(wx); (3.66)

ȳB(x;y) =
Umax

w
1

sinh2(b )�b 2

n
wy sinh2(b )cosh(wy)

�
1
2

h
2b 2�wy

�
sinh(2b )�2b

�i
sinh(wy)

o
sin(wx): (3.67)
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e = 0:02 e = 0:01 e = 0:005 e = 0:002
jjy�ȳjjL2
jjȳjjL2

6:037�10�2 1:538�10�2 3:904�10�3 8:292�10�4

Table 3.2: L2 norm of the relative difference between the numerical results and the
analytical solutions for section 3.7.3

In the above equations the unknowns are defined by k̃ = kA=kB, a = aw , b = bw ,

f (a;b ; k̃) = 1=(k̃sinh(b )cosha + sinh(a)coshb ), g(a;b ; k̃) = sinh(a) f (a;b ; k̃) and

Umax =�

 
T0sT

mB

!

g(a;b ; k̃)h(a;b ; m̃);

h(a;b ; m̃)

=

�
sinh2(a)�a2

��
sinh2(b )�b 2

�

k̃
�

sinh2(b )�b 2
��

sinh(2a)�2a
�

+
�

sinh2(a)�a2
��

sinh(2b )�2b
� :

Based on their work, the simulations for our phase-field model are carried out in a

2D domain [�l=2; l=2]� [�b;a] with l = 1:6� 10�4, and a = b = 4� 10�5. As the

interface between the two fluids is assumed to be flat and rigid, the initial conditions

for the phase-field is only depending on y, and can be given in the form

f(y) = tanh
� y

2
p

2e

�
; for y 2 (�b;a); (3.68)

where e is related to the thickness of the diffuse interface. The periodic boundary

conditions are applied on the left and right sides of the domain. On the top and bottom

walls, the no-slip boundary conditions are imposed such that

u = 0 for y = a;�b: (3.69)

Eq.(3.63) are used as the boundary conditions for temperature with Th = 20, Tc = 10

and T0 = 4. Moreover, the fluid properties are set as r0 = 1, cp = 1, mA = mB = 0:2,

k = 0:2, s0 = 2:5� 10�1, sT = �5� 10�3 (at Tre f = Tc). The contours of stream
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Numerical results Analytical solutions

IsoValueIsoValue
-1.73405e-08
-1.55152e-08
-1.36898e-08
-1.18645e-08
-1.00392e-08
-8.2139e-09
-6.38859e-09
-4.56328e-09
-2.73797e-09
-9.12656e-10
9.12656e-10
2.73797e-09
4.56328e-09
6.38859e-09
8.2139e-09
1.00392e-08
1.18645e-08
1.36898e-08
1.55152e-08
1.73405e-08

-1.73443e-08
-1.55186e-08
-1.36929e-08
-1.18672e-08
-1.00414e-08
-8.21573e-09
-6.39001e-09
-4.56429e-09
-2.73858e-09
-9.12859e-10
9.12859e-10
2.73858e-09
4.56429e-09
6.39001e-09
8.21573e-09
1.00414e-08
1.18672e-08
1.36929e-08
1.55186e-08
1.73443e-08

Figure 3.7: Streamlines of the numerical results and analytical solutions for the exam-
ple of thermocapillary convection in two-layer fluid system. Positive (negative) values
of the stream-function indicate the clockwise (the counterclockwise) circulation.

function with e = 0:002 are shown in figure ??. It can be seen that our numerical

results are in good agreement with the analytical solutions. In order to show that our

phase-field model approaches to the sharp-interface model as the thickness of diffuse

interface goes to zero, the computations are carried out by using four different values

of e(= 0:02;0:01;0:005;0:002). The L2 norm of the relative difference between the

numerical results and analytical solutions are shown in table 2. We can observe that

as the value of e decreases, the L2 norm of relative difference decreases for stream

functions. Note that a more detailed description of ths numerical experiment will be

provided in section 5.7.3.

3.8 Numerical experiments for thermocapillary effects

To illustrate the thermocapillary effects, two interesting numerical experiments were

carried out in [30]. In their experiments, a square domain with a circle inside was

occupied by a two-layer fluid. When applying two different temperature boundary

conditions: one is heating inside (on the circle boundary) and cooling outside (on the

square boundary); and the other one, conversely, is heating outside and cooling inside,

some thermocapillary effects can be observed. Due to the temperature dependence of
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Figure 3.8: Domain W for flow with thermocapillary effects.

the surface tension, the horizontal interface between the two layers deformed, present-

ing sine/cosine-like curves. However, no further analysis about the mechanism was

reported. Moreover, for a simpler numerical treatment, they employed an Allen-Cahn

equation to describe the phase-field equation rather than Cahn-Hilliard equation, which

involves fourth-order differential operators.

In the present work, we will repeat this experiment with our phase-field model, in

which the Cahn-Hilliard phase-field equation is employed. Equipped with one of their

temperature boundary conditions (heating inside and cooling outside), we will provide

analysis about the mechanism that results in the sine/cosine-like curve, the correspond-

ing computational results will be compared to show the reliability of our methods.

As shown in Figure 3.8, a squared domain with a circle inside is defined, W = [0;2]�

[0;2] \f(x;y)j(x�1)2 +(y�1)2 > 0:25g. Let ¶W = ¶Wo[¶Wi denote the boundary

of Ws, with ¶Wo = ¶W1[¶W21[¶W22[¶W3[¶W41[¶W42 and ¶Wi = W5[W6 rep-

resenting the outer boundary and inner boundary respectively, P1, P2, P3 and P4 denote

four intersection points between boundary ¶W and the horizontal midline G, where G
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is also adopted as the initial interface for the two-layer fluid.

Note that, the non-dimensionlized system for this experiment is kept the same with

that for Bénard-Marangoni convection, (3.20)-(3.23), except that the distance between

two parallel plates (horizontal or vertical) is chosen as the length scale, and q =

(q �� q0)=ql as the temperature scale, where q0 is the reference temperature ( in the

present work, it is set to be zero), ql is the temperature difference between the square

and circle boundaries.

Now we introduce boundary conditions and initial conditions for non-dimensional

phase-field model (3.20)-(3.23) in domain W.

Boundary and Initial conditions for velocity

uj¶W = 0; u0(x) = p0(x) = 0 (x 2W): (3.70)

Boundary and Initial conditions for phase

f jP1[P2[P3[P4 = 0; f j(¶W1[¶W21[¶W41)n(P1[P2)[¶W5n(P3[P4) = 1;

f j(¶W3[¶W22[¶W42)n(P1[P2)[¶W6n(P3[P4) =�1; (3.71)

f0(x) = 1 (x 2W1); f0(x) =�1 (x 2W2); f0(x) = 0 (x 2 G): (3.72)

Again a Dirichlet boundary condition for f is assigned to fix the intersection points.

The horizontal line G is assumed to be the initial position of the interface.

Specic boundary and initial conditions for temperature

Case 1 : Heating inside and cooling outside

q j¶Wi = 1 and q j¶W0 = 0; q0(x)j¶Wi = 1 and q0(x) = 0 elsewhere : (8:3)

As a first try, we let Ma = 80, Ra = 0, and the other parameters are kept the same with

those in Section 3.7, say Pr = 5:76;Ca = 2:5�10�3;G = 5�104;Ra = 2�103;rr =
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1:2;e = 10�2;Pe = 2:5� 10�3. However, as the time progresses, no deformation of

the interface is observed, the corresponding streamlines are shown in Figure 3.9a. As it

can be seen that, like Bénard-Marangoni convection in Case 2 of Section 3.7, two pairs

of anti-rotating convection set in, the fluid is dragged from both the middle to both

edges of the domain, producing downwelling along the centreline of the upper fluid

and upwelling of the lower fluid. Since the initial interface is assumed to be flat and no

buoyancy forces are considered (Ra = 0), the strength of the two pairs of convective

rolls are of the same degree and no deformation of the interface can be caused. As we

increase the Rayleigh number say Ra = 500;1000;5000, the balance of the convection

rolls is broken, with the Buoyancy forces gradually dominating the convection over

the thermocapillary effects. Streamlines for the flow at time t = 100d t with different

values of Ra are shown in Figure (3.9b)-Figure (3.9d), with the increasing Ra, the two

pairs of convection rolls disappeared with one pair rolls gradually controlling the flow,

which is caused by the increasing effects of buoyancy. Figure 3.10 shows that the inter-

face eventually evolves to a sine/cosine-like curve with Ma = 80 and Ra = 5000, when

time marches longer, this curve turns out to be steeper, which are similar with those

reported in [113], where the Allen-Cahn phase-field equation is employed. Therefore

we conclude that the competition between the Buoyancy forces (Ra) and the thermo-

capillary effects (Ma) can be shown in this interesting experiment, where the interface

deforms and presents the sine/cosine curve with buoyancy forces dominating the con-

vection over the thermocapillary effects.
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 psi 

(a) Ra = 0

IsoValue
-3.79803
-3.3987
-2.99936
-2.60003
-2.2007
-1.80137
-1.40203
-1.0027
-0.603369
-0.204036
0.195297
0.59463
0.993962
1.3933
1.79263
2.19196
2.59129
2.99063
3.38996
3.78929

 psi 

 psi 

(b) Ra = 500

IsoValue
-6.20644
-5.54857
-4.89069
-4.23282
-3.57495
-2.91708
-2.25921
-1.60134
-0.943465
-0.285594
0.372278
1.03015
1.68802
2.34589
3.00376
3.66163
4.31951
4.97738
5.63525
6.29312

 psi 

 psi 

(c) Ra = 1000

IsoValue
-7.17955
-6.41873
-5.65792
-4.8971
-4.13628
-3.37546
-2.61464
-1.85382
-1.093
-0.332183
0.428636
1.18945
1.95027
2.71109
3.47191
4.23273
4.99355
5.75437
6.51519
7.27601

 psi 

 psi 

(d) Ra = 5000

IsoValue
-11.0591
-9.89021
-8.72134
-7.55247
-6.3836
-5.21473
-4.04587
-2.877
-1.70813
-0.539261
0.629607
1.79847
2.96734
4.13621
5.30508
6.47395
7.64282
8.81168
9.98055
11.1494

 psi 

Figure 3.9: Streamlines for the flow with thermocapillary effects for different values
of the Rayleigh number at t = 100d t. Positive values of the stream function indicate
clockwise circulation and negative values indicate anti-clockwise circulation. Pr =
5:76;Ca = 2:5� 10�3;Ma = 80;G = 5� 104;Ra = 2� 103;rr = 1:2;e = 10�2 and
Pe = 2:5�10�3.
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 phi   phi  

t = 0d t t = 10d t
 phi   phi  

t = 100d t t = 200d t

Figure 3.10: Deformation of the interface with of Ra = 5� 103, Pr = 5:76;Ca =
10�3;Ma = 80;G = 5�104;rr = 1:2;e = 10�2 and Pe = 2:5�10�3.
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3.9 Discussion

In this chapter, we studied a phase-field model consisting of a modified N-S equation,

a Cahn-Hilliard phase-field equation and an energy transport equation. The modified

N-S equation was derived through an energetic variational procedure, in which a spe-

cial surface tension part was considered to serve as the temperature dependent surface

tension (thermocapillary effects). An appropriate variational form and a modified mid-

point method which preserve the possible underlying energy law to its greatest extent

are adopted to compute the strong nonlinear system. By solving the non-dimensional

system, a few examples of Bénard-Marangoni convections in an Acetonitrile and an

n-Hexane system heated from above were carried out. The results presented were in

a good agreement with the physics for two-layer Bénard-Marangoni convections sum-

marized by [72]. In addition, we computed an example for thermocapillary effects

that was originally carried out in [113] where an Allen-Cahn phase-field equation was

employed. Comparing to those in [113], we present similar results to show the relia-

bility of our methods. By developing the results further, we provided an analysis of

the mechanism about the deformation of the interface, turning out that the experiment

exhibited the competition between the thermocapillary effects and buoyancy forces.

Based on our results, we conclude that our phase-field model reflects the mechanism

of Bénard-Marangoni convection in the two-layer fluid system, and the modified mid-

point methods for the phase-field model performs well with the interface deformation

in a two-layer fluid.
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Chapter 4

A numerical method for the

quasi-incompressible

Cahn-Hilliard-Navier-Stokes

equations for variable density flows

with a discrete energy law

4.1 Introduction

In this chapter, we investigate numerically a diffuse interface model for the Navier-

Stokes equation with fluid-fluid interface when the fluids have different densities [87].

Under minor reformulation of the system, we show that there is a continuous energy

law underlying the system, assuming that all variables have reasonable regularities. It

is shown in the literature that an energy law preserving method will perform better
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for multiphase problems [65, 83, 84]. Thus for the reformulated system, we design

a C0 finite element method and a special temporal scheme where the energy law is

preserved at the discrete level. Such a discrete energy law (almost the same as the

continuous energy law) for this variable density two-phase flow model has never been

established before with C0 finite element. Newton’s method is introduced to linearise

the highly non-linear system of our discretization scheme. Some numerical experi-

ments are carried out using an adaptive mesh to investigate the scenario of coalescing

and rising drops with differing density ratio. The snapshots for the evolution of the

interface together with the adaptive mesh at different times are presented to show that

the evolution, including the break-up/pinch-off of the drop, can be handled smoothly

by our numerical scheme. The discrete energy functional for the system is examined

to show that the energy law at the discrete level is preserved by our scheme.

4.2 Quasi-Incompressible NSCH System

We consider the following non-dimensional Navier-Stokes Cahn-Hilliard (NSCH) sys-

tem with variable density governing the motion of a two-phase fluid:

Ñ �u =
a

Pe
Dm; or ṙ =�rÑ �u; (4.1a, 4.1b)

ru̇ =�
1

M

�
Ñp +CÑ � (rÑc
Ñc)

�
+Ñ � (

1

Re
Ñu)+Ñ

� 1

3Re
(Ñ �u)

�
�

1

Fr2(r�r0)ĵ;

(4.2)

r ċ = Ñ � (
1

Pe
Ñm); (4.3)

m = f (c)�
¶r

¶c

p

r2�
C

r
Ñ � (rÑc)�

Mr0a

Fr2 y; (4.4)
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where

ẋ = xt +(u �Ñ)x the material derivative,

u the velocity of mixtures,

p the pressure,

c phase variable (c = 1: fluid 1; c = 0: fluid 2),

r = r(c) the variable density of the mixture, a function of c,

m the chemical potential,

r0 a constant representing the “background” or reference density,

x = (x;y) the Cartesian coordinate system,

ĵ the vertical component of the unit vector in

Cartesian coordinate system,

y the vertical coordinate,

F(c) = c2(c�1)2=4 double-well potential (free energy),

f (c) the derivative of F ,

Ñc
Ñc extra reactive stress,

C the capillary number measuring the thickness of the interface,

M an analogue of the Mach number measuring the relative strength

of the surface tension and chemical energies,

Re the Reynolds number,

Fr the Froude number measuring the relative strengths of

inertial and gravitational forces,

Pe the diffusional Peclet number measuring the relative strengths

of (chemical) diffusion and advection.

Note that, as the gravitational effects are considered here, the system (4.1)-(4.4) we in-

vestigate in this paper is modified from the quasi-incompressible NSCH system in [87].

Comparing to the system of equations in [87], a gravitational force �(r�r0)ĵ=Fr2 is
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added to our momentum equation (4.2). Further, in order to maintain the thermo-

dynamic consistency of our system, an extra term �r0gay=Fr2 corresponding to the

gravitational forces is added to the chemical potential equation (4.4) (See Remark 4.2.1

for details).

Following Lowengrub and Truskinovsky [87], a simple mixture assumption is used

and the variable density is given by a harmonic interpolation of the densities of the two

incompressible constituents:

1

r(c)
=

c

r1
+

1� c

r2
;

where c is the mass concentration (phase variable), and r1, r2 are constants represent-

ing the densities of the two incompressible fluids respectively. Further we have

¶r

¶c
=�ar2; (4.5)

where a = (r2�r1)=r2r1 is a constant. Note that the above variable density model

is different from the most other models, where in the most other models the density

is assumed to be a linear function of c. This is a good approximation of the simple

mixture formulation if the densities are nearly matched. The harmonic interpolation

means that the volume of the mixture is preserved (see [13] and [19] for comprehensive

reviews). Moreover, by considering Eq.(4.3), we obtain

Ñ �u =�
1

r

¶r

¶c
ċ =

a

Pe
Dm: (4.6)

It can be observed that the two continuous equations in Eq.(4.1) are equivalent

ṙ =�rÑ �u () Ñ �u =
a

Pe
Dm: (4.7)
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It is well known that for the incompressible flows, the velocity field satisfies the diver-

gence free condition,

Ñ �u = 0: (4.8)

In this variable density model, however, this condition is no longer valid. Due to

the variation of c, a mixture of two incompressible fluids with different densities can

be compressible across the interface. In [87], such binary fluids satisfying Eq.(4.1)

are termed as quasi-incompressible. Note that the energy law preserving numerical

method is designed in this paper corresponding to either Eq.(4.1a) or Eq.(4.1b), where

in practice the method with Eq.(4.1a) is chosen for our computations. By presenting

the distribution of Ñ �u, the compressibility of quasi-incompressible flows along the

interface is demonstrated in §4:6 (Fig. 4.4 and Fig. 4.5).

The system is supplied with the initial conditions:

ujt=0 = u0; cjt=0 = c0;

the Dirichlet boundary conditions for the velocity: u(= bu) and the Neumann bound-

ary conditions for the phase variable c and m: Ñc � n̂ = 0 and Ñm � n̂ = 0, where n̂ is the

unit outward normal vector of the boundary.

Remark 4.2.1. Based on entropy production, the quasi-incompressible NSCH system

[87] was derived through an energetic variational procedure. It is thermodynamically

consistent with an energy functional E,

E =
Z

W

 
1

2
rjuj2 +

1

M
rF(c)+

C

2M
rjÑcj2

!

dx; (4.9)

where rjuj2=2 is the kinetic energy, and rF(c)=M +CrjÑcj2=2M is the Cahn-Hilliard

free energy. For simplicity, we only consider the two-dimensional case in this paper.
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Here x = (x;y) is the two dimensional Cartesian coordinate system. Note that the

potential energy is not considered in the original system.

In this paper, as the effects of gravity are considered, we consider the modified system

(4.1)-(4.4), where the corresponding non-dimensional total energy Ê for the system

(4.1)-(4.4) now can be defined as

bE = E + Eg

=
Z

W

 
1

2
rjuj2 +

1

M
rF(c)+

C

2M
rjÑcj2 +

1

Fr2ry

!

dx (4.10)

in which E is from the original system (Eq.(4.9)) and Eg is the gravitational potential

energy,

Eg =
Z

W

 
1

Fr2ry

!

dx; (4.11)

where W is a bounded domain and y is the coordinate in vertical direction.

We now rederive the system of equations with respect to the total energy Ê (Eq.(4.10)).

Differentiating Eg with respect to time (associated with the the variational procedure)

we obtain

dEg

dt
=
Z

W

 

�
1

Fr2Ñ � (ru)y

!

dx; (4.12)

where Eq.(4.1b) is used. Note that, for the sake of convenience, a reference density

r0 is subtracted off from the gravitational forces in the NS equation (4.2). In order to

derive the gravitational force �(r�r0)ĵ=Fr2 within a thermodynamically consistent
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framework, we multiply Eq.(2.1a) by �r0y=Fr2 to obtain

�
Z

W

 
1

Fr2r0yÑ �u�
1

Fr2r0yaÑ � (
1

Pe
Ñm)

!

dx = 0: (4.13)

Adding Eq.(4.13) to Eq.(4.12) and using integration by parts, we obtain

dEg

dt
=�

Z

¶W

 
1

Fr2(r�r0)yu�
ayr0

Fr2Pe
Ñm

!

� n̂ dx

+
Z

W

 
1

Fr2(r�r0)u�
r0a

Fr2Pe
Ñm

!

� ĵ dx; (4.14)

where n̂ is the unit outward normal vector of the boundary ¶W and

ĵ = Ñy =
�0

1

�
(4.15)

is the vertical component of the unit vector in Cartesian coordinate system. With the

homogeneous boundary conditions that the interface is assumed to have no intersec-

tions with the boundary ¶W, we arrive at

dEg

dt
=
Z

W

 
1

Fr2(r�r0)ĵ �u�
1

MPe
Ñm �Ñ(

Mr0ay

Fr2 )

!

dx; (4.16)

where, we notice that, with the reference density, not only the gravity but also the

chemical potential contribute to the time rate of the change of the potential energy.

Based on the entropy production and the variational procedure that is used in [87], the

first term at the right hand side will result in the gravitational forces �(r�r0)ĵ=Fr2

in the NS equation (4.2), acting as the external forces of our the system, and the second

term at the right hand side will contribute to the entropy production and will result in

�Mr0ay=Fr2 in the chemical potential (4.4) of our system. We thus obtain a new

chemical potential (4.4), which differs in the original model derived in [87] that an
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extra term �Mr0ay=Fr2 appears to account for the potential energy associated with

the gravitational force. In what follows (section 4.3), we will derive the energy law with

respect to the total energy bE (Eq.(4.10)) to show that the thermodynamic consistency

is maintained in our new system.

4.3 Energy Law Preserving Weak Form

We note that, only first order derivatives of u, p, û, c, mC are present so that the C0

finite element method can be used to solve the problem under this weak form. For

simplicity, we only consider the two-dimensional case in this paper. The results can

be straightforwardly extended to three dimensions. Let W be a bounded domain. We

denote the boundary of W by ¶W and suppose that ¶W is sufficiently smooth (for ex-

ample, Lipschitz-continuous). Denote the following spaces as W1;3(W) = (W 1;3(W))2,

W1;3
b (W) = fu 2W1;3(W);u = b on ¶Wg. Note that in order to obtain a meaningful

weak form, we require r is positive and r 2 L¥(W), and ru 2W1;3(W). A direct vari-

ational or weak form may be derived straightforwardly by multiplying Eq.(4.1a) with a

test function q, Eq.(4.2) with v, Eq.(4.3) with y and Eq.(4.4) with c . Using integration

by parts, we obtain the weak form as the following: Find u2W1;3
b (W), p2W 1;3=2(W),

c 2W 1;3(W), m 2W 1;3(W) such that

Z

W

 

u �Ñq�
a

Pe
Ñm �Ñq

!

dx = 0; 8q 2W 1;3=2(W); (4.17)

Z

W

 

ru̇ �v +
1

M
v �Ñp�

C

M
(rÑc
Ñc) : Ñv +

1

Re
Ñu : Ñv +

1

3Re
(Ñ �u)(Ñ �v)

+
1

Fr2(r�r0)ĵ �v

!

dx = 0; 8v 2W1;3
0 (W); (4.18)
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Z

W

 

r ċy +
1

Pe
Ñm �Ñy

!

dx = 0; 8y 2W 1;3=2(W); (4.19)

Z

W

 

mc� f (c)c +
¶r

¶c

p

r2c +
C

r
(Ñr �Ñc)c�CÑc �Ñc +

Mr0a

Fr2 yc

!

dx = 0;

8c 2W 1;3(W): (4.20)

At most, only first order derivatives of u, p, c, m , v, q, y and c are required so that

the C0 (conforming) finite element method can be used to solve the problem in this

variational form. In the case of homogeneous boundary conditions, there is an energy

law that underlies the system [87]. We now formally rederive the continuous energy

law using the weak form (4.17)-(4.20) (with homogeneous boundary conditions for u),

which is useful in deriving the discrete energy law preserving numerical scheme later.

For the momentum equation (4.18), by setting v = u and using integration by parts, we

obtain

Z

W

 

r
d

dt

1

2
(u �u)�Ñ � (ru)

1

2
(u �u)

!

dx =
Z

W

 
1

M
p(Ñ �u)+

C

M
(rÑc
Ñc) : Ñu

�
1

Fr2(r�r0)ĵ �u

!

dx�
1

Re
jjÑujj2L2�

1

3Re
jjÑ �ujj2L2 ; (4.21)

where we used the following identity under homogeneous boundary conditions

Z

W

 

r(u �Ñ)u �u

!

dx =
Z

W

 

�Ñ � (ru)
1

2
(u �u)

!

dx for uj¶W = 0:
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For the Cahn-Hilliard equation (4.19), we set y = m=M�a(r � r0)y=Fr2�aru �

u=2�arF(c)=M�arC(Ñc �Ñc)=2M�a p=M to obtain

Z

W

 
1

M
r ċm +

r0a

Fr2 yr ċ +
1

Fr2yṙ +
1

2
u �uṙ +

1

M
F(c)ṙ +

C

2M
Ñc �Ñcṙ +

1

M

p

r
ṙ

!

dx

=
Z

W

a

Pe
Ñm �Ñ

 
r�r0

Fr2 y +
1

2
ru �u +

1

M
rF(c)+

C

2M
rÑc �Ñc +

p

M

!

dx�
1

M

1

Pe
jjÑmjj2L2:

(4.22)

For the chemical potential equation (4.20), we set c = r ċ=M to obtain

Z

W

 
1

M
r

d

dt
F(c)�

1

M
Ñ � (ru)F(c)+

C

2M
r

d

dt
(Ñc �Ñc)�

C

2M
Ñ � (ru)(Ñc �Ñc)

!

dx

=
Z

W

 
1

M

p

r
ṙ�

C

M
(rÑc
Ñc) : Ñu +

1

M
r ċm +

r0a

Fr2 yr ċ

!

dx; (4.23)

where, for the term
R

W(r f (c)ċ=M)dx, we have

Z

W

 
1

M
r f (c)ċ

!

dx =
Z

W

 
1

M
r

d

dt
F(c)+

1

M
r(u �Ñ)F(c)

!

dx

=
Z

W

 
1

M
r

d

dt
F(c)�

1

M
Ñ � (ru)F(c)

!

dx: (4.24)

And for the term
R

W(CrÑc �Ñċ=M)dx, we have

Z

W

 
C

M
rÑc �Ñċ

!

dx =
Z

W

 
C

2M
r

d

dt
(Ñc �Ñc)+

C

M
rÑc �Ñ

�
(u �Ñ)c

�!

dx

=
Z

W

 
C

2M
r

d

dt
(Ñc �Ñc)�

C

2M
Ñ � (ru)(Ñc �Ñc)+

C

M
(rÑc
Ñc) : Ñu

!

dx; (4.25)

75



in which the following identity is used,

Ñ � (rÑc
Ñc) = Ñ � (rÑc)Ñc +
1

2
rÑ(Ñc �Ñc); (4.26)

such that

Z

W

 
C

M
rÑc �Ñ

�
(u �Ñ)c

�!

dx

=
Z

W

 

�
C

M
Ñ � (rÑc)(u �Ñ)c�

C

2M
ru �Ñ(Ñc �Ñc)+

C

2M
ru �Ñ(Ñc �Ñc)

!

dx

=
Z

W

 

�
C

M
Ñ � (rÑc
Ñc) �u�

C

2M
Ñ � (ru)(Ñc �Ñc)

!

dx

=
Z

W

 
C

M
(rÑc
Ñc) : Ñu�

C

2M
Ñ � (ru)(Ñc �Ñc)

!

dx: (4.27)

By adding Eqs.(4.21)-(4.23) together, we obtain

d

dt

 
1

2
jj
p

rujj2L2 +
C

2M
jj
p

r Ñcjj2L2 +
Z

W

� 1

M
rF(c)

�
dx

!

=�
1

Re
jjÑujj2L2�

1

3Re
jjÑ �ujj2L2�

1

MPe
jjÑmjj2L2

�
Z

W

 
1

Fr2(r�r0)ĵ �u +
r0a

Fr2Pe
ĵ �Ñm +(Ñ �u)

�1

2
ru �u +

1

M
rF(c)+

C

2M
r(Ñc �Ñc)

+
1

M
p
�

+
a

Pe
Ñm �Ñ

�1

2
ru �u +

1

M
rF(c)+

C

2M
rÑc �Ñc +

1

M
p
�!

dx: (4.28)
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For the continuous equation (4.17), we set q = ru �u=2+rF(c)=M+rC(Ñc �Ñc)=2M+

p=M +(r�r0)y=Fr2, through integration by parts we obtain

0 =�
Z

W

 

(Ñ �u)
�1

2
ru �u +

1

M
rF(c)+

C

2M
r(Ñc �Ñc)+

1

M
p +

r�r0

Fr2 y
�

�
a

Pe
Ñm �Ñ

�1

2
ru �u +

1

M
rF(c)+

C

2M
rÑc �Ñc +

1

M
p +

r�r0

Fr2 y
�!

dx: (4.29)

By adding Eq.(4.29) to Eq.(4.28), having in mind Eq.(4.15) and the following identity

under the homogeneous boundary conditions for u

Z

W

 
1

Fr2(r�r0)ĵ �u

!

dx =�
Z

W

 
1

Fr2Ñ �
�

(r�r0)u
�

y

!

dx; (4.30)

we finally obtain the continuous energy law for the quasi-incompressible NSCH sys-

tem with respect to the total energy bE (defined in Eq.(4.10)),

dbE

dt
=

d

dt

 
1

2
jj
p

rujj2L2 +
C

2M
jj
p

r Ñcjj2L2 +
Z

W

� 1

M
rF(c)+

1

Fr2ry
�

dx

!

=�
1

Re
jjÑujj2L2�

1

3Re
jjÑ �ujj2L2�

1

MPe
jjÑmjj2L2: (4.31)

By using Eq.(4.16), we obtain

dE

dt
=

d

dt

 
1

2
jj
p

rujj2L2 +
C

2M
jj
p

r Ñcjj2L2 +
Z

W

� 1

M
rF(c)

�
dx

!

=�
1

Re
jjÑujj2L2�

1

3Re
jjÑ �ujj2L2�

1

MPe
jjÑmjj2L2

�
Z

W

 
1

Fr2(r�r0)ĵ �u +
r0a

Fr2Pe
ĵ �Ñm

!

dx; (4.32)
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for the original energy E (Eq.(4.9)), without the potential energy. Note that two energy

laws (4.31) and (4.32) are equivalent in the continuous case, whereas, at the discrete

level, this equivalence relation depends on the discretization of the numerical meth-

ods. In section 4.4, two energy law preserving numerical methods are developed cor-

responding to the energy law (4.31) and (4.32) respectively. The method (based on

Eq.(4.1a)) with respect to the energy law (4.31) is used for our computations, and the

other method (based on Eq.(4.1b)) that preserves the energy law (4.32) at the discrete

level is presented in Remark 4.2.

From Eqs.(4.22), (4.25) and (4.29) we notice that, in deriving the energy law, the terms

CrÑc �Ñ[(u �Ñ)c]=M and �aCÑm �Ñ(rÑc �Ñc)=2MPe are involved, implying that a

higher regularity than c 2W 1;3 is needed and that more complicated C1 finite elements

are needed. To ensure the energy law with the lower regularity c2W 1;3, we need to re-

formulate the equations of the system (4.1)-(4.4), so that only first order derivatives of

c are required during the derivation so that an energy law preserving C0 finite element

method can be derived.

4.4 Reformulation and the Numerical Method that Ac-

curately Preserve the Energy Law

We first reformulate the momentum equation (4.2) and the chemical potential equation

(4.4) in order that a rigorous energy law can be derived using lower regularity require-

ments so that the continuous (C0) finite element can be used. We emphasise C0 finite

elements because they are much simpler than the finite elements with a higher degree

of smoothness and are available in most existing finite element software packages,

which reduces various complications. Based on the weak form of reformulated sys-

tem, we then develop a special numerical scheme such that a discrete energy law can
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be rigorously obtained that is very similar to the continuous one (4.31). This feature

not only immediately implies the stability of the numerical scheme, but also ensures

the accuracy of the solutions.

4.4.1 New Formulation of the Momentum Equation

In order to obtain an accurate discrete energy law, we first consider the continuous

equation (4.1b)

rt +Ñ � (ru) = 0;

by multiplying u=2, we obtain

1

2
rtu +

1

2
Ñ � (ru)u = 0:

By adding this term to Eq.(4.2), we obtain

p
r(
p

ru)t +r(u �Ñ)u +
1

2
Ñ � (ru)u =�

1

M

�
Ñp +CÑ � (rÑc
Ñc)

�

+Ñ � (
1

Re
Ñu)+Ñ

� 1

3Re
(Ñ �u)

�
�

1

Fr2(r�r0)ĵ: (4.33)

We next consider the chemical potential equation (4.4) and rewrite it as

m� f (c)+
¶r

¶c

p

r2 +
C

r
Ñ � (rÑc)+

Mr0a

Fr2 y = 0;
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by multiplying rÑc=M and using Eq.(4.26), we obtain

1

M
rÑcm�

1

M
rÑF(c)+

1

M

p

r
Ñr +

C

M
Ñ � (rÑc
Ñc)

�
C

2M
rÑ(Ñc �Ñc)+

r0a

Fr2 yrÑc = 0: (4.34)

By introducing a new pressure p̂,

p̂ = p +rF(c)+
C

2
rjÑcj2; (4.35)

we obtain

p = p̂�rF(c)�
C

2
rjÑcj2: (4.36)

Adding Eq.(4.34) to Eq.(4.33) and using in mind of Eq.(4.36), we obtain a new formu-

lation of the momentum equation

p
r(
p

ru)t +r(u �Ñ)u +
1

2
Ñ � (ru)u =�

1

M
rÑ(

p̂

r
)+

1

M
rmÑc

+Ñ � (
1

Re
Ñu)+Ñ

� 1

3Re
(Ñ �u)

�
+

r0a

Fr2 yrÑc�
1

Fr2(r�r0)ĵ: (4.37)

Note that the similar treatment for the variable density terms can be found in [110],

where a different phase-field model has been studied and a variable s =pr was in-

troduced.
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4.4.2 New Formulation of the Chemical Potential Equation

For the chemical potential equation (4.4), by multiplying r on both sides and substi-

tuting (4.36) we obtain

rm = r f (c)�
¶r

¶c

p̂

r
+

¶r

¶c
F(c)+

¶r

¶c

C

2
(Ñc �Ñc)�CÑ � (rÑc)�

Mr0a

Fr2 yr:

Note that the reason we introduce a new pressure p̂ and reformulate Eq.(4.2) and

Eq.(4.4) is that, in the weak form presented later, we can derive an accurate discrete

energy law while keeping the variables in appropriate functional spaces as we assume

at the beginning of section 4.3.

4.4.3 New System and Weak Form

Now we obtain the new system for the quasi-incompressible NSCH system for variable

density flows,

Ñ �u =
a

Pe
Dm; (4.38)

p
r(
p

ru)t +r(u �Ñ)u +
1

2
Ñ � (ru)u =�

1

M
rÑ(

p̂

r
)+

1

M
rmÑc

+Ñ � (
1

Re
Ñu)+Ñ

� 1

3Re
(Ñ �u)

�
+

r0a

Fr2 yrÑc�
1

Fr2(r�r0)ĵ; (4.39)

r ċ = Ñ � (
1

Pe
Ñm); (4.40)

rm = r f (c)�
¶r

¶c

p̂

r
+

¶r

¶c
F(c)+

¶r

¶c

C

2
(Ñc �Ñc)�CÑ � (rÑc)�

Mr0a

Fr2 yr: (4.41)

81



The corresponding new weak form reads: find u 2W1;3
b (W), p̂=r 2W 1;3=2(W), c 2

W 1;3(W) and m 2W 1;3(W) such that

Z

W

 

�u �Ñq

!

dx =
Z

W

 

�
a

Pe
Ñm �Ñq

!

dx; 8q 2W 1;3=2(W); (4.42)

Z

W

 
p

r(
p

ru)t �v +r(u �Ñ)u �v +
1

2
Ñ � (ru)u �v

!

dx =
Z

W

 

�
1

M
r(v �Ñ)

p̂

r

�
1

Re
Ñu : Ñv�

1

3Re
(Ñ �u)(Ñ �v)+

1

M
r(v �Ñ)cm +

r0a

Fr2 yrv �Ñc

�
1

Fr2(r�r0)ĵ �v

!

dx; 8v 2W1;3
0 (W); (4.43)

Z

W

 

r ċy

!

dx =
Z

W

 

�
1

Pe
Ñm �Ñy

!

dx; 8y 2W 1;3=2(W); (4.44)

Z

W

 

rmc

!

dx =
Z

W

 

r f (c)c�
¶r

¶c

p̂

r
c +

¶r

¶c
F(c)c +

¶r

¶c

C

2
(Ñc �Ñc)c +CrÑc �Ñc

�
Mr0a

Fr2 yrc

!

dx; 8c 2W 1;3(W): (4.45)

If we let v = u, y = m=M� (r �r0)ay=Fr2�a p̂=M, c = ct=M and q = p̂=M, we

can still obtain the continuous energy law

dbE

dt
=

d

dt

 
1

2
jj
p

rujj2L2 +
C

2M
jj
p

r Ñcjj2L2 +
Z

W

� 1

M
rF(c)+

1

Fr2ry
�

dx

!

=�
1

Re
jjÑujj2L2�

1

3Re
jjÑ �ujj2L2�

1

MPe
jjÑmjj2L2:
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From Sobolev’s embedding theorem [3] (page 85), we know that

jj f jjLq(W) �CjjÑ f jjLp(W); 8 f 2W 1;p; 1� p < q�
np

n� p
;

where C is a generic constant. As mentioned earlier, we only consider the problem in

2D cases. By setting f = c3, n = 2, p = 1 and q = np=(n� p), we have

jjc4jj3=4
L3=2 = jjc3jjL2 �Cjj3c2ÑcjjL1 �Cjjcjj2L3jjÑcjjL3 ;

where the Hölder’s inequality is used (jj f gjjL1 � jj f jjL3=2jjgjjL3). Hence, in the third

term at the right hand side, F(c) 2 L3=2. In the fourth term at the right hand side, it

is obvious that Ñc �Ñc 2 L3=2 when c 2W 1;3 by Hölder’s inequality. Bearing in mind

r 2 L¥(W) and Eq.(4.5), we obtain

¶r

¶c
F(c) 2 L3=2 and

¶r

¶c
Ñc �Ñc 2 L3=2; (4.46)

and thus both integrals are finite when c 2W 1;3 and c 2W 1;3.

Next we present a special temporal scheme where an accurate discrete energy law can

be obtained. If C0 finite elements are used and if time remains continuous, the finite

element solution belongs to the functional spaces required in weak form (4.42)-(4.45).
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4.4.4 A Special Temporal Scheme with an Accurate Discrete En-

ergy Law

We seek to solve the weak problem (4.42)-(4.45) using a finite difference scheme in

time and a conformal C0 finite element method in space. Let

Wb = W1;3
b (W)�W 1;3=2(W)�W 1;3(W)�W 1;3(W);

and Wh
b = Uh

b � Ph �Hh �Hh; be a finite dimensional subspace of Wb given by

a finite element discretization of W. Let Dt > 0 represent the time step size and

(un
h; p̂n

h;cn
h;mn

h ) 2Wh
b be an approximation of u(tn) = u(nDt), p̂(tn) = p(Dt), c(tn) =

c(Dt) and m(tn) = m(Dt). The approximation at time tn+1 = (n + 1)Dt is denoted as

(un+1
h ; p̂n+1

h ;cn+1
h ;mn+1

h )2Wh
b and is computed by the following finite element scheme

Z

W

 

� (
p

ru)n+1
h �Ñq

!

dx =
Z

W

 

�
a

Pe
Ñmn+ 1

2
h �Ñq

!

dx; (4.47)

Z

W

 
p

rn+ 1
2

h (
p

ru)n+1
t̄ �v +rn+ 1

2
h

�
(
p

ru)n+1
h �Ñ

�
(
p

ru)n+1
h �v

+
1

2
Ñ �
�

rn+ 1
2

h (
p

ru)n+1
h

�
(
p

ru)n+1
h �v

!

dx

=
Z

W

 

�
1

M
rn+ 1

2
h (v �Ñ)

p̂n+ 1
2

h

rn+ 1
2

h

�
1

Re
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(4.48)
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dx; (4.49)
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r(cn+1

h ;cn
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rn+ 1
2

h

Mr0

Fr2 yc

!

dx; (4.50)

for all (v;q;y;c) 2Wh
0, where Wh

0 represents the space Wh
b (b = 0) satisfying homo-

geneous Dirichlet boundary conditions and

rn+1
h =

r1r2

(r2�r1)cn+1
h +r1

; rn+ 1
2

h =
rn+1

h +rn
h

2
; prn+ 1

2
h =

q
rn+1

h +
p

rn
h

2
;

p̂n+ 1
2

h =
p̂n+1

h + p̂n
h

2
; (pru)n+1

h =

q
rn+1

h un+1
h +

p
rn

h un
hq

rn+1
h +

p
rn

h

; (pru)n+1
t̄ =

q
rn+1

h un+1
h �

p
rn

h un
h

Dt
;

cn+1
t̄ =

cn+1
h � cn

h

Dt
; cn+ 1

2
h =

cn+1
h + cn

h

2
; mn+ 1

2
h =

mn+1
h + mn

h

2
:

Further,

g(cn+1
h ;cn

h) =
1

4

�
cn+1

h (cn+1
h �1)+ cn

h(cn
h�1)

�
(cn+1

h + cn
h�1) (4.51)

is an approximation to the nonlinear function F 0(c) = f (c) = c(c�1)(c�1=2), where

we note the identity,

F(cn+1
h )�F(cn

h) = g(cn+1
h ;cn

h)(cn+1
h � cn

h): (4.52)
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Here

r(cn+1
h ;cn

h) =�
r1r2(r2�r1)

�
(r2�r1

�
cn+1

h +r1)
�

(r2�r1)cn
h +r1

� ; (4.53)

is an approximation of the nonlinear function

¶r(c)

¶c
=�ar2(c) =�

r1r2(r2�r1)
�

(r2�r1)c +r1

�2 ; (4.54)

where we note the identity

r(cn+1
h )�r(cn

h) = r(cn+1
h ;cn

h)(cn+1
h � cn

h): (4.55)

And we use

�
r(cn+1

h ;cn
h)

arn+ 1
2

h

;
(rn+1

h )2

rn+ 1
2

h

and
(rn

h )2

rn+ 1
2

h

(4.56)

to approximate r(c).

Theorem 4.4.1. In the case of homogeneous boundary conditions, the solution of

scheme (4.47)-(4.50) satisfies the following discrete energy law, which is analogous

to that obtained in the continuous case in Eq.(4.31),

bEn+1
t̄ =

 
1

2
jj
q

rn+1
h un+1

h jj2L2 +
C

2M
jj
q

rn+1
h Ñcn+1

h jj2L2 +
Z

W

� 1

M
rn+1

h F(cn+1
h )

+
1

Fr2rn+1
h y

�
dx

!

t̄

=�
1

Re
jjÑ(
p

ru)n+1
h jj2L2�

1

3Re
jjÑ � (

p
ru)n+1

h jj2L2�
1

MPe
jjÑmn+ 1

2
h jj2L2 : (4.57)
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Proo f . According to the continuous energy law, by setting v = (pru)n+1
h in Eq.(4.48)

and using integration by parts, we have

 
1

2
jj
q

rn+1
h un+1

h jj2L2

!

t̄

=
Z

W

 
1

M

p̂n+ 1
2

h

rn+ 1
2

h

Ñ �
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h

(
p
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2
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+
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p
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1
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p
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1

3Re
jjÑ � (

p
ru)n+1

h jj2L2 :

(4.58)

Taking y =�(rn+1=2
h �r0)ay=Fr2�a p̂n+1=2

h =M + mn+1=2
h =M in Eq.(4.49) leads to

 Z

W

� 1
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�

dx

!
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2
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MPe
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2
h jj2L2 : (4.59)

By taking c = cn+1
t̄ =M in Eq.(4.50), we obtain

 
C

2M
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q
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M
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�
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Taking q = p̂n+1=2
h =M + (rn+1=2

h � r0)y=Fr2 in Eq.(4.47) and using integration by

parts, we obtain

0 =
Z

W

 

�Ñ � (
p

ru)n+1
h

� 1

M
p̂n+1=2

h +
1

Fr2(r�r0)y
�

�
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Pe
Ñmn+ 1

2
h �Ñ

� 1

M
p̂n+1=2

h +
1

Fr2(r�r0)y
�!

dx: (4.61)

Combing Eqs.(4.58)-(4.61) together, we finally obtain the discrete energy law (4.57)

for the weak form (4.47)-(4.50),

bEn+1
t̄ =
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h jj2L2 +
C
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3Re
jjÑ � (

p
ru)n+1

h jj2L2�
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MPe
jjÑmn+ 1

2
h jj2L2:

This completes the proof. 2

Note that the numerical scheme (4.47)-(4.50) is used for our computations later. An-

other energy-law preserving numerical method with respect to the continuous energy

law (4.32) may be also designed, see Remark 4.4.2.

Remark 4.4.1. We now remark about how to implement the scheme (4.47)-(4.50) and

how to choose continuous finite element spaces based on the above derivation of the

discrete energy law. From the weak form (4.47)-(4.50) we observe that u appears in the

form of pru and p̂ appears in the form (or can be made in the form) of p̂=r . We can

thus introduce new variables ũ = pru and p̃ = p̂=r , and denote the corresponding

finite element spaces as Ũh and P̃h respectively.
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Remark 4.4.2. If we want to solve the model based on equation (4.1b) instead of

(4.1a), we can also design a method which can preserve the energy law (4.32) at the

discrete level. With un+1
h ; pn+1

h ;cn+1
h ;mn+1

h ;v;q;y;c in the appropriate spaces, we seek

solutions (un+1
h ; pn+1

h ;cn+1
h ;mn+1

h ) by computing the following finite element scheme
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dx; (4.62)
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Z

W

 

rn+ 1
2

h cn+1
t̄ y +rn+ 1

2
h

�
(
p

ru)n+1
h �Ñ

�
cn+ 1

2
h y

!

dx =
Z

W

 

�
1

Pe
Ñmn+ 1

2
h �Ñy

!

dx;

(4.64)
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where, instead of Eq.(4.1a), Eq.(4.1b) is used for the weak form, rn+1
t̄ = (rn+1

h �

rn
h )=Dt; and pn+1=2

h = (pn+1
h + pn

h)=2. Note that when taking v = (pru)n+1
h ;y =
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mn+1=2
h =M+r0ay=Fr2;c = cn+1

t̄ =M and q = pn+1=2
h =Mrn+1=2
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h)
�

=2M+

C(Ñcn+1
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h)=4M in the weak form (4.62)-(4.65) respectively, we can

obtain the discrete energy law corresponding to the continuous energy law (4.32),
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p

ru)n+1
h +

r0a
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4.5 Implementation Issues

As the weak form (4.47)-(4.50) is a highly nonlinear system consisting of the vari-

able density Navier-Stokes equation with extra stress term, an advective Cahn-Hilliard

equations, we employ Newton’s method to linearise the system. We first briefly intro-

duce a Newton’s linearisation for time-dependent nonlinear equations associated with

the unknowns, ũ, p̃, c and m at the implicit time level,

F(ũn+1; p̃n+ 1
2 ;cn+1;mn+1) = 0; (4.67)

where F is a vector function corresponding to the weak form equations (4.47)-(4.50)

respectively, ũ and p̃ are the new variables defined in Remark 4.4.1. and p̃n+1=2
h =

p̂n+1=2
h =rn+1=2

h (treating it as a solution for p̃ at the (n+1=2)th time step in our compu-

tations). The solutions at the (n+1)st time step ((n+1=2)th for p̃) (ũn+1; p̃n+ 1
2 ;cn+1;mn+1)

are unknown, and (ũn; p̃n� 1
2 ;cn;mn) at the nth ((n�1=2)th for p̃) time step are obtained.

If n = 0 the initial conditions for ũ; p̃;c;m are taken as the initial guess (ũ0; p̃0;c0;m0)

for the nonlinear iteration with p̃0 = p̂0. For the iteration of Eq.(4.67) at the (n + 1)th
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time step, the Newton’s method is
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s )

+ F0
p̃n+ 1

2
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s ; p̃n+ 1

2
s ;cn

s ;mn
s )(cn+1

s+1 � cn+1
s )

+ F0mn+1(ũn+1
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+ F(ũn+1
s ; p̃n+ 1

2
s ;cn+1

s ;mn+1
s ):

Further we can have
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where (ũn+1
s ; p̃n+ 1

2
s ;cn+1

s ;mn+1
s ) are the solutions obtained after the s’th iteration step

at the (n + 1)th time step. In the two dimensional case, we define the differentiation

operator for the velocity u as

F0ũn+1
s+1

(ũn+1
s+1 � ũn+1

s ) = F0ũ1
(ũ1

n+1
s+1 � ũ1

n+1
s )+ F0ũ2

(ũ2
n+1
s+1 � ũ2

n+1
s ): (4.69)
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In accordance with the local quadratic convergence theory of Newton’s method, Eq.(4.68)

should converge rapidly with good initial guesses. Note that the initial guesses of iter-

ation at the (n+1)th time step are usually given as the solutions of PDE at the previous

nth time step

(ũn+1
0 ; p̃n+ 1

2
0 ;cn+1

0 ;mn+1
0 ) = (ũn; p̃n� 1

2 ;cn;mn):

We then solve Eq.(4.68) by treating (ũn+1
s+1 ; p̃n+ 1

2
s+1 ;cn+1

s+1 ;mn+1
s+1 ) as an approximation for

the solution at the (n + 1)th time step (ũn+1; p̃n+ 1
2 ;cn+1;mn+1), where, in the end, we

expect

(ũn+1; p̃n+ 1
2 ;cn+1;mn+1) = lim

s!¥
(ũn+1

s+1 ; p̃n+ 1
2

s+1 ;cn+1
s+1 ;mn+1

s+1 ):

Note that the solutions of velocity u and pressure p̂ at the (n + 1)th time step can then

be obtained by

un+1 =
ũn+1

p
rn+1

; p̂n+ 1
2 = p̃n+ 1

2 rn+ 1
2 :

In practice, we introduce a stopping criteria for the inner nonlinear iteration

�
jjũn+1

s+1 � ũn+1
s jj2H1 + jjp̃n+ 1

2
s+1 � p̃n+ 1

2
s jj2H1 + jjcn+1

s+1 � cn+1
s jj2H1

+ jjmn+1
s+1 �mn+1

s jj2H1

� 1
2 < tol: (4.70)

With a sufficiently small tolerance (here we set tol = 10�5 in Eq.(4.70)) and proper

initial guess, our numerical method for (4.47)-(4.50) converges rapidly in practice.

Several examples are presented in the next section to demonstrate the capability of our

method.
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4.6 Numerical Experiments

With the help of the FreeFem++ platform [61] and MATLAB, the computations are

carried out using the P2 (piecewise quadratic) continuous finite element for the veloc-

ity ũ, the phase variables c, m and the pressure p̃. Note that in this computation, the

same order elements are used for the velocity u and the pressure p, which is not a

normal stable combination for the computations of incompressible NS equations. The

model we consider here is quasi-incompressible, where the velocity is not divergence

free anymore, and the chemical potential appears in the continuous equations (4.47).

Therefore we use the p2 elements for chemical potential and velocity. As the pressure

term appears in the chemical potential equation (4.50), and the pressure is linearly re-

lated to the chemical potential, we therefore use the P2 elements for the pressure as

well. On the square domain W = [�1;1]� [�1;1], we apply Dirichlet boundary condi-

tions for the velocity (ũ = 0) and Neumann boundary conditions for the phase variables

(Ñc � n̂ = 0, Ñm � n̂ = 0). Moreover the initial condition for the velocity is set to be zero

(ũjt=0 = 0). For the phase variable c, different initial conditions will be supplied as

appropriate for the examples considered.

The solutions to the Cahn-Hilliard equations are nearly constant in the so called bulk

region, which typically comprise the largest part of the domain. Between the bulk

regions, the solutions exhibit thin transition layers, through which their values can

change rapidly but continuously between their values in the bulk regions. In many

cases, it is sufficient to finely resolve only the transition layers, and a fixed grid mesh-

ing represents a waste of computational resources. Thus, efficient adaptive mesh which

resolves only the thin layers near the interface is desirable [76]. In this paper, we adopt

a variable metric/Delaunay automatic meshing algorithm for all the examples, which is

built in the FreeFem++ platform (see [60] for details of this method). All the examples

are computed using adaptive meshes. Snapshots for the adaptive mesh together with
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the evolution of the phase variable c at different times are presented in Example 6.2

below.

Example 6:1 We study the coalescence of two kissing drops with different density

ratios: (a) 1 : 1 (density matched case, r1 = r2 = 1); (b) 1 : 10 (variable case, r1 = 1,

r2 = 10), where the heavier drop is set in a lighter medium. The effect of gravity is

ignored in this experiment. Moreover we set e = 0:01, C = 100e2; M = 1=(10e); and

Pe = 100=e , Dt = 0:01 for the time step. Here e is a small parameter related to the

interface thickness. In [87], the stationary solutions for the phase field and pressure

were given, which can be used as the approximations for the initial conditions. Based

on their work, we use the following as the initial condition for the phase variable c,

c =
1

2
tanh

 
� r +

p
(x�ax)2 +(y�ay)2

2
p

2e

!

+
1

2
tanh

 � r +
r�

(x�bx)2 +(y�by)2

2
p

2e

!

; (4.71)

where r is the drop radius, (ax;ay) and (bx;by) are the initial centre positions of two

drops. Here we set r = 0:2
p

2, (ax;ay) = (�r=
p

2;r=
p

2) and (bx;by) = (r=
p

2;�r=
p

2).

For simplicity, we set p = 0 as the initial iteration of Newton’s method for the pressure.

Here we refer [87] for detailed study of the pressure. This example is computed using

the adaptive mesh, where the shortest edge of all the grids is set to be 1=128 < e .

Fig. 4.1 shows the evolution of the c = 0:5 contours (black solid line) together with

the velocity field for the density matched case and the variable density case from times

t = 0:01 to t = 260 and t = 0:05 to t = 70, respectively. Because their interfaces over-

lap, the two drops coalesce into one larger drop for both cases with slightly visual

differences.

In [87], a sharp-interface asymptotic analysis was carried out for the quasi-incompressible
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NSCH system, where the interface was assumed to be normal to the z-axis and the fluid

velocity, pressure and concentration are independent of time, x and y. At the equilib-

rium, they used the excess free energy to identify the surface tension s of the system,

which can be given as

s =
C

M

Z �¥

+¥
r(c)c2

z dz: (4.78)

We see that the surface tension for the quasi-incompressible NSCH system is density

dependent, where to be specific, for our example, the surface tension for the density

matched case (r1 = r2 = 1) is smaller than that for the variable density case (r1 = 1,

r2 = 10). As can be seen from Fig.4.1, our numerical example agrees with this analy-

sis, where the effects of surface tension are stronger in the variable density case lead-

ing to a higher rate of interface coalescence, and the corresponding velocity fields are

stronger as well. Moreover, the magnitude of the velocity is decreasing as the time

passes for both cases, which states that the systems are approaching to the equilibrium.

From Fig. 4.2, we observe that the volume of the drop in the entire domain is preserved

well, where
R

W cdx = constant = 3:49321 for the kissing drop examples in the whole

time interval of computation.

We also examined the time evolution of the total energy (with the discrete energy law

defined in Eq.(4.57)) for both cases. The discrete energy functional is shown in Fig.

4.3. As the interface deforms, we observe that the total energy is decreasing mono-

tonically as predicted by Theorem 4.1, and tends to a constant value corresponding to

a single larger drop near the equilibrium. Moreover, the case for variable density has

a larger total energy than that of the density matched case, which is consistent with

the density dependence of the total energy of the quasi-incompressible NSCH system

(Eq.(4.10)). We have also tested different mesh sizes and can conclude that the energy

law (the decay of the energy) for this variable density model is indeed preserved very
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Figure 4.1: The deformed drop interfaces (black solid line) with the velocity fields
(with arrows representing the velocity vectors and color representing the norm value)
for kissing drops. e = 0:01, C = 100e2, M = 1=(10e), Pe = 100=e and Dt = 0:01.

well using our energy preserving numerical scheme.

Example 6:2 We now consider a drop of lighter fluid rising in a heavier medium with

different density ratios: (a) 1 : 2 (r1 = 1, r2 = 2) and (b) 1 : 50 (r1 = 1, r2 = 50).

Moreover we set e = 0:01, C = 200e2; M = 1=(20e); Pe = 1000=e; and 1=Fr2 = 10:

And we set the time step to be Dt = 0:001 in (a) and Dt = 0:00025 in (b). The initial

0 1 2 3 4 5 6 7
3.4

3.45

3.49321
3.5

time

! "
c

 

 

#
1
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2
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#
1
=1,#

2
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3.55

Figure 4.2: The integral of the volume fraction c for kissing drop example in Fig.4.1.
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condition for the phase variable c

c =
1

2
tanh

 
r�
p

(x� cx)2 +(y� cy)2

2
p

2e

!

+
1

2
; (4.79)

where r is the radius of the drop and (cx;cy) is the initial position of the drop centre.

Here we set r = 0:2 and (cx;cy) = (0;�0:6).

For a drop rising in a liquid, it is often desirable to study the long-time behaviour and

the temporal evolution of the interface. The drops may move a relatively long dis-

tance. Thus the computational domain must be correspondingly large which is likely

to be computationally infeasible, and this constraint may therefore prevent the desired

long time simulation. A non-inertial reference frame [66, 67] that moves with the inter-

face can be employed as a remedy for this problem. In this paper, we enlarge the effect

of the gravity as an alternative, so that the dramatic deformation can be detected in a

relatively short time period. 1=Fr2 is therefore set to be 10 in this example, whereas in

[77], 1=Fr2 = 1.

The square domain W = [�1;1]� [�1;1] is discretized using an adaptive mesh, where

we use a variable metric/Delaunay automatic meshing algorithm built in the FreeFem++

platform. Since the values of phase variable c can change rapidly but continuously

across the interface, the mesh is adapted according to the value of jÑcj after every 10
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time steps, in order to track the features of the phase variable as the computation pro-

gresses. The shortest edge of all the grids is set to be 1=128 < e , so that at least one

grid cell is located across the interface to ensure accuracy. An example of the dynamic

adaptive mesh can be seen in Fig.4.9.

Snapshots of the deformed interface (black solid line) together with the Ñ �u are pre-

sented in Fig. 4.4 and Fig. 4.5, where we observe that the drop with a low density ratio

deforms slowly, resulting in a mushroom shape by time t = 1:4. On the other hand,

the high density ratio drop rises much faster and has deformed into a mushroom shape

by the time t = 0:225. Our results are similar to those found in [114] when the effects

of density ratio in rising drops were simulated using a level-set method. In the large

density ratio case, the upwelling motion continues to deform the drops which attain

a horseshoe shape around t = 0:4. As the drop broadens, we observe drop pinch-off

around t = 0:85, as the tips of the drop roll up and smaller drops eventually detach.

The divergence of velocity Ñ � u (color representing its value) are presented in Fig.

4.4 and Fig. 4.5. Recall that the divergence-free condition does not hold for quasi-

incompressible fluids with different densities because the fluids may mix slightly across

the interface. The two incompressible fluids can be compressible across the interface

where the two components are mixed. It can be observed that Ñ �u = 0, such that the

fluid is incompressible almost everywhere except along the moving interface. Near the

interface, waves of expansion (Ñ � u > 0) and compression (Ñ � u < 0) are observed.

Note that in the case of the larger density ratio, the distribution of Ñ �u > 0 is found to

be larger and more spatially localized than in the case with smaller density ratio. Fur-

ther, the compression and expansion waves tend to trail the drop in the large density

ratio case whereas in the smaller density ratio case, the waves tend to be ahead of the

drop. The divergence free condition is satisfied in the bulk regions for each component

during the pinch-off (from t = 0:85 to t = 0:915), where the distribution of Ñ �u with

non-zero value tends to appear around three drops. We expect that a smaller value
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for parameter C and corresponding finer mesh grids causes a narrower distribution of

non-zero values of Ñ �u around the drop boundary.

The flow field and the vorticity contours are presented in Fig.4.6-Fig.4.8, where we can

observe that the velocity field for the second case with the lager density ratio are much

more enhanced than that for the smaller matched case, with strong spinning motions

of the fluid distributed across the drop boundary. Both cases have vorticity contours

along the wall and the boundary of the drop, where the positive value stands for the

clockwise rotation and the negative for the counterclockwise rotation. The rising of

the drop seems to affect the shape of the streamwise vortices, where the concentration

of vorticity becomes more apparent near the rear as the drop rises.

For the second case with larger density ratio, the vorticity contours are much more

condensed with the absolute value being increased significantly. At t = 0:5, we can

observe that, as the drop broadens, a pair of co-rotating streamwise vortices begin to

appear at the rounded bottom of the drop. They gain strength as they grow along the

bottom boundary, where, on the other hand, another pair of vortices that are associated

with the rotation of the elongating trailing arms of the drops tends to diminish the dom-

inance. It is interesting to note that, during the pinch-off (from t = 0:85 to t = 0:915),

two pairs of co-rotating vortices seem to balance and both concentrate near the rear of

the larger drop.

The adaptive meshes for the rising drop of density ratio 1 : 50 are presented in Fig. 4.9,

where a grid structure that adapts to the locations of the moving interfaces is generated

automatically and adapts around the isolated drops after break-up.

In addition, we also examined the time evolution of the total energy (with the discrete

energy law defined in Eq.(4.57)) for the case of density 1:2. The discrete energy func-

tional is shown in Fig. 4.10. As the bubble rises, we observe that the total energy is

decreasing monotonically as predicted by Theorem 4.1
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Figure 4.4: The drop interfaces (black solid line) with Ñ �u (with colour representing
the value distribution) for the rising drop with density ratio 1 : 2, r1 = 1;r2 = 50,
e = 0:01, C = 200e2, M = 1=(20e), Pe = 1000=e , 1=Fr2 = 10 and Dt = 0:00025.

4.7 Discussion

In this chapter, we designed a new numerical method to solve two-phase flow using the

quasi-incompressible NSCH system with a variable density. Gravitational forces are

incorporated into the system in a thermodynamically consistent way. We reformulated

the continuous system that enabled the use of C0 finite elements. We designed a C0

finite element method and a special temporal scheme that ensured that the scheme has

an energy law at the discrete level, which is analogous to the one in the continuous

level. To our knowledge, this is the first such scheme for the quasi-incompressible

NSCH flow system.

Two examples are computed to test our energy law preserving adaptive numerical

scheme for this variable density two-phase model and to see the effects of the den-

sity ratio. In the case of kissing drops, increasing the density ratio increases the rate

of coalescence because the surface tension also increases. The drop volumes are well-

preserved by the numerical scheme. Simulations also confirm that the discrete energy
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Figure 4.5: The drop interfaces (black solid line) with Ñ �u (with colour representing
the value distribution) for the rising drop with density ratio 1 : 50, r1 = 1;r2 = 50,
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Figure 4.6: The flow field (with arrows representing the velocity vectors and colour
representing the norm value) and vorticity contours for the rising drop with density
ratio 1 : 2, r1 = 1;r2 = 2, e = 0:01, C = 200e2, M = 1=(20e), Pe = 1000=e , 1=Fr2 =
10 and Dt = 0:001.
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Figure 4.7: The flow field (with arrows representing the velocity vectors and colour
representing the norm value) and vorticity contours for the rising drop with density
ratio 1 : 50 from t = 0 to t = 0:7. r1 = 1;r2 = 50, e = 0:01, C = 200e2, M = 1=(20e),
Pe = 1000=e , 1=Fr2 = 10 and Dt = 0:00025.
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Figure 4.8: The flow field (with arrows representing the velocity vectors and colour
representing the norm value) and vorticity contours for the rising drop with density
ratio 1 : 50 from t = 0:825 to t = 0:915 r1 = 1;r2 = 50, e = 0:01, C = 200e2, M =
1=(20e), Pe = 1000=e , 1=Fr2 = 10 and Dt = 0:00025.
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Figure 4.9: The adaptive mesh for the rising drop with density ratio 1 : 50. e = 0:01,
C = 200e2, M = 1=(20e), Pe = 1000=e and 1=Fr2 = 10.
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Figure 4.10: The energy for the case of density ratio 1:2 in Fig.4.4.

functional is non-increasing, as predicted by our theory. In the example of the ris-

ing drop, the effects of the density ratio are much more obvious, where the shape of

the drop deforms faster with larger density ratio compared to the case where the den-

sity ratio is smaller. Moreover, in the case of the density ratio 1 : 50, the pinch-off

event is smoothly captured by the numerical scheme. In the NSCH model, the velocity

is not solenoidal near interfaces because fluids of different densities may mix. Our

simulations capture this feature. Namely, the numerical results reveal that away from

interfaces the fluid is incompressible, while near interfaces waves of expansion and

contraction are observed. Increasing the density ratio results in narrower waves with

larger magnitudes.

In future work, we will perform extensive studies of the two-phase problems with

more complicated interface dynamics, e.g., the moving contact line problems, where

the fluid-fluid interface interacts with a solid wall, and the dynamics of interfaces with

Marangoni effects, where surface tension gradients are induced by inhomogeneous

temperature distributions or surfactants that can be absorbed at the liquid/gas or liq-

uid/liquid interfaces. Our algorithm may also be implemented using supercomputers

so as to possibly simulate an air bubble in water.
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Chapter 5

A thermodynamically consistent

phase-field model for two-phase flows

with thermocapillary effects

5.1 Introduction

In this chapter, we develop a phase-field model for a binary incompressible (quasi-

incompressible) fluid with thermocapillary effects, which allows for different prop-

erties (densities, viscosities and heat conductivities) of each component while main-

taining thermodynamic consistency. The governing equations of the model including

the Navier-Stokes equations, Cahn-Hilliard equations and energy balance equation are

derived within a thermodynamic framework based on entropy generation, which guar-

antees thermodynamic consistency. A sharp-interface limit analysis is carried out to

show that the interfacial conditions of the classical sharp-interface models can be re-

covered from our phase-field model. Moreover, some numerical examples including

thermocapillary migration of a drop and thermocapillary convections in a two-layer
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fluid system are computed using a continuous finite element method. The results are

compared to the corresponding analytical solutions and theoretical predictions as vali-

dations for our model.

5.2 Variable density and mass-averaged velocity

In phase-field modelling, an order parameter (phase variable) is normally introduced

to distinguish different phases and the diffuse interface. Lowengrub and Truskinovsky

[87] have argued for the advantage of using a physically realistic scalar field instead

of an artificial smoothing function for the interface. Several physically realistic scalar

fields have been suggested as the order parameters for phase-field modelling, e.g. the

mass density r for the case of a single compressible fluid with different phases [7],

the mass concentration c of one of the constituents for the case of compressible and

incompressible binary fluid [87, 2], or an alternative phase variable, the volume frac-

tion f for the case of a incompressible binary fluid [85] and solidification of single

materials [123]. Here we choose the mass concentration c of one of the constituents as

the phase variable, and begin by introducing the variable density for the mixture. We

consider a mixture of two fluids in a domain W, and take a sufficient small material

volume V 2 W. We then have the following theorem that was introduced in section

2.3.7 (e.g. [90]),

Theorem 5.2.1. For a smooth function f (x; t) in the Eulerian coordinate,

d
dt

Z

V (t)
f (x; t)dV =

Z

V (t)

 
D f
Dt

+ f (Ñ �u)

!

dV =
Z

V (t)

 
¶ f
¶ t

+Ñ �
�

f u
�!

dV; (5.1)

where D=Dt = ¶=¶ t +u �Ñ is the material derivative and u is the velocity of the moving

volume V (t).
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In the control volume, the two fluids are labeled by i = 1;2 and they fill the volumes Vi

separately. We then introduce the volume fraction gi for the ith fluid such that

gi =
Vi

V
: (5.2)

Further we assume that two fluids can mix along the interfacial region and the volume

occupied by a given amount of mass of the single fluid does not change after mixing.

Then within the material volume V , gi satisfy the following condition

g1 + g2 = 1: (5.3)

Let M = M1 + M2 be the total mass of the mixture, and Mi be the mass of the ith fluid

in the volume. We now introduce the local volume-averaged mass density taken over

the sufficient small volume V for each fluid

r̃i =
Mi

V
; (5.4)

and the actual local mass density for each fluid

ri =
Mi

Vi
: (5.5)

Note that for incompressible components, we assume that ri are uniform constants.

Having in mind Eq.(5.2), we obtain the relation between the volume-averaged mass

densities and the local mass densities

gi =
r̃i

ri
and

r̃1

r1
+

r̃2

r2
= 1: (5.6)
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We then define the volume-averaged mass density for the mixture as

r = r̃1 + r̃2 =
M1 + M2

V
=

M
V

: (5.7)

Let ci be the mass concentration for the ith fluid, such that

ci =
Mi

M
=

r̃i

r
and c1 + c2 = 1: (5.8)

Using Eqs. (5.6) and (5.8), we obtain

c1r
r1

+
c2r
r2

= 1 )
c1

r1
+

c2

r2
=

1
r

: (5.9)

Here we chose the mass concentration of fluid 1 as the phase variable for our phase-

field model, such that c = c1 = 1� c2. The variable density for the mixture of two

fluids can then be given as
1

r(c)
=

c
r1

+
1� c
r2

: (5.10)

It can be seen that, for two incompressible components of different densities, the vari-

able density r(c) for the mixture is constant almost everywhere except that near the

interfacial region. For simplicity, we write the variable density r(c) as r in all the

following derivations.

Now we suppose that the two fluids move with different velocities ui(x; t). The equa-

tion of mass balance for each fluid within the material volume V can then be written in

the form [87, 26, 2]
¶ r̃i

¶ t
+Ñ � (r̃iui) = 0: (5.11)

We then introduce the mass-averaged velocity for the mixture as

ru = r̃1u1 + r̃2u2 or u = c1u1 + c2u2: (5.12)
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Substituting the density (5.7) and mass-averaged velocity (5.12) of the mixture into

Eq. (5.11), we obtain the mass balance for the mixture of two fluids

¶r
¶ t

+Ñ � (ru) = 0: (5.13)

In the following derivations, we consider the mixture as a single fluid moving with

velocity u. Note that if we consider a binary incompressible fluid (assuming the two

fluids of the mixture are incompressible, and the temperature effects on the densities of

both fluids are negligible), then r1 and r2 are constants, and the above equation (5.13)

can be further written as

Ñ �u =�
1
r

Dr
Dt

=�
1
r

dr
dc

Dc
Dt

= ar
Dc
Dt

; (5.14)

where a = (r2� r1)=r2r1 is constant. We note that, due to the variations of phase

variable c, the mass-averaged velocity for the mixture is non-solenoidal (Ñ � u 6= 0)

near the interfacial region, which introduces the compressibility effects into the model,

and this compressibility is caused by the variations of phase variable rather than pres-

sure. Such binary incompressible fluid is termed as a quasi-incompressible fluid and

was introduced by Antanovskii [12], and by Lowengrub and Truskinovsky [87] who

developed a phase-field model for two-phase flows where the two fluids have different

densities (quasi-incompressible NSCH model). In the previous chapter, we have pre-

sented a numerical method for the quasi-incompressible NSCH system with a discrete

thermodynamic law [54], where the quasi-incompressibility near interfaces was cap-

tured. Namely, the fluid is incompressible away from interfaces, while near interfaces

waves of expansion and contraction are observed.

We remark that as well as this mass-averaged velocity, another velocity for the mixture,

the volume-averaged velocity was considered by Abels et. al. [1, 2], Boyer et. al. [26]

and Ding et. al. [35], where the volume fraction g instead of the mass concentration c
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is used to relate the velocity of single fluids and the mixture. This volume-averaged ve-

locity of binary incompressible fluid is solenoidal (Ñ �u = 0) over the whole domain,

where an extra term that accounts for the mass flux relative to the volume-averaged

velocity appears in the Navier-Stokes equations (see, for details, [2]).

5.3 Phase-field model for binary compressible fluid with

thermocapillary effects

In this section, we develop a system of equations for a binary fluid with thermocapillary

effects, in which both components are compressible and Cahn-Hilliard diffusion is

coupled with fluid motion.

5.3.1 Derivation of the model

We first consider a mixture of two fluids moving with the mass-averaged velocity u in

a domain W, and we take an arbitrary material volume V 2W that moves with the mix-

ture. Within the material volume, we define the properties for the binary compressible

fluid as

M =
Z

V (t)
r dV; (5.15)

P =
Z

V (t)
ru dV; (5.16)

E =
Z

V (t)

 
1
2

rjuj2 +rgz +r û

!

dV; (5.17)

S =
Z

V (t)
r ŝ dV; (5.18)

C =
Z

V (t)
rc dV; (5.19)
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where M, P, E, S is the total mass, momentum, energy, and entropy of the mixture, C is

the constituent mass of fluid 1, r(c) is the variable density of the mixture (Eq.(5.10)), u

is the mass-averaged velocity of the mixture, juj2=2 is the kinetic energy per unit mass,

gz is the gravitational potential energy per unit mass, z is z-coordinate, û is the internal

energy per unit mass, ŝ is the entropy per unit mass, c is the phase variable (here we

chose the mass concentration of fluid 1, and we set c = c1). For our phase-field model,

we chose mass concentration c as the phase variable and let c = c1. Substituting the

mass concentration (5.8) into Eq.(5.19) gives

C =
Z

V (t)
rc dV =

Z

V (t)
rc1 dV =

Z

V (t)
r̃1 dV; (5.20)

where we see that C stands for the constituent mass of fluid 1 within the material vol-

ume V (t). In phase-field modelling, as well as the classical free energy density for

bulk phases, an extra gradient term is typically added into the model accounting for

part of the free energy of the diffuse interface [28]. Several ways have been suggested

to introduce the gradient term into the phase-field model, e.g. by introducing it into the

entropy functional [12, 123], free energy functional [87] or internal energy functional

[8, 122]. In the present work, as the thermocapillary effects (Marangoni effects) along

the interface are investigated, we expect that the surface free energy (serving as the

surface tension (See section 5.5.2) of our phase-field model is temperature dependent

(linearly). Therefore, according to the thermodynamic relations, we introduce the gra-

dient term as the nonclassical contributions into both the internal energy and entropy

of our model. The specific internal energy, entropy and free energy can then be given

in the form

û(s;r;c;Ñc) = u(s;r;c)+ unc(Ñc); unc = lu
1
2
jÑcj2; (5.21)

ŝ(T;r;c;Ñc) = s(T;r;c)+ snc(Ñc); snc = ls
1
2
jÑcj2; (5.22)
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f̂ (T;r;c;Ñc) = f (T;r;c)+ f nc(T;Ñc); f nc = l f (T )
1
2
jÑcj2; (5.23)

where u, s and f stand for the classical parts of the specific internal energy, entropy and

free energy separately. Here f is the Helmholtz free energy, where, for compressible

flows, f is depending on the density as it has contributions from both the compressible

components of the mixture. The nonclassical parts unc, snc and f nc are the gradient

terms analogous to the Landau-Ginzburg [49] or Cahn-Hilliard [28] gradient energy.

In addition, lu and ls are constant parameters, l f (T ) is a parameter depending on

the temperature and will lead to the thermocapillary effects along the interface. Note

that lu, ls and l f (T ) can be further used to relate the surface tension of the phase-

field model to that of the sharp-interface model when the phase-field model reduces

to its sharp-interface limit (see section 5.5.2 for details). As u(r;s;c) is the classical

contribution to the specific internal energy û, we have the thermodynamic relation

du(s;r;c) =
¶u
¶ s

����
r;c

ds +
¶u
¶r

����
s;c

dr +
¶u
¶c

����
s;r

dc

= T ds +
p

r2 dr +
¶u
¶c

����
s;r

dc; (5.24)

where the subscripts indicate which variables are held constant when the various partial

derivatives are taken. This relation states that the heat T ds, the pressure-volume work

(p=r2)dr , and chemical work (¶u=¶c)dc that accounts for the variation of the phase

variable c all contribute to the changes in the internal energy. Further, we have the

following thermodynamic relation for the Helmholtz free energy

f = u�T s: (5.25)
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Having in mind the relation (5.24), we obtain

d f = du�d(T s) = du� sdT �T ds =
p

r2 dr� sdT +
¶u
¶c

����
s;r

dc; (5.26)

such that
¶ f
¶r

����
T;c

=
p

r2 ;
¶ f
¶T

����
r;c

=�s and
¶ f
¶c

����
T;r

=
¶u
¶c

����
s;r

: (5.27)

Similarly, we assume that the same thermodynamic relations, which hold for the clas-

sical terms also hold for the general terms, such that

f̂ = û�T ŝ and
¶ f̂
¶T

����
s;r;c;Ñc

=�ŝ: (5.28)

With the relations (5.25) and (5.27), we must also have the relations for the nonclassical

terms

f nc = unc�T snc and
¶ f nc

¶T

����
Ñc

=�snc; (5.29)

and for the corresponding parameters

l f (T ) = lu�Tls and
dl f (T )

dT
=�ls: (5.30)

For simplicity, we omit all the subscripts in the following derivations. Under the as-

sumptions above, the general forms of physical balance associated with M, P, E, S and

C can be given as follows

dM
dt

= 0; (5.31)

dP
dt

=
Z

¶V (t)
m � n̂ dA�

Z

V (t)
rgẑ dV; (5.32)

dE
dt

=
Z

¶V (t)

 

u �m � n̂�qE � n̂�qnc
E � n̂

!

dA; (5.33)

dS
dt

= �
Z

¶V (t)

 
qE

T
� n̂ + qnc

S � n̂

!

dA +
Z

V (t)
Sgen dV

�
Sgen > 0

�
; (5.34)
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dC
dt

= �
Z

¶V (t)
qC � n̂ dA; (5.35)

where m is the stress tensor, n̂ is the unit outward normal vector of the boundary, rgẑ

is the gravitational forces, g is the gravitational constant, ẑ is the vertical component

of the unit normal vector, qE (qnc
E ) is the classical (non-classical) contribution to the

internal energy flux, qE=T (qnc
S ) is the classical (non-classical) contribution to the en-

tropy flux, Sgen(> 0) is the local entropy generation within the volume, and qC is the

mass flux of fluid 1 with the velocity (u1�u).

Eq.(5.31) represents the mass balance of the mixture within the volume. Eq.(5.32) rep-

resents the momentum balance, stating that the rate of the change in total momentum

equals to the force (surface forces m and body forces rgẑ) acting on the volume. Here

only the gravitational forces are considered. The energy balance equation (5.33) states

that the change in total energy equals to the rate of work done by the forces (m) on

the boundary plus the energy flux (classical qE and non-classical qnc
E internal energy

flux) through the boundary. The entropy balance (5.34) states that the rate of change

of entropy in the control volume during the process equals to the net entropy trans-

fered through the boundary (classical qE=T and nonclassical qnc
S entropy flux) plus the

local entropy generation (Sgen) within the control volume (e.g. [92]). Based on the

second law of thermodynamics, the local entropy generation is non-negative for a dis-

sipative system (or say for an irreversible process), which is key to the thermodynamic

frame that we used for the derivations. For the constituent mass balance (5.35), we use

Eq.(5.20) and theorem 5.2.1 to obtain

dC
dt

=
d
dt

Z

V (t)
r̃1dV =

Z

V (t)

 
¶ r̃1

¶ t
+Ñ � (r̃1u)

!

dV =�
Z

¶V (t)
qC � n̂ dA: (5.36)

Substituting (5.11) into (5.36), we obtain

qC = r̃1(u1�u); (5.37)
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where we see that r̃1u1 stands for the mass flux of fluid 1 with velocity u1 through the

boundary of the control volume, r̃1u stands for the mass flux of fluid 1 with velocity

u through the boundary. We then identify qC as the mass flux of fluid 1 with velocity

(u1�u), or say the net mass of fluid 1 that transported by velocity (u1�u) through the

boundary of the control volume. Note that in the following derivations, the constituent

mass flux qC will be related to the chemical potential of the phase-field, which is anal-

ogous to the standard derivations for the Cahn-Hilliard equations (see, for examples,

[8], [56] and [87]).

In what follows, we use the definitions (5.15)-(5.19) and the balance laws (5.31)-(5.35)

to obtain the equations that expressed in terms of the above unknowns, including m,

qE , qnc
E , qnc

S , qC and Sgen. We then specify those unknowns with respect to the second

law of thermodynamics (ensuring Sgen > 0) and the concept of thermodynamic consis-

tency of the phase-field model.

For mass balance (5.31), we use theorem 5.2.1 to obtain

Dr
Dt

=�r(Ñ �u); (5.38)

based on which, we have the following theorem

Theorem 5.3.1. (Transport Theorem 2) For a smooth function f (x; t) in the Eulerian

coordinate,

d
dt

Z

V (t)
r f (x; t) dV =

Z

V (t)
r

D f
Dt

dV =
Z

V (t)
r

 
¶ f
¶ t

+(u �Ñ) f

!

dV; (5.39)

where r is the density of the mixture defined in the volume V (t) and satisfies the mass

balance (5.38).

Note that as theorem 5.2.1 and theorem 5.3.1 are frequently used, we will not refer

them in the following derivations.
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For momentum balance (5.32), we simply have

r
Du
Dt

= Ñ �m�rgẑ: (5.40)

For energy balance (5.33), we obtain

r
Du
Dt
�u +rgẑ �u +r

Du
Dt

+Ñ � (rlu
Dc
Dt

Ñc)�rlu(Ñc
Ñc) : Ñu�luÑ � (rÑc)
Dc
Dt

= Ñ � (u �m)�Ñ �qE �Ñ �qnc
E ; (5.41)

where the following identities are used

d
dt

Z

V (t)
rgz dV =

Z

V (t)
rgu �Ñz dV =

Z

V (t)
rgu � ẑ dV; (5.42)

and

r
D
Dt

(
1
2

lujÑcj2) = rluÑc �
DÑc
Dt

= rluÑc �
h¶Ñc

¶ t
+ u �Ñ(Ñc)

i

= Ñ � (rlu
Dc
Dt

Ñc)�rlu(Ñc
Ñc) : Ñu�luÑ � (rÑc)
Dc
Dt

: (5.43)

Here “ : ” stands for the double dot product of the stress tensor (e.g. [90]). Multiplying

the momentum balance equation (5.40) by u and substituting into (5.41), we obtain the

simplified energy balance equation

r
Du
Dt

=�Ñ � (rlu
Dc
Dt

Ñc)+
�

m +rlu(Ñc
Ñc)
�

: Ñu

+luÑ � (rÑc)
Dc
Dt
�Ñ �qE �Ñ �qnc

E ; (5.44)

where we have used the identity

Ñ � (u �m) = (Ñ �m) �u + m : Ñu: (5.45)
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Having in mind the thermodynamic relation (5.24), the energy equation (5.44) in terms

of the entropy density can be expressed as

rT
Ds
Dt

=�Ñ � (rlu
Dc
Dt

Ñc)+
�

m +rluÑc
Ñc)
�

: Ñu

+luÑ � (rÑc)
Dc
Dt
�Ñ �qE �Ñ �qnc

E �r
¶u
¶c

Dc
Dt
�

p
r

Dr
Dt

: (5.46)

For entropy balance (5.34), we obtain

r
Ds
Dt

=�Ñ � (rls
Dc
Dt

Ñc)+rls(Ñc
Ñc) : Ñu

+lsÑ � (rÑc)
Dc
Dt
�Ñ � (

qE

T
)+ Sgen�Ñ �qnc

S ; (5.47)

where, similar to Eq.(5.43), the following identity is used,

r
D
Dt

(
1
2

lsjÑcj2) =Ñ � (rls
Dc
Dt

Ñc)�rls(Ñc
Ñc) : Ñu�lsÑ � (rÑc)
Dc
Dt

:

(5.48)

For constituent mass balance (5.35), we simply have

r
Dc
Dt

=�Ñ �qC: (5.49)

We then use Eq.(5.47) and Eq.(5.49) to substitute the terms rDs=Dt and rDc=Dt in

(5.46), and use the relation (5.30) to obtain the expression for the entropy generation,

Sgen =
1
T

 

m +r
�

lu�Tls

�
T + pI

!

: Ñu +

 

rlu
Dc
Dt

Ñc + qE + qnc
E �mCqC

!

�Ñ
1
T

�Ñ �

"
1
T

r
�

lu�Tls

�Dc
Dt

Ñc +
1
T

qnc
E �

1
T

mCqC�qnc
S

#

�
1
T

qC �ÑmC: (5.50)
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To ensure the non-negativity of the entropy generation Sgen > 0 (second law of ther-

modynamics), we specify the unknown terms in the form

qE =�k(c)ÑT; qnc
E =�rlu

Dc
Dt

Ñc + mCqC; (5.51)

qnc
S =�rls

Dc
Dt

Ñc; m =�r(lu�Tls)T +s ; (5.52)

mC =
¶ f
¶c
� (lu�Tls)

1
r

Ñ � (rÑc); qC =�mCÑmC; (5.53)

T = Ñc
Ñc; s =�pI + t; (5.54)

p = r2 ¶ f
¶r

; t = m(c)(Ñu +ÑuT )�
2
3

m(c)(Ñ �u)I: (5.55)

Note that t is the deviatoric stress tensor from the classical Navier-Stokes equations

(e.g. [17]). Here we use the thermodynamic relation (5.27) to obtain the chemical

potential mC. The pressure p can be obtained immediately through the thermodynamic

relation (5.27).

By substituting the above specifications into (5.31)-(5.35), we obtain the system of

equations for the phase-field model governing binary compressible flows with thermo-

capillary effects

Dr
Dt

=�r(Ñ �u); (5.56)

r
Du
Dt

= Ñ �m�rgẑ; (5.57)

r
Du
Dt

= (s +rTlsT) : Ñu +luÑ � (rÑc)
Dc
Dt

+Ñ � (k(c)ÑT + mCmCÑmC); (5.58)

r
Ds
Dt

=
1
T

(t +rTlsT) : Ñu +lsÑ � (rÑc)
Dc
Dt

+
1
T

Ñ � (k(c)ÑT ); (5.59)

r
Dc
Dt

= mCDmC; (5.60)

mC =
¶ f
¶c
� (lu�Tls)

1
r

Ñ � (rÑc): (5.61)
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Here, the stress tensor m is defined by

m =�r(lu�Tls)(Ñc
Ñc)+s ; (5.62)

where the first term is the extra reactive stress (Ericksen’s stress) to mimic the surface

tension. This stress term is associated with the presence of concentration gradients

energy (Cahn-Hilliard energy). We note that the coefficient of this stress is a linear

function of temperature, which leads to the thermocapillary effects along the interface

(see section 5.5.2 for details), mC is a positive constant standing for the mobility of

the diffusing interface. Note that in the non-classical heat (entropy) flux qnc
E (qnc

S ), the

term rluÑc Dc=Dt (rlsÑc Dc=Dt) is associated with the gradient energy (entropy)

and is in the direction of the gradient of phase variable. Similar terms were obtained

by Wang et. al. [123] who used a phase-field model to study the solidification of

single material, and by Anderson et. al. [7] who used a phase-field model to study a

single compressible fluid with different phases near its critical point. They identified

the term as an energy (entropy) flux associated with variations in the phase-field at

the boundary of the control volume. In addition, a non-classical energy flux term

mCmCÑmC appears in our energy balance equation (5.58). The same energy flux term

was obtained by Gurtin et. al. [56] (see Eq.(28)), who re-derived the Model H in the

framework of classical continuum mechanics. A “counterpart” entropy flux term was

identified by Lowengrub and Truskinovsky [87] when deriving a phase-field model for

binary compressible fluid, where it was assumed in this form to keep the derivations

compatible with the second law of thermodynamics. In the latter work, the isothermal

fluid flow was studied, such that the temperature T in the entropy flux was treated as

constant, whereas in our term, the temperature is not a constant as the thermocapillary

effects are considered here. They identified it as the energy flux transported through

the boundary by chemical diffusion. Our model agrees with these works well and

therefore we identify this non-classical energy flux term as the energy that is carried
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into the control volume by the chemical diffusion.

Similar to the approach that defines the variable density (5.10), we define the variable

viscosity m(c) and the variable thermal diffusivity k(c) for the mixture in the form of

the harmonic average,

m(c) =
m1m2

(m2�m1)c + m1
; k(c) =

k1k2

(k2� k1)c + k1
; (5.63)

where m1, m2, k1 and k2 are the viscosities and thermal conductivities of fluid 1 and 2

respectively.

5.4 Thermodynamic consistency and Galilean invari-

ance

As our phase-field model (5.56)-(5.61) is derived within a thermodynamic framework,

which implies that the first and second thermodynamic laws are naturally underlying

the model. However, from the numerical point of view, thermodynamic consistency

can be further served as a criterion to design the numerical methods. In our phase-field

model, the Navier-Stokes equations are coupled with the Cahn-Hilliard equations and

energy balance equation, which leads to a nonlinear system. Moreover, as the rapid

variations in the solutions of the phase variable occur near the interfacial region, the

stability of the numerical method is critical. Recently, the preservation of the ther-

modynamic laws at discrete level has been reported to play an important role in the

designing of numerical methods (e.g. [83, 84] for liquid crystal model, [65, 54] for

phase-field model), which not only immediately implies the stability of the numerical

scheme, but also ensures the accuracy of the solutions. Hence, in contrast to the deriva-

tions, we now show that the first and second laws of thermodynamics can be derived

from the system of equations (5.56)-(5.61), which can be further used to design the
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numerical methods.

5.4.1 The laws of thermodynamics

Here we show that our phase-field model satisfy the first and second laws of thermo-

dynamics. Multiplying the mass balance (5.56) by p=r + u �u=2 + u, we obtain

(
p
r

+
1
2

u �u + u)
Dr
Dt

=�pI : Ñu�r(Ñ �u)(
1
2

u �u + u): (5.64)

Multiplying the momentum balance (5.57) by u gives

r
1
2

D
Dt

(u �u)+r
D
Dt

(gy) = Ñ �m �u: (5.65)

By using the identity (5.43), the entropy balance (5.59) can be rewritten in the form

r
Ds
Dt

+
1
T

r
D
Dt

(
1
2

lujÑcj2) =
1
T

(t +r(lu�Tls)T) : Ñu +
1
T

Ñ � (lu
Dc
Dt

Ñc)

�
1
T

(lu�Tls)Ñ � (rÑc)
Dc
Dt

+
1
T

Ñ � (k(c)ÑT )+
mC
T
jÑmCj2: (5.66)

Multiplying (5.66) by T gives

rT
Ds
Dt

+r
D
Dt

(
1
2

lujÑcj2) = (t +r(lu�Tls)T) : Ñu +Ñ � (lu
Dc
Dt

Ñc)

�(lu(T )�Tls(T ))Ñ � (rÑc)
Dc
Dt

: (5.67)

For the Cahn-Hilliard equation (5.60), we multiply by mC to obtain

0 =�r
Dc
Dt

mC + mCmCDmC: (5.68)
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For the chemical potential equation (5.61), we multiply by rDc=Dt to obtain

r
¶ f
¶c

Dc
Dt

= r
Dc
Dt

mC +
�

lu�Tls

�
Ñ � (rÑc)

Dc
Dt

: (5.69)

Combining Eq.(5.64), (5.65), (5.67)-(5.69) together, and having in mind the definition

of the total energy of the system (5.17) and the identity (5.45), we finally obtain the

first law of thermodynamics for our phase-field model within the domain W

dE
dt

=
d
dt

Z

W

 

r û +
1
2

ru �u +rgz

!

dx

= Ñ � (m �u)+Ñ � (k(c)ÑT )+Ñ �
�

lu
Dc
Dt

Ñc
�

; (5.70)

which is in agreement with the energy balance law (5.33) that we used to derive the

model. If we further assume that there is no stress along the boundary and no heat

flux through the boundary of the domain W, and the interface does not contact with the

boundary, we obtain the energy balance for an isolated system,

dE
dt

=
d
dt

Z

W

 

r û +
1
2

ru �u +rgz

!

dx = 0: (5.71)

By substituting the terms, m, qE , qnc
E , qnc

S and qC into the entropy generation (5.50),

we obtain the second law of thermodynamics,

Sgen =
1
T

t : Ñu�qE
ÑT
T 2 �qC

1
T

ÑmC

=
1
T

t : Ñu + k(c)j
ÑT
T
j2 +

mC
T
jÑmCj2 > 0; (5.72)

where we see that except the contributions from the traditional parts (viscous dissipa-

tion and heat transfer), the chemical potential or say the variation of the phase variable

also contributes to the entropy generation of our phase-field model. Note that the same

entropy generation equation was obtained by Lowengrub and Truskinovsky [87] when
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deriving the phase-field model for binary compressible fluid.

5.4.2 Onsager reciprocal relations

From Eq.(5.72), we observe that the entropy generation can be seen as the sum of terms

each being a product of a flux and thermodynamic force. The simplest model, based on

the linear thermodynamics of non-equilibrium processes [51], assumes linear relations

between the fluxes and thermodynamic forces, such that

t = L11Ñv + L12ÑT + L13ÑmC;

qE = L21Ñv + L22ÑT + L23ÑmC;

qC = L31Ñv + L32ÑT + L33ÑmC; (5.73)

where the coefficients Li j are chosen to guarantee the non-negativity Sgen. Moreover,

microscopic reversibility requires the Onsager reciprocal relations Li j = L ji ([51], and

see, for examples, [100, 38]). From Eqs.(5.55), (5.51) and (5.53), we see that our

choices of t;qE and qC satisfy the linear relation (5.73) and the reciprocal relations.

Moreover, the entropy generation (5.72) is zero when the thermodynamic equilibrium

conditions are satisfied within the system (i.e. thermodynamic forces are zero at equi-

librium).

5.4.3 Galilean invariance

Another requirement which the entropy generation (5.72) must satisfy is that it be

invariant under a Galilei transformation [51], since the notions of reversible and irre-

versible behaviour must be invariant under such a transformation. It can be seen that

(5.72) satisfies automatically this requirement. Moreover, the model equations must
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be Galilean invariant as well, where, according to the classical mechanics, the balance

equations must be the same in the inertia frames.

Here we first briefly introduce the concept of Galilean transformation, and show that

our model equations and entropy generation satisfy the Galilean invariance.

Let (x;y;z; t) be the coordinate system of the first observer, and a quantity of fluid (ve-

locity, density...) in this frame be denoted by f(x;y;z; t). For the second theoretician,

the quantity of fluid in this frame is denoted by f̃(x0;y0;z0; t 0), and the coordinate sys-

tem is x0;y0z0; t 0 in the frame moving in the +x direction with a constant velocity U ,

such that

x = x0+Ut 0; y = y0; z = z0; t = t 0; (5.74)

ũ = u�U i: (5.75)

where ũ and u are the velocity of the fluid in the corresponding frames, i is the unit

vector in the x direction. Further we have

f̃(x0;y0;z0; t 0) Eq.(5.74)�����! f(x;y;z; t); (5.76)

¶ f̃(x0;y0;z0; t 0)

¶x0
=

¶f(x;y;z; t)

¶x
; (5.77)

¶ f̃(x0;y0;z0; t 0)

¶y0
=

¶f(x;y;z; t)

¶y
; (5.78)

¶ f̃(x0;y0;z0; t 0)

¶ z0
=

¶f(x;y;z; t)

¶ z
: (5.79)

For the time derivative, we have that

df̃(x0;y0;z0; t 0)

dt 0
=

df(x;y;z; t)

dt
: (5.80)
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The left hand of Eq.(5.80) gives us that

df̃(x0;y0;z0; t 0)

dt 0
=

¶ f̃(x0;y0;z0; t 0)

¶x0
¶x0

¶ t 0
+

¶ f̃(x0;y0;z0; t 0)

¶y0
¶y0

¶ t 0
+

¶ f̃(x0;y0;z0; t 0)

¶ z0
¶ z0

¶ t 0

+
¶ f̃(x0;y0;z0; t 0)

¶ t 0
=

¶ f̃

¶ t 0
+ ũ �Ñf̃ : (5.81)

Similarly the right of Eq.(5.80) hand gives us that

df(x;y;z; t)

dt
=

¶f

¶ t
+ u �Ñf : (5.82)

Substituting Eqs (5.81) and (5.82) into Eq.(5.80) gives that

¶ f̃

¶ t 0
+ ũ �Ñf̃ =

¶f

¶ t
+ u �Ñf ; (5.83)

¶ f̃

¶ t 0
+(u�U i) �Ñf̃ =

¶f

¶ t
+ u �Ñf ; (5.84)

¶ f̃

¶ t 0
=

¶f

¶ t
+U i �Ñf ; and Ñf̃ = Ñf : (5.85)

For the material derivative we have that

Df̃

Dt 0
=

¶ f̃

¶ t 0
+ ũ �Ñf̃ =

¶f

¶ t
+U i �Ñf +(u�U i) �Ñf =

¶f

¶ t
+ u �Ñf =

Df

Dt
; (5.86)

where we see that the material derivative D=Dt and spatial gradient Ñ are Galilean

invariant.

Now we go back to our system equations. Firstly, we note that the scalar fields (tem-

perature T , mass density r , phase variable c, pressure p and chemical potential mC) are

independent of the observer (invariant). For example, temperature at a given point in a
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room and at a given time would have the same value for any inertia frames. The gravita-

tional acceleration g is invariant for any inertia frames. We see that all of our equations

are invariant. Therefore we can conclude that our system equations satisfy the Galilean

invariance. Note that, another phase-field model was developed by Abels et. al. [1]

to study the binary incompressible fluid with variable density. In their model, as the

volume-averaged velocity is employed for the mixture, which leads to a non-objective

scalar term appearing in the chemical potential equation. Therefore a particular for-

mulation for the convective terms is needed to keep the Galilean invariance of their

model equations. In our model equations, on the other hand, the mass-averaged ve-

locity is employed for the mixture, and therefore no non-objective terms are involved.

Our system equations satisfy the Galilean invariance automatically.

5.5 Phase-field for quasi-incompressible fluid with ther-

mocapillary effects

In this section, we develop a model of a binary Cahn-Hilliard fluids with thermocapil-

lary effects in which both components are incompressible.

5.5.1 Derivation of the model

In order to study situations in which the density in each phase is uniform, it is con-

venient to adopt a thermodynamic formation which does not employ the density as

an independent variable, as in the model of quasi-incompressible flow considered by

Lowengrub and Truskinovsky [87]. Following their work, we choose the pressure and

temperature as independent variables, and work with the Gibbs free energy. In addi-

tion, for a binary incompressible fluid system, the free energy density can appear as
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the per unit mass quantity or per unit volume quantity. In most phase-field models

for two-phase flows (e.g. [63, 85]), the density of two components are assumed to be

constant and equal, and the per unit mass and per unit volume specification of the free

energy density are equivalent. However, in the situation we study here, the densities of

two fluids of the mixture may not be matched and thus the per unit mass and per unit

volume forms are not equivalent. As we mentioned above, several models have been

developed for a binary incompressible fluid with different densities, in which the per

unit volume form of free energy density was employed in [26, 35, 110, 2] and the per

unit mass form in [87]. Here we concentrate on the Gibbs free energy density in the

per unit mass form, and denote it by ĝ(T; p;c;Ñc). Again, similar to the definition of

the free energy (5.23) for a binary compressible fluid, we introduce the nonclassical

terms (gradient energy) into the Gibbs free energy of our model, which can then be

given in the form

ĝ(T; p;c;Ñc) = g(T; p;c)+ gnc(T;Ñc); gnc = f nc = l f (T )
1

2
jÑcj2; (5.87)

where g is the classical part of the Gibbs free energy density, and l f (T ) is a tem-

perature dependent coefficient and will lead to the thermocapillary effects along the

interface (see section 5.5.2 for details). For the classical part of the internal energy

defined by (5.21), we have the following thermodynamic relation

u(s;r;c) = g(T; p;c)+ T s�
p
r

: (5.88)

Using the thermodynamic relation (5.24) leads to

dg(T; p;c) = du(s;r;c)� sdT �T ds +
1
r

dp�
p

r2 dr

=�sdT +
1
r

dp +
¶u
¶c

����
r;s

dc; (5.89)
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where we note the relations

¶g(T; p;c)
¶T

����
p;c

=�s;
¶g(T; p;c)

¶ p

����
T;c

=
1
r

and
¶g(T; p;c)

¶c

����
T;p

=
¶u
¶c

����
r;s

: (5.90)

Here as we assume that the variable density is independent of temperature and pressure,

the condition of the incompressibility can then be written in the terms of the Gibbs free

energy

¶ 2g(T; p;c)
¶ 2 p

= 0; (5.91)

where the second condition in (5.90) is used. Condition (5.91) implies that Gibbs free

energy is a linear function of pressure, (e.g. [87])

g(T; p;c) = g0(T;c)+
p

r(c)
: (5.92)

We then re-define the classical internal energy as a function of T , p and c,

ũ(T; p;c) = u(s;r;c) = g(T; p;c)+ T s�
p

r(c)
; (5.93)

where the relations (5.89) and (5.90) still hold. Similarly to the definition of the internal

energy (5.21) and entropy (5.22) for the binary compressible fluid model, the specific

internal energy û and the specific entropy ŝ for binary incompressible fluids, which

contain both the classical and nonclassical contributions, can be re-defined in the form

û(T; p;c;Ñc) = ũ(T; p;c)+ unc(Ñc); unc = lu
1
2
jÑcj2; (5.94)

ŝ(T; p;c;Ñc) = s̃(T; p;c)+ snc(Ñc); snc = ls
1
2
jÑcj2; (5.95)

where ũ and s̃ are the classical parts of the specific internal energy and entropy that

associated with the Gibbs free energy, lu and ls are constant. In addition to these

129



classical contributions, we assume that the same thermodynamics relations that hold

for the classical terms also hold for the total terms, such that

ĝ = û�T ŝ +
p
r

;
¶ ĝ
¶T

����
p;c;Ñc

=�ŝ: (5.96)

Based on which, we obtain the following relation for the coefficients

l f (T ) = lu�Tls;
dl f (T )

dT
=�ls: (5.97)

The specifications of these three coefficients will be discussed in section 5.5.2. Note

that lu, ls together with l f (T ) (in Eq.(5.87)) can be further used to relate the surface

tension of phase-field model to that of the sharp-interface model when our phase-field

model reduces to its sharp-interface limit (see section 5.6.4 for details).

Now we derive the system of equations for the quasi-incompressible phase-field model.

We still use (5.15)-(5.19) to define the total properties, namely mass M, momentum

P, energy E, entropy S and mass constituent C in a material control volume V (t) of

the domain W. We further assume that the corresponding general balance laws (5.31)-

(5.35) that hold for the binary compressible fluid also hold for the quasi-incompressible

fluid, which can then be written as

Dr
Dt

=�r(Ñ �u); (5.98)

r
Du
Dt

= Ñ �m�rgẑ; (5.99)

r
Dũ
Dt

=�Ñ � (rlu
Dc
Dt

Ñc)+luÑ � (rÑc)
Dc
Dt

+(m +rluT) : Ñu�Ñ �qE �Ñ �qnc
E ;

(5.100)

r
Ds̃
Dt

=�Ñ � (rls
Dc
Dt

Ñc)+lsÑ � (rÑc)
Dc
Dt
�rlsT : Ñu�Ñ � (

qE

T
)�Ñ �qnc

S + Sgen;

(5.101)

r
Dc
Dt

=�Ñ �qC; (5.102)
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where, as the pressure p is not defined in the traditional way, the general stress tensor

m is not defined explicitly.

Note that, in contrast to the case of binary compressible fluid, the classical part of the

internal energy ũ we defined here does not depend on the entropy s̃ directly. However,

as our derivations are carried out within the thermodynamic framework that is based

on the entropy generation, we still need a thermodynamic relation between the internal

energy and entropy. Having in mind the definition of the internal energy (5.93) and

using the relations (5.89) and (5.90), we obtain the following relation between the

classical part of internal energy ũ, Gibbs free energy g and entropy s̃

r
Dũ
Dt

= r
¶g0

¶c
Dc
Dt

+rT
Ds̃(T; p;c)

Dt
: (5.103)

Then similar to the method used for the binary compressible fluid model, we use the

unknowns, including m, qE , qnc
E , qnc

S to express the entropy generation in the form

Sgen = 1
T

 

m +rl f (T )T

!

: Ñu +Ñ 1
T �

 

rlu
Dc
Dt Ñc + qE + qnc

E � m̃CqC

!

�Ñ �

"
1
T

 

rl f (T )Dc
Dt Ñc + qnc

E � m̃CqC�T qnc
S

!#

� 1
T qC �Ñm̃C; (5.104)

where we have used Eqs.(5.98)-(5.103), m̃C = g f (T )¶g0(c)=¶c� l f (T )Ñ � (rÑc)=r

is the chemical potential, T = Ñc
Ñc is the extra reactive stress (Ericksen’s stress)

to mimic the surface tension, which is associated with the concentration gradients en-

ergy. As the pressure is no longer defined by the thermodynamic formulas in this

model, we now derive the pressure in an alternative way to that used by Lowengrub

and Truskinovsky [87], where the pressure was obtained from the non-dissipated part

of the general stress m. Considering a dissipative process, we denote the general stress

tensor by m = m0 + t , in which t is the deviatoric stress tensor with zero trace, and

m0 is the unknown part to be defined later. The entropy expression (5.104) can then be
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written in the form

Sgen =
1
T

 

m0 +rl f (T )T

!

: Ñu +
1
T

t : Ñu +Ñ
1
T
�

 

rlu
Dc
Dt

Ñc + qE + qnc
E

� m̃CqC

!

�Ñ �

"
1
T

 

rl f (T )
Dc
Dt

Ñc + qnc
E � m̃CqC�T qnc

S

!#

�
1
T

qC �Ñm̃C:

(5.105)

We then denote Du = Ñu� (Ñ � u)I=3 as the deviatoric part of Ñu (tr Dv = 0) and

substitute into (5.105) to obtain

Sgen =
1
T

 

m0 +rl f (T )T

!

: Dv +
1
T

t : Ñu +Ñ
1
T
�

(

rlu
Dc
Dt

Ñc + qE + qnc
E �

"

m̃C

+
1
3

�
tr m0 +r

�
lu�Tls

�
jÑcj2

� 1
r2

dr
dc

#

qC

)

�Ñ �

(
1
T

"

rl f (T )
Dc
Dt

Ñc + qnc
E

�
�

m̃C +
�

tr m0 +rl f (T )jÑcj2
� 1

r2
dr
dc

�
qC�T qnc

S

#)

�
1
T

qC �Ñ

"

m̃C +
1
3

�
tr m0

+r
�

lu�Tls

�
jÑcj2

� 1
r2

dr
dc

#

; (5.106)

where we have used the mass balance (5.98) and the following identity

 

m0 +rl f (T )T

!

:
1
3

(Ñ �u)I =
1
3

 

tr m0 +rl f (T )tr T

!

(Ñ �u): (5.107)

Now we assume the first two terms on the right-hand side of (5.106) are non-dissipative

and define the pressure p by

�p =
1
3

tr m =
1
3

tr

 

m0 +rl f (T )T

!

=
1
3

 

tr m0 +rl f (T )jÑcj2
!

; (5.108)

such that

�pI = m0 +r(lu�Tls)T; (5.109)
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in which the way we use to define the pressure in Eq.(5.108) is analogous to the way

that defines the kinematic pressure for the classical Navier-Stokes equations [17]. To

ensure our model is consistent with the second law of thermodynamics (Sgen > 0), we

specify the unknown terms as the following

qE =�k(c)ÑT; qnc
E =�rlu

Dc
Dt

+ mCqC; (5.110)

qnc
S =�rls

Dc
Dt

Ñc; m0 =�pI�rl f (T )T; (5.111)

mC =
¶g0

¶c
�

p
r2

dr
dc
�l f (T )

1
r

Ñ � (rÑc); qC =�mCÑmC; (5.112)

T = Ñc
Ñc; t = m(c)(Ñu +ÑuT )�
2
3

m(c)(Ñ �u)I: (5.113)

We observe that, besides the Navier-Stokes equations, the pressure appears in the

chemical potential equation as well, which is different to the chemical potential (5.61)

for the binary compressible fluid model. Moreover, as the quasi-incompressibility is in-

troduced to our phase-field model, the velocity fields is non-solenoidal (see Eq.(5.14)),

the term 2m(c)(Ñ �u)I=3 does not equal to zero and thus cannot be eliminated from t .

By substituting the above specifications into Eqs.(5.98)-(5.102), we obtain the system

of equations for the phase-field model governing the quasi-incompressible fluid with

thermocapillary effects

Dr
Dt

=�r(Ñ �u); (5.114)

r
Du
Dt

= Ñ �m�rgẑ; (5.115)

r
Dũ
Dt

= luÑ � (rÑc)
Dc
Dt

+(�pI +rTlsT + t) : Ñu +Ñ � (k(c)ÑT + mCmCÑmC);

(5.116)

r
Ds̃
Dt

= lsÑ � (rÑc)
Dc
Dt

+
1
T

(rTlsT + t) : Ñu +
1
T

Ñ � (k(c)ÑT ); (5.117)

r
Dc
Dt

= mCDmC; (5.118)
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mC =
¶g0

¶c
�

p
r2

dr
dc
�l f (T )

1
r

Ñ � (rÑc); (5.119)

where, similarly to binary compressible model, the coefficient of the Ericksen’s stress

T is linearly temperature dependent, leading to the thermocapillary effects along the

diffusing interface, mC is a positive constant stands for the mobility of the diffuse

interface. The definitions (5.63) are still employed for the variable viscosity m(c) and

variable thermal conductivity k(c).

By substituting the terms, including m, qE , qnc
E , qnc

S and qC into the entropy generation

(5.106), we obtain the second law of thermodynamics for our phase-field model,

Sgen =
1
T

t : Ñu + k(c)j
ÑT
T
j2 +

mC
T
jÑmCj2 > 0: (5.120)

Similar to the binary compressible model, the choices of the terms t;qE and qC satisfy

the linear relation (5.73) and the Onsager reciprocal relations. Moreover, it can be

observed that the entropy generation (5.120) and the system equations are Galilean

invariant.

As mentioned above, several phase-field models have been developed for two-phase

flows with thermocapillary effects. However, in most of these models, the classical

energy balance equation

rchc
DT
Dt

= Ñ � (kÑT ); (5.121)

was incorporated directly into the phase-field model, where thermodynamic consis-

tency can be hardly maintained. Comparing with the classical energy balance equation

(5.121), several extra terms appear in our energy balance equation (5.116), which guar-

antee thermodynamic consistency (see section 5.4). The term rluÑc Dc=Dt (rlsÑc Dc=Dt)

that appears in the non-classical heat (entropy) flux qnc
E (qnc

S ) is associated with the

gradient energy (entropy). Here similar to section 5.3, we identify it as the energy
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(entropy) flux associated with variations in the phase-field at the boundary of the

control volume. Note that, in the isothermal case, our model reduces to the quasi-

incompressible NSCH model [87] (Eq.(4.1)-Eq.(4.4)) which is studied in chapter 4.

By using the variable mass density (5.10), the mass balance equation (5.114) can be

further rewritten as

Ñ �u =�
1
r

Dr
Dt

= ar
Dc
Dt

= amCDmC; (5.122)

where we have used Cahn-Hilliard equation (5.118) and let a = (r2�r1)=r2r1.

The initial conditions are given by

ujt=0 = u0; cjt=0 = c0; and T jt=0 = T0: (5.123)

For the velocity, the usual no-slip or no-flow boundary conditions can be posed on ¶W

u = vb; or u � n̂ = vb � n̂: (5.124)

For the phase-field, it is normal to employ Neumann boundary conditions on ¶W

Ñc � n̂ = hc; and ÑmC � n̂ = hm : (5.125)

For the temperature field, Dirichlet and Neumann boundary conditions can be posed

on ¶W

T = Tb; or ÑT � n̂ = qb (5.126)

for the specified temperature and heat flux on the boundary ¶W respectively, and Robin

boundary conditions can be posed as well.
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5.5.2 Specifications of the model

We now specify the properties including the Gibbs free energy, entropy and internal

energy for our phase-field model (5.114)-(5.119). In [9], a phase-field model for the

solidification of a pure material that includes convection in the liquid phase was de-

veloped, in which the case of the quasi-incompressibility (assuming that the density

in each phase is uniform) was discussed. In their work, the Gibbs free energy was

suggested in the form

ĝ(T; p;c) = g0(T;c)+
p

r(c)
+l f (T )

1
2
jÑcj2; (5.127)

g0(T;c) =
�

u0� chcT0

�
(1�

T
T0

)� chcT ln(
T
T0

)+ g f (T )h(c); (5.128)

which we adopt for the present work. Here, chc is the heat capacity, T0 is the reference

temperature, ũ0 is the reference internal energy corresponds to T0, and g(T ) is a tem-

perature dependent parameter that will be discussed later in this subsection. The free

energy function h(c) is a double-well potential and is given by

h(c) =
c2(c�1)2

4
; (5.129)

where the wells define the phases, and leads to an interfacial layer with large variations

for c (e.g. [56]). Note that the form for ĝ (5.127) is consistent with the incompressible

condition (5.92), which is a linear function of pressure. Moreover, this form for ĝ

is consistent with an internal energy û, which is a linear function of temperature and

leads to the classical heat equation in the bulk liquid [123, 10]. The corresponding

expressions for the entropy and internal energy are assumed in the form

ŝ = s̃ + snc =
1
T0

u0 + chcln(
T
T0

)+ gsh(c)+ls
1
2
jÑcj2; (5.130)

û = ũ + unc = ũ0 + chc(T �T0)+ guh(c)+lu
1
2
jÑcj2; (5.131)
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where ũ0 is the reference internal energy corresponds to T0.

We now specify those coefficients, including l f (T ), ls, lu, g f (T ), gs and gu, which are

used to define the internal energy, entropy and free energy of the system (Eqs.(5.127)-

(5.131)). In a sharp-interface model for the thermocapillary flow, the interface is usu-

ally represented as a surface of zero thickness with the surface tension as its physical

property. An equation of state is required to relate the surface tension to the tempera-

ture, which may be linear or nonlinear. For the sake of simplicity, we only consider a

linear relation in this study, such that

s(T ) = s0�sT (T �T0); (5.132)

where s(T ) is the linear function of the temperature, s0 is the interfacial tension at the

reference temperature T0, sT is the rate of change of interfacial tension with temper-

ature, defined as sT = ¶s(T )=¶T . In our phase-field model, however, the interface

has finite thickness and the extra reactive stress (Ericksen’s stress) T appears in the

Navier-Stokes equation to mimic the surface tension, where the coefficient of T

l f (T ) = lu�Tls; (5.133)

is a linear function of temperature. As s(T ) and l f (T ) are used to describe the thermo-

capillary effects in the sharp-interface model and our phase-field model respectively,

and both of them are linear functions of temperature, we then try to relate our coeffi-

cient l f (T ) to its “sharp-interface counterpart” s(T ) by introducing two parameters:

the first parameter is e with respect to the thickness of the diffuse interface, and the sec-

ond one is a ratio parameter h that relates the surface tension between the two models.

As the interface thickness e goes to zero, our phase-field model can reduce to its sharp-

interface limit, and the value of h can then be determined through the relation between

the surface tensions of two models (see section 5.6.7 for details). The corresponding
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coefficients can be given as

l f (T ) = hes(T ) = hes0�hesT (T �T0); g f (T ) =
h
e

s(T ) =
h
e

s0�
h
e

sT (T �T0);

ls = hesT ; gs =
h
e

sT ;

lu = hes0 +hesT T0; gu =
h
e

s0 +
h
e

sT T0: (5.134)

Here the coefficients l f (T ), ls and lu for the gradient terms are O(e2) approxima-

tions to those coefficients g f (T ), gs and gu for the corresponding classical terms, which

agrees with the definition of the Cahn-Hilliard free energy (e.g. [87, 85]). With the

specifications above, the total energy E of our phase-field model can now be written as

E =
Z

V (t)

 
1
2

rjuj2 +rgz +r ũ0 +rchc(T �T0)+rguh(c)+rlu
1
2
jÑcj2

!

dV:

(5.135)

5.5.3 Non-dimensionalization

With the help of the specification in Eq.(5.134), we non-dimensionalize the phase-field

model (5.114)-(5.116), (5.118) and (5.119) as follows. We let L?, V ? and T ? denote

the characteric scales of length, velocity and temperature. Then introduce the dimen-

sionless variables x̄ = x=L?, t̄ = V ?t=L?, and also ē = eL?, ū = u=V ?, p̄ = pr1m?
C,

m̄C = mC=m?
C. For the variable density r(c), viscosity m(c) and thermal conductiv-

ity k(c)(Eqs.(5.10) and (5.63)), we let ri, mi and ki (i=1,2) denote the correspond-

ing properties of the ith fluid, and introduce the non-dimensionless variables r̄r =

r(c)=r1, m̄r = m(c)=m1 and k̄r = k(c)=k1. Moreover, for the temperature field, we in-

troduce a new non-dimensonless variable T̄ = (T �T0)=T ?. The surface tension s(T )

(Eq.(5.132)) is scaled by s0 such that s̄(T ) = s(T )=s0, sT is then scaled by s0=T ?,

such that s̄T = sT T ?=s0. Omitting the bar notation, our phase-field model can now be
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rewritten as

Ñ �u =�
1
rr

¶rr

¶c
Dc
Dt

(5.136)

rr
Du
Dt

=�
1
M

h
Ñp +CaÑ �

�
rrs(T )T

�i
+

1
Re

Ñ �
�

mr(Ñu +ÑuT )�
2
3

mr(Ñ �u)I
�

�
rr

Fr2 ẑ; (5.137)

r
Dc
Dt

=
1
Pe

DmC; (5.138)

mC =
Ca
e2 s(T )

dh(c)
dc
�

p
r2

r

drr

dc
�

Ca
rr

s(T )Ñ � (rrÑc); (5.139)

rrchc
DT
Dt

=
EcCa

M
(1 +sT T0)Ñ � (rrÑc)

Dc
Dt

+
Ec
M

(�pI +CarrTsT T +
1

Re
t) : Ñu

+Ñ � (
1

Ma
krÑT +

Ec
MPe

mCÑmC); (5.140)

where M = V 2=mC is an analogue of the Mach number, Ca = hes0=mCL is the Capil-

lary number that measures the thickness of the interface, Re = m1=r1V L is the Reynolds

number, Fr = V 2=gL is the Froude number, Pe = rLV=mCmC is the diffusional Peclet

number, Ec = V 2=cchT is the Eckert number that characterizes dissipation of enrgy,

Ma = rcchV L=k1 is the Marangoni number.

5.6 Sharp-interface limits

Theoretically, there are usually two ways to validate the phase-field model. The first,

as mentioned above, is to show thermodynamic consistency of the model. The sec-

ond is to relate the phase-field model to its sharp-interface counterpart. Base on the

assumption that a given sharp-interface formulation is the correct description of the

physics under consideration, the phase-field model can be justified by simply show-

ing that it is asymptotic to the classical sharp-interface description. In the isother-

mal case, some sharp-interface limit analysis have been carried out for the phase-field
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model of two-phase flow to show that the corresponding sharp-interface equations and

jump conditions across the interface can be recovered from the phase-field model (e.g.

[87, 124, 2]). However, much less attentions have been paid on the asymptotic analysis

of the phase-field model for two-phase flows in the non-isothermal case, (e.g. thermo-

capillary flows, solidifications). Antanovskii [12] presented a phase-field model to

study the thermocapillary flow, and showed that the hydrostatic equilibrium condition

for the case of a flat interface and the Laplace-Young condition for the case of a drop

in equilibrium can be recovered from his phase-field model. Jasnow and Vinals [70]

extended Model-H to study the thermocapillary flow, including the migration of a drop

and spinodal decomposition of a binary fluid under a constant temperature gradient.

In the corresponding sharp-interface limit, he showed that the additional stress term

in the Navier-Stokes equation of their phase-field model is equivalent to the tangential

and normal force of the appropriate sharp-interface model. Anderson et. al.[9] devel-

oped a phase-field model of solidification with convection in the melt, in which the two

phases are considered as viscous liquids. In the sharp-interface analysis [10], they used

the matched asymptotic expansions to show that the standard boundary conditions, in-

cluding Young-Laplace and Stefan conditions can be recovered from their phase-field

model.

5.6.1 Pillbox argument

To illustrate this concept, we apply a similar pillbox argument to our phase-field model

(5.114)-(5.119). In contrast to sharp-interface model, the interface of the phase-field

model is diffusive with a finite thickness e . The phase variable (here is mass concentra-

tion c) is chosen to characterize the different phases, which takes distinct values (here

c = �1) for the different phases, and changes rapidly through the interfacial region.

Within this interfacial region, we chose a contour line of c (here c = 0:5) to represent
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Figure 5.1: A schematic diagram showing a diffuse-interface between two fluids inter-
secting with a pillbox shaped control volume, n̂T , n̂B and n̂S stand for the unit normal
vector of the pillbox boundary on its top, bottom and side, respectively. The dotted
lines represent the diffuse-interface with thickness e , 2d is the thickness of the pill-
box. In the limit e � d � L, the interface thickness goes to zero, and the interface
has constant density, n̂I and m̂I stand for the unit normal and tangent vector of the
interface.

the dividing surface G for the following derivations (See section 5.6.6 for details of the

dividing surface). Moreover, as the largest variations of the phase variable occur in the

direction normal to the interface, the side faces of the pillbox need to be treated care-

fully. Figure 5.1 shows the pillbox shaped control volume designed for our phase-field

model, where the surface of the pillbox here is divided into three parts, namely the top

Stop, bottom Sbot and side Sside surfaces with their unit normal vector n̂T , n̂B and n̂S,

respectively. The pillbox has thickness of 2d , where the top of the pillbox is above the

dividing surface G at a height z = d and the bottom is below G at a height z = �d .

Here, z is a local coordinate normal to the interface SI . In addition, the pillbox contains

a portion of the diffuse-interface with thickness e , in which G stands for the dividing

surface with its normal and tangent unit vector n̂I and m̂I . The key limit in the pillbox

argument is that e � d � L, where L is a length scale associated with the outer flow.

In this limit, the volume of the pillbox becomes negligible on the outer scales, but the

variations in the concentration variable c that define the interfacial region, occur over

a region fully contained within the pillbox. Also in this limit, the top (Stop) and the
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bottom surface (Sbot) of the pillbox collapse onto the interface G, and have the normal

vectors with opposite directions

Stop = Sbot = G; n̂T = n̂I; n̂B =�n̂I and n̂S = m̂I: (5.141)

Moreover, we assume that the interface is moving with the velocity vI([7, 8]). Note

that, as the thermocapillary (Marangoni) effect can be important under the case of

microgravity or microdevices, where the surface forces become dominant, we assume

that the viscous forces are small comparing to the surface forces.

5.6.2 Governing equations in sharp-interface limit

We first derive the system of equations in the bulk regions away from the interfacial

region. Here we only concentrate on the equations of mass, momentum and energy

balance. In the limit e � 0, the system of equations (5.114)-(5.116) reduce to the

classical equations appropriate for the incompressible flows in bulk regions

Ñ �u = 0; (5.142)

ri
Du
Dt

=�Ñp +Ñ �
�

mi(Ñu +ÑuT )
�
�rigẑ; (5.143)

richc
DT
Dt

= Ñ � (kiÑT )+ mi(Ñu +ÑuT ) : Ñu; (5.144)

where ri, mi and ki are the corresponding physical properties for the ith fluid.

We now seek to derive the jump conditions for Eqs.(5.142)-(5.144) at the interface

from our phase-field model (5.114)-(5.119).
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5.6.3 Jump condition for mass balance

In the limit e � d � L, we have the properties [7, 8]

Z

V

¶r
¶ t

dV ��
Z

S
ruI � n̂dS; (5.145)

Z

V

¶ (ru)
¶ t

dV ��
Z

S
ru
uI � n̂dS: (5.146)

Substituting Eq.(5.145) into Eq.(5.98), we obtain

Z

S
r(u�uI) � n̂dS = 0: (5.147)

According to the pillbox designed earlier, we break up the above surface integral into

pieces for the top, bottom and side surfaces to obtain

Z

Stop
r(u�uI) � n̂T dS +

Z

Sbot
r(u�uI) � n̂BdS +

I

C

Z d

�d
r(u�uI) � n̂Sdzdl = 0:

(5.148)

Here the surface integral of side portion is further written in term of a line integral

on the surface and an integral in the normal direction n̂S, where the line is a closed

curve at the side of the control volume that parallel to the interface. For a viscous fluid

under normal operating conditions, it is an experimentally observed fact (like the no-

slip boundary conditions at solid walls) that no slip takes place at the interface [119].

Therefore, in the limit e � d � L, we have

v � m̂I � vI � m̂I (5.149)
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This condition implies that the third left terms in Eq.(5.148) are bounded and do not

contribute to the integral. Eq.(5.148) can be reduced to

Z

G

h
r(u�uI)

i
� n̂IdS = 0; (5.150)

where [c] = c2� c1 refers to the jump of the quantity c across the singular interface.

Since the pillbox control volume V that contains a portion of the diffuse-interface is

arbitrary, the integrand in Eq.(5.150) must be zero. This then yields the mass balance

jump condition at the interface in a multiphase fluid system

h
r(u�uI)

i
� n̂I = 0: (5.151)

Further if we assume that there is no phase change (i.e. no flux) across the interface,

Eq.(5.151) reduces jump condition that

h
u
i
� n̂I = 0: (5.152)

5.6.4 Jump condition for momentum balance

Substituting Eq.(5.145) into the momentum equation (5.115), we obtain

Z

S

 

ru
 (u�uI)+ pI +hes(T )rT�m(Ñu +ÑuT )+
2
3

m(Ñ �u)I

!

� n̂dS = 0;

where, in the limit e � d � L, we assume that the gravitational term rgẑ is bounded

and thus do not contribute to the volume integral. We then break up the above surface
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integral into pieces for the top, bottom and sides of the pillbox to obtain

Z

Stop

 

ru
 (u�uI)+ pI +hes(T )rT�m(Ñu +ÑuT )+
2
3

m(Ñ �u)I

!

� n̂T dS

+
Z

Sbot

 

ru
 (u�uI)+ pI +hes(T )rT�m(Ñu +ÑuT )+
2
3

m(Ñ �u)I

!

� n̂BdS

+
I

C

Z d

�d

 

ru
 (u�uI)+ pI +hes(T )rT�m(Ñu +ÑuT )

+
2
3

m(Ñ �u)I

!

� n̂Sdzdl = 0: (5.153)

We assume that the most rapid variations in the phase-field take place across the inter-

facial region with the direction normal to the interface G. In the limit e� d � L, local

to the interface we have

Ñ�
¶

¶z
n̂I; Ñc�

¶c
¶z

n̂I; Dc�
¶ 2c
¶z 2 and

¶
¶ t
��vI � n̂I

¶
¶z

; (5.154)

such that

T = Ñc
Ñc�
¶c
¶z

n̂I
¶c
¶z

n̂I; T � n̂I �
¶c
¶z

¶c
¶z

n̂I; and T � m̂I � 0: (5.155)

Condition (5.149) implies that the fluid velocity term rv
 (v�vI) � n̂S is bounded and

does not contribute to the integral over the side surface of the pillbox. The tangential

derivative terms �m(Ñv + ÑvT ) � n̂S are bounded and do not contribute to the side

integral. For the term 2=3m(Ñ �v) � n̂S, Eqs.(5.122) and (5.154) gives

2
3

m(Ñ �v) =
2
3

mar
Dc
Dt
�

2
3

marc(v�vI)
¶c
¶z

; (5.156)

which implies that 2=3m(Ñ �v)I � n̂S is bounded and does contribute to the side integral.

Morevoer, the non-classical stress term T does not contribute to the integral over the
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top and bottom surfaces. Eq.(5.153) reduces to

Z

G

 h
ru(u�uI)

i
� n̂I +

h
pI
i
� n̂I +

h
�m(Ñu +ÑuT )

i
� n̂I

!

dS

+
I

C

Z e

�e
pI � m̂Idzdl = 0; (5.157)

where the condition (5.141) is used.

We now seek to identify the last right term in Eq.(5.157) as the surface tension of

our phase-field model. At equilibrium, we argue that in the momentum equation, the

largest variations in the direction normal to the interface occur in the pressure and the

phase-field, so that the terms Ñp and Ñ �(he2s(T )r(Ñc
Ñc)) have the leading order,

and the momentum equation (5.115) in the term of the local co-ordinate can then be

simplified as

¶ p
¶z

+
¶

¶z

�
hes(T )r(

¶c
¶z

)2
�

= 0; (5.158)

where we note the conditions

p = p�; c = c� and
¶c
¶z

= 0 as z !�d : (5.159)

Here p� are constant value that p takes at the top and bottom surface of the pillbox, and

c� are the value of c in the bulk region of fluid 1 and 2 separately. We then integrate

(5.158) from �d to a position z 2 [�d ;+d ] to obtain

p(z ) = p��hes(T )r(
¶c
¶z

)2; (5.160)
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where the condition (5.159) is used. In the limit e� d � L, we integrate (5.160) from

�d to d to obtain

Z d

�d
p(z ) dd =

Z d

�d

 

�hes(T )r(
¶c
¶z

)2

!

dz ��hs(T )
Z d

�d

 

er(
¶c
¶z

)2

!

dz ;

(5.161)

where p� is bounded and does not contribute to the line integral. Here, for our pill-

box argument to make sense, we require that within the pillbox the temperature are

continuous and the variations is small over a small distance (of order of the pillbox

thickness d ). In the limit e � d � L, the temperature T is approximately uniform

along the direction normal to the interface and thus is independent of the local coor-

dinate z . Note that the similar assumption for the temperature was also suggested by

[70], where a surface tension term with thermocapillary effects was identified from a

phase-field model in its sharp-interface limit. Denoting by

s̃(T ) = hs(T ) lim
e!0

Z d

�d

 

er(
¶c
¶z

)2

!

dz ; (5.162)

and substituting into (5.157), we obtain

Z

G

 h
ru(u�uI)

i
� n̂I +

h
pI
i
� n̂I +

h
�m(Ñu +ÑuT )

i
� n̂I

!

dS�
I

C
s̃m̂Idl = 0;

(5.163)

where, in the limit e� d � L, we assume that the tangential unit vector m̂I is indepen-

dent of z and thus can be taken out of the line integral. Using the surface divergence

theorem [125] leads to

I

C
s̃m̂Idl =

Z

G
Ñss̃dS�

Z

G
(Ñs � n̂I)s̃ n̂IdS: (5.164)
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Substituting Eq.(5.164) into Eq.(5.163), we obtain

Z

G

 h
ru(u�uI)

i
� n̂I +

h
pI
i
� n̂I +

h
�m(Ñu +ÑuT )

i
� n̂I

!

dS

�
Z

G
Ñss̃dS +

Z

G
(Ñs � n̂I)s̃ n̂IdS = 0: (5.165)

Note that, as the pillbox is arbitrary, the jump condition for the momentum balance at

the interface can be given as

h
ru(u�uI)

i
� n̂I +

h
pI
i
� n̂I +

h
�m(Ñu +ÑuT )

i
� n̂I = Ñss̃ +ks̃ n̂I;

(5.166)

where Ñs is the surface gradient, k = �Ñs � n̂I is the mean curvature of the surface

(e.g. [125]). The first term on the right is the tangential thermocapillary (Marangoni)

force that accounts for the non-uniform surface tension, while the second is the normal

surface tension force. Again if we assume that there is no phase change (i.e. no flux)

across the interface, Eq.(5.166) reduces to the jump condition that

h
pI
i
� n̂I +

h
�m(Ñu +ÑuT )

i
� n̂I = Ñss̃ +ks̃ n̂I; (5.167)

which is the classical momentum balance jump conditions at the interface for two-

phase incompressible fluid with thermocapillary effects. However it still remains to

confirm that the term s̃ in Eq.(5.162) stands for the surface tension. In what follows,

we will first derive the free energy boundary conditions at equilibrium (5.6.5), based

on which we use the excess of interfacial free energy to identify that the term s̃ defined

in Eq.(5.162) stands for the surface tension of our phase-field model (section 5.6.6).
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5.6.5 Free energy balance

We now rewrite the Cahn-Hilliard equations (5.118) and (5.119) as one equation

Z

V
r

Dc
Dt
�

(

mCD

 
h
e

s(T )
dh(c)

dc
�

p
r2

dr
dc
�hes(T )

1
r

Ñ � (rÑc)

!)

dV = 0:(5.168)

At equilibrium, we expect that all the terms in the braces have the leading order. Hav-

ing in mind the assumption (5.154), the Cahn-Hilliard equation (5.168) can be reduced

to

Z

V

¶ 2

¶z 2

 
h
e

s(T )
dh(c)

dc
�

p
r2

dr
dc
�hes(T )

1
r

d
dz

(r
dc
dz

)

!

dV = 0: (5.169)

As the pillbox control volume is arbitrary, we have

¶ 2

¶z 2

 
h
e

s(T )
dh(c)

dc
�

p
r2

dr
dc
�hes(T )

1
r

d
dz

(r
dc
dz

)

!

= 0: (5.170)

where we note the following boundary conditions

h(c) = h(c�) and
dh
dc

= h0(c�) for c!�d : (5.171)

Note that in section 5.6.4, Eq.(5.160) is also expressed in the form of local coordinate

z , we then substitute it into Eq.(5.170) to eliminate the pressure term �(p=r2)¶ p=¶c,

so that

0 =
¶ 2

¶z 2

 
h
e

s(T )
dh
dc
�

p�
r2

dr
dc
�hes(T )

d2c
dz 2

!

: (5.172)

Having in mind the definition of variable density for quasi-incompressible fluid r(c)

(5.10), we see that the second term�(p�=r2)¶ p=¶c in (5.172) is constant, and Eq.(5.172)
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can be further simplified as

¶ 2

¶z 2

 
h
e

s(T )
dh
dc
�hes(T )

d2c
dz 2

!

= 0: (5.173)

Using the conditions (5.159) and (5.171), we integrate (5.173) twice to obtain

0 =
h
e

s(T )
dh(c)

dc
�hes(T )

d2c
dz 2 �

h
e

s(T )h0(c�); (5.174)

or

0 =
h
e

s(T )
dh(c)

dc
�hes(T )

d2c
dz 2 �

h
e

s(T )h0(c+): (5.175)

Again, we assume that the temperature T is independent of local coordinate z and drop

the coefficient s(T ) to obtain

0 =
h
e

dh(c)
dc
�he

d2c
dz 2 �

h
e

h0(c�); (5.176)

or

0 =
h
e

dh(c)
dc
�he

d2c
dz 2 �

h
e

h0(c+): (5.177)

Subtracting Eq.(5.176) from Eq.(5.177), we then obtain the boundary conditions for

the free energy at the interface

h0(c+) = h0(c�): (5.178)

Again, multiplying Eq.(5.176) by ¶c=¶z and integrating from �d to d , we have

0 =
h
e

�
h(c+)�h(c�)

�
�

h
e

h0(c�)(c+� c�); (5.179)
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where we note that (5.178) and (5.179) are the Gibbs equilibrium conditions for the

free energy at the interface (e.g. [39]). In the next subsection, we will use the concept

of excess of interfacial free energy to identify the surface tension from our phase-field

model, where the Gibbs equilibrium conditions (5.178), (5.179) are used.

5.6.6 Excess of interfacial free energy

In a multiphase fluid system, the surface tension is identical to the surface energy den-

sity. As the interface possesses more energy compared to that of the bulk phases, this

surface energy can be determined as the excess energy at the surface compared to the

corresponding bulk phases [47, 41, 103]. For the phase-field model, as the interfacial

region has finite thickness, in which the different phases are mixed, a definition of in-

terface is needed in order to determine the excess energy. For this purpose, the Gibbs

dividing surface [47] is typically adopted for the phase-field model (e.g. [7, 87]), where

the two phases are thought to be separated by an infinitesimal thin surface.

We begin by introducing the way to determine the exact location of the Gibbs dividing

surface. In Gibbs model, the constituent mass of the two-phase fluid can be written as

a sum of three components: one of bulk phase 1, one of bulk phase 2, and one of the

interfacial region G, so that

Mi = M1
i + M2

i + MG
i : (5.180)

Here as the interface (G) is assumed to be ideally thin (VG = 0) with zero mass, we may

have

MG
i = Mi�M1

i �M2
i = 0: (5.181)
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For our phase-field model, as the mass concentration of one fluid component is chosen

as the phase variable, we rewrite the balance of constituent mass (5.181) in term of the

phase variable

Z d

�d
rc dz �

Z z0

�d
r�c� dz �

Z d

z0

r+c+ dz = 0; (5.182)

where r� and c� represent the value of r and c that take in different bulk phases. The

location of the dividing surface G is denoted by z0 and can be determined through the

above equation. In addition, for the phase variable c, we have two sets of values,

c+ = 0; c� = 1 (c = c1) as z !�d ; (5.183)

c+ = 1; c� = 0 (c = c2) as z !�d : (5.184)

Using Eqs.(5.183) (5.183), Eq.(5.182) can be further written as

Z z0

�d

 

r�r�

!

dz +
Z d

z0

 

r�r+

!

dz = 0; (5.185)

where we have used the condition c1 + c2 = 1. Eq.(5.185) stands for the mass balance

of the mixture with the Gibbs dividing surface, which will be used for the derivation

later.

With the location of the dividing surface, we now identify the surface tension with re-

spect to the concept of excess of interfacial free energy. Anderson et. al. [7] presented

a phase-field model to study a single compressible fluid at different phases, where, at

equilibrium, the Helmholtz free energy was used to determine the excess of interfacial

free energy. Similarly, Lowengrub and Truskinovsky [87] used the Helmholtz free en-

ergy to determine the excess of interfacial free energy and thus to identify the surface

tension of quasi-incompressible phase-field model for two-phase flow at equilibrium.

Following these works, we use the relation (5.28) and (5.96) to define a Helmholtz
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free energy for our phase-field model of quasi-incompressible fluid. Having in mind

the Gibbs free energy (5.127), we have

f̂ = ĝ�
p
r

=
�

u0� chcT0

�
(1�

T
T0

)� chcT ln(
T
T0

)+
h
e

s f (T )h(c)+ ehs f (T )
1
2
jÑcj2;

(5.186)

where we see that the free energy f̂ is temperature dependent as the non-isothermal

case is considered here. In the isothermal case, (say T = T0), our free energy (5.186)

reduces to the classical Cahn-Hilliard free energy (e.g. [28, 87]):

f̂ =
hs
e

h(c)+hse
jÑcj2

2
: (5.187)

In what follows, we use the free energy (5.186) and the dividing surface G to determine

the excess free energy. Let Eexs be the excess of interfacial free energy per unit area,

then

Eexs =
Z +d

�d
r f̂ dd �

Z z0

�d
r� f̂� dd �

Z +d

z0

r+ f̂+ dd

� s(T )
Z +d

�d

1
2

her(c)(
dc
dz

)2dz +s(T )
Z z0

�d

h
e

 

r(c)h(c)�r�h(c�)

!

dz

+s(T )
Z d

z0

h
e

 

r(c)h(c)�r+h(c+)

!

dz ; (5.188)

where f̂� are the values of the Gibbs free energy that take in the bulk phases corre-

sponding to c�. Note that, in the limit of e � d � L (or d is sufficiently small), we

assume that the variations of the temperature T along the direction normal to the in-

terface are small and thus independent of the local coordinate z . Then the first two

terms associated with the temperature in (5.186) are constant and can be eliminated.

For the derivations later, we first multiply Eq.(5.176) by ¶c=¶z and integrate from d
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to a position z to obtain

1
2

he(
dc
dz

)2 =
h
e

�
h(c)�h(c�)

�
�

h
e

h0(c�)(c� c�); (5.189)

where the condition (5.159) is used. We then rewrite Eq.(5.188) in the form

Eexs = s(T )
Z +d

�d
her(c)(

dc
dz

)2dz

+s(T )
Z z0

�d

h
e

 

r(c)
�

h(c�)�h0(c�)c�
�
�r�

�
h(c�)�h0(c�)c�

�!

dz

+s(T )
Z d

z0

h
e

 

r(c)
�

h(c�)�h0(c�)c�
�
�r+

�
h(c+)�h0(c�)c+

�!

dz ;

(5.190)

where we have used the balance of constituent mass (5.182). Using the condition

(5.179) and mass balance equation (5.185), we finally obtain the expression for the

excess of interfacial free energy

Eexs = s(T )
Z +d

�d
her(c)(

dc
dz

)2dz = s̃(T ); (5.191)

where we identify that the term s̃(T ) in the jump condition for momentum balance

(5.167) is identical to the excess of interfacial free energy, and thus stands for the

surface tension of our phase-field model. In addition, if we use the specification for the

double-well free energy (5.129) and substitute Eq.(5.189) into the excess of interfacial

free energy (5.191), we have

Eexs = s(T )
Z +d

�d

 
1
2

her(c)(
dc
dz

)2 +
h
e

r(c)h(c)

!

dz = s̃(T ); (5.192)

which reveals that in the free energy (5.186), both the gradient energy l f (T )jÑcj2=2

and the double well free energy g f (T )h(c) contribute equally to the surface energy
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at equilibrium. This agrees with the results obtained by Lowengrub & Truskinovsky

[87], and Liu & Shen[85], where the phase-field model for a quasi-incompressible

fluid (variable density case) and binary incompressible fluid (density matched case)

were studied in the sharp-interface limit, respectively.

With the help of the location of the dividing surface and the excess of interfacial

free energy, we can further relate the surface tension of the our phase-field model

s̃(T ) (identified in Eq.(5.191)) to that of the sharp-interface model s(T ) (defined in

Eq.(5.132)) by letting

s̃(T ) = s(T )
Z +d

�d
her(c)(

dc
dz

)2dz = s(T ): (5.193)

The value of the ratio parameter h can then be determined through the following equa-

tion

h =
1

R+d
�d er(c)( dc

dz )2dz
: (5.194)

It has been argued by [29] that in the limit of gently curved interface, and when the

motion of the interface is slow, the phase variable c can be approximated by its 1D

stationary solution c0 along the direction normal to the interface. For simplicity, we

now assume that the local coordinate z coincide with the y direction, and the position

of the dividing surface is y0 = 0. In the 1D case, we have the following stationary

solution c0 near the interfacial region,

c0(y) =
1
2

+
1
2

tanh
� y

2
p

2e

�
; for y 2 [�d ;d ]; (5.195)

which is shown in Figure 5.2. Here y = d and y = �d are the positions of the top

and bottom surface of the pillbox separately. In the limit e � d � L, we note the

155



Figure 5.2: The stationary solution c0 (black solid line) for the phase-field. A is a point
on the dividing surface G, d and�d are positions of the top and bottom surfaces of the
pillbox (blue dotted line).

conditions

c = 0 for y = d ; and c = 1 for y =�d : (5.196)

Substituting Eq.(5.195) and the variable density (5.10) into (5.194) we obtain

h =
2
p

2(r2�r1)3

r1r2

h
r2

2 �r2
1 �2r1r2ln(r2

r1
)
i ; (5.197)

where the condition (5.196) is used. Note that for the density matched case (r1 = r2),

Eq.(5.194) leads to a simpler expression for h , which is

h = 6
p

2: (5.198)

This agrees with the result obtained by [103], [130] and [4]. In next section, we will

compute some examples using our phase-field model for quasi-incompressible fluids

(5.114)-(5.119). As both examples are computed under the density matched case, we

use Eq.(5.198) for the computations. The numerical results will be compared to the

analytical solutions that derived for the sharp-interface model to validate this value of

h and further to validate our model.
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5.6.7 Jump condition for energy balance

To derive the jump condition for the energy balance at the interface, we first substi-

tute the terms E, m, qE and qnc
E ((5.17), (5.110), (5.111) and (5.113)) into the energy

balance equation (5.33). In the integral form, we obtain

Z

S

 

r û(v�vI)+r
1
2
jvj2(v�vI)�

�
� pI�l f (T )rT + m(Ñv +ÑvT )

�
2
3

m(Ñ �v)I
�
�v�lu(rÑc

Dc
Dt

)� kÑT �mCmCÑmC

!

�nIdS = 0; (5.199)

where we have used the identities

r
Dû
Dt

=
¶ (r û)

¶ t
+Ñ � (r ûv); (5.200)

r
D
Dt

1
2
jvj2 =

¶
¶ t

(r
1
2
jvj2)+Ñ � (r

1
2
jvj2v); (5.201)

and the following properties which are similar to (5.145) and (5.146),

Z

V

¶ (r û)
¶ t

dV ��
Z

S
r ûvI � n̂dS; (5.202)

Z

V

¶
¶ t

(r
1
2
jvj2)dV ��

Z

S
r

1
2
jvj2vI � n̂dS: (5.203)

We then break up the above integral into pieces for the top, bottom and sides of the

pillbox to obtain

Z

Stop

 

r û(v�vI)+r
1
2
jvj2(v�vI)�

�
� pI�l f (T )rT + m(Ñv +ÑvT )

�
2
3

m(Ñ �v)I
�
�v�lu(rÑc

Dc
Dt

)� kÑT �mCmCÑmC

!

� n̂T dS

+
Z

Sbot

 

r û(v�vI)+r
1
2
jvj2(v�vI)�

�
� pI�l f (T )rT + m(Ñv +ÑvT )

(5.204)
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�
2
3

m(Ñ �v)I
�
�v�lu(rÑc

Dc
Dt

)� kÑT �mCmCÑmC

!

� n̂BdS

+
I

C

Z d

�d

 

r û(v�vI)+r
1
2
jvj2(v�vI)�

�
� pI�l f (T )rT + m(Ñv +ÑvT )

�
2
3

m(Ñ �v)I
�
�v�lu(rÑc

Dc
Dt

)� kÑT �mCmCÑmC

!

� n̂Sdzdl = 0; (5.205)

where we assume that the heat capacity chc is a constant. In the limit e � d � L,

the non-classical terms of the internal energy û, T, lu(rÑcDc
Dt ) and mCmCÑmC do not

contribute to the top and the bottom surface integrals. So that the terms
�

r û(v�vI)+

r 1
2 jvj

2(v� vI) + m(Ñv + ÑvT ) � v� 2
3 m(Ñ � v)I � v

�
� n̂S are bounded and do not con-

tribute to the side integral. Moreover, the non-classical terms l f (T )rT, lu(rÑcDc
Dt )

and mCmCÑmC do not contribute to the side integral, kÑT is bounded and does not

contribute to the side integral. Eq.(5.205) then reduces to

Z

G

 h
richcT (v�vI)

i
+
h
ri

1
2
jvj2(v�vI)

i
+
h

pI �v
i
�
h
m(Ñv +ÑvT ) �v

i

�
h
kiÑT

i!

� n̂IdS +
I

C

 Z d

�d
pdz

!

vI � m̂Idl = 0; (5.206)

where in the last term of Eq.(5.206), we argue that the interface velocity vI is indepen-

dent of the local coordinate z and thus can be taken out of the integral in the normal

direction. By using Eqs.(5.161) and (5.162), we obtain

Z

G

 h
richcT (v�vI)

i
+
h
ri

1
2
jvj2(v�vI)

i
+
h

pI �v
i
�
h
m(Ñv +ÑvT ) �v

i

�
h
kiÑT

i!

� n̂IdS +
I

C

Z d

�d
s̃vI � m̂Idzdl = 0: (5.207)

158



The surface divergence theorem gives

Z

G

 h
richcT (v�vI)

i
+
h
ri

1
2
jvj2(v�vI)

i
+
h

pI �v
i
�
h
mi(Ñv +ÑvT ) �v

i

�
h
kiÑT

i!

� n̂IdS�
Z

G
Ñs � (s̃vI)dS�

Z

G
ks̃ n̂I �vIdS = 0; (5.208)

where the condition (5.141) is used. As the surface is arbitrary, we obtain the energy

balance jump condition at the interface

h
kiÑT

i
� n̂I =

 h
rchcT (v�vI)

i
+
h
ri

1
2
jvj2(v�vI)

i
+
h

pI �v
i

�
h
mi(Ñv +ÑvT ) �v

i!

� n̂I�Ñs � (s̃vI)�ks̃ n̂I �vI; (5.209)

where the energy spent by the interface deformation and the effects of the interface

curvature are taken into account in our jump condition for energy balance at the inter-

face. Eq.(5.209) agrees with the result obtained in by [11], where the energy balance

condition is derived by using a pillbox for sharp interface model. Again if we assume

that there is no phase change across the interface, Eq.(5.209) then reduces to

h
kiÑT

i
� n̂I =

 h
pI �v

i
�
h
mi(Ñv +ÑvT ) �v

i!

� n̂I�Ñs � (s̃vI)�ks̃ n̂I �vI:

(5.210)

If we further ignore the energy spent by the interface deformation and the effects of

interface curvature, we can obtain the classical jump condition for the energy equation,

h
kÑT

i
� n̂I = 0; (5.211)

which is widely used for the computations of sharp-interface model (e.g. [115]).
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5.7 Computational methods and results

In this section, we investigate numerically our phase-field model through three exam-

ples. One is the thermocapillary convection in a micro-channel with two-layer super-

imposed fluid, and the second (third) one is the thermocapillary migration of a drop

with zero (finite) Marangoni number. All examples will be computed by using contin-

uous finite element methods. The numerical results of the first and second examples

will be compared to the existing analytical solutions and theoretical predictions.

5.7.1 Simplified model and the weak form

For the sake of simplicity, we assume that the densities of the two fluids are matched.

The system equations (5.114)-(5.119) can then be simplified in the form

Ñ �v = 0; (5.212)
Dv
Dt

=�Ñp�Ñ �
h
l f (T )(Ñc
Ñc)

i
+Ñ � (mÑv); (5.213)

Dû
Dt

= luÑ � (Ñc
Dc
Dt

)+
�
� pI�l f (T )(Ñc
Ñc)+ mÑv

�
: Ñv

+Ñ � (kÑT + mCmCÑmC); (5.214)

Dc
Dt

= mCDmC; (5.215)

mC = g f (T )
dh(c)

dc
�l f (T )Dc; (5.216)

where the variable thermal conductivity (5.63) is employed. Here we have rewritten

the energy balance equation (5.116) by using Eq.(5.43) and the definition of û (5.131).

Note that the reason we need to rewrite energy equation is that in the weak formulation

of Eq.(5.116), the second order derivative is involved implying that more complicated

C1 finite elements are needed. However in the weak formulation (5.219) below we find

that only first order derivatives of c are involved, so that the C0 finite element method
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can be used for our computations. The benefits of using C0 elements are obvious, that

the method can be implemented easily and many existing codes can be incorporated

to reduce various complications. Note that Eqs.(5.212)-(5.214) of the system will be

computed for the example of thermocapillary convection, Eqs.(5.212)-(5.216) will be

computed for the example of thermocapillary migration with zero Marangoni number,

and the non-dimensional system equations (5.136)-(5.140) will be computed for the ex-

ample of thermocapillary migration with finite Marangoni number. For simplicity, we

only present the numerical scheme for dimensional system equations (5.212)-(5.216).

The numerical method for the non-dimensional system (5.136)-(5.140) can be obtained

correspondingly. By multiplying the system (5.212)-(5.216) with the test functions q,

u, c , f and y respectively and using integration by parts, the weak form can be de-

rived straightforwardly (where v, p, û, c, m and test functions u, q, c , f and y are in

appropriate spaces),

Z

W

 

Ñ �vq

!

dx = 0; (5.217)

Z

W

 

vt �u +(v �Ñ)v �u� pÑ �u�l f (T )(Ñc
Ñc) : Ñu + mÑv : Ñu

!

dx = 0;

(5.218)
Z

W

 

ût c +(v �Ñ)ûc +lu
Dc
Dt

Ñc �Ñc +l f (T )(Ñc
Ñc) : Ñvc + pI : Ñvc

�mÑv : Ñvc + kÑT �Ñc ++mCmCÑmC �Ñc

!

dx = 0; (5.219)

Z

W

 

ctf +(v �Ñ)cf + mCÑmC �Ñf

!

dx = 0; (5.220)

Z

W

 

mCy� g f (T )
dh(c)

dc
y�Ñl f (T ) �Ñcy�l f (T )Ñc �Ñy

!

dx = 0: (5.221)
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5.7.2 Temporal schemes and implement issue

The solution of the weak form (5.217)-(5.221) is approximated by a finite difference

scheme in time and a conformal C0 finite element method in space. To ensure the sta-

bility of our numerical method, we adopt the fully implicit backward Euler scheme to

compute the problem.

We let Dt > 0 represent a time step size, and (vn
h; pn

h; ûn
h;cn

h;mC
n
h) (in a finite dimen-

sional space given by a finite element discretization of the computational domain W) is

an approximation of (v; p; û;c;m) at time tn = nDt, where vn
h = v(nDt), pn

h = p(nDt),

ûn
h = û(nDt), cn

h = c(nDt) and mC
n
h = mC(nDt). Then the approximation at time tn+1

is denoted as (vn+1
h ; pn+1

h ; ûn+1
h ;cn+1

h ;mC
n+1
h ) and computed by the following finite ele-

ment scheme

Z

W

 

Ñ �vn+1
h q +d pn+1

h q

!

dx = 0; (5.222)

Z

W

 

vn+1
t̄ �u +(vn+1

h �Ñ)vn+1
h �u� pn+1

h Ñ �u�l f (T n+1
h )(Ñcn+1

h 
Ñcn+1
h ) : Ñu

+mÑvn+1
h : Ñu

!

dx = 0; (5.223)

Z

W

 

ûn+1
t̄ c +(vn+1

h �Ñ)ûn+1
h c +lu(cn+1

t̄ +(vn+1
h �Ñ)cn+1

h )Ñcn+1
h �Ñc

+l f (T n+1
h )(Ñcn+1

h 
Ñcn+1
h ) : Ñvn+1

h c�mÑvn+1
h : Ñvn+1

h c + kÑT n+1
h �Ñc

+mCmC
n+1
h ÑmC

n+1
h �Ñc

!

dx = 0; (5.224)

Z

W

 

cn+1
t̄ f +(vn+1

h �Ñ)cn+1
h f + mCÑmC

n+1
h �Ñf

!

dx = 0; (5.225)

Z

W

 

mC
n+1
h y� g f (T n+1

h )h0(cn+1
h )y�Ñl f (T n+1

h ) �Ñcn+1
h y

�l f (T n+1
h )Ñcn+1

h �Ñy

!

dx = 0; (5.226)
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where vn+1
t̄ = (vn+1

h �vn
h)=Dt, ûn+1

t̄ = (ûn+1
h � ûn

h)=Dt and cn+1
t̄ = (cn+1

h � cn
h)=Dt. Note

that the divergence free equation needs to be treated carefully in incompressible flow

computations. Here we rewrite Eq.(5.222) in the penalty formulation, where d is a

relatively small parameter and is set to be d = 10�6 for all the computations. Note that

for every time step, T n+1 can be obtained by using Eq.(5.131), such that

chcT n+1 = ûn+1� guh(cn+1)�lu
1
2
jÑcn+1j2: (5.227)

Since the scheme is nonlinearly implicit we need to linearize the system and then solve

a linear system iteratively at each time step. We follow the numerical methods designed

in [65], where the linear system is symmetric and does not depend on time. Therefore,

we only need to calculate the Cholesky factorization for the symmetric linear system at

the initial time step. After the initial time we do not need to factorize the linear system

again since the coefficient matrix is independent of time.

For a phase-field model, it is sufficient to finely resolve only the transition layers, and a

fixed grid represents a waste of computational resources. Therefore, efficient adapting

mesh that resolves the thin layers near the interface is desirable. For the example of

the thermocapillary convection, we design a mesh that has relatively high-resolution

grids near the flat interface. For the example of the thermocapillary migration, as the

interface moves as the drop rises, an adaptive mesh is designed, in which there is a

smaller frame that moves with the drop. Within the frame, the resolution of grids

is much higher than those outside the moving frame, so that the moving interface

of the drop can be resolved purposely. Here, only the meshes for the example of

thermocapillary migration are shown.
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Fluid A

Fluid B

a

b

! l / 2 l / 2

x

y

Figure 5.3: The schematic diagram showing two immiscible fluids in a microchannel.
The temperatures of the lower and upper plates are T b(x;�b) = Th + T0cos(kx) and
T a(x;a) = Tc, respectively, where Th > Tc > T0 and k = 2p=l is the wave number, and
a and b are the heights of the fluid A and B respectively.

5.7.3 Thermocapillary-driven Convection

We now investigate the thermocapillary-driven convection in a heated micro-channel

with two-layer superimposed fluids with a planar interface [98]. Considering two-layer

fluids (figure 5.3), where the heights of the fluid A (upper) and fluid B (lower) are a and

b, respectively, and the fluids are of infinite extension in the horizontal direction. The

physical properties of the fluids are their densities, viscosities and heat conductivities.

The temperature variations in the present study are considered to be small enough so

that the thermophysical properties of each fluid are assumed to remain constant, with

the exception of surface tension. The temperature of the lower and upper plates are

T b(x;�b) = Th + T0 cos(wx) and T a(x;a) = Tc (5.228)

respectively, where Th > Tc > T0 > 0, and w = 2p=l is a wave number with l being

the channel length. The above temperature boundary conditions establish a tempera-

ture field that is periodic in the horizontal direction with a period of l. Therefore, it

is sufficient to only focus on the solution in one period, i.e.,�l=2 < x < l=2. In the

limit of zero Marangoni number and small Reynolds number, it is possible to ignore

the convective transport of momentum and energy. In addition, we assume that the
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interface is to remain flat. By solving the simplified sharp-interface governing equa-

tions with the corresponding jump boundary conditions at the interface, Pendes et al,

[98] obtained the analytical solutions for temperature field T̄ (x;y) and stream-function

ȳ(x;y), where for the upper fluid

T̄ A(x;y) =
(Tc�Th)y + k̃Tcb + Tha

a + k̃b
+ T0 f (a;b ; k̃) sinh(a�wy) cos(wx);

(5.229)

ȳA(x;y) =
Umax

w
1

sinh2(a)�a2

n
wy sinh2(a)cosh(wy)

�
1
2

h
2a2 +wy

�
sinh(2a)�2a

�i
sinh(wy)

o
sin(wx); (5.230)

and for the lower fluid

T̄ B(x;y) =
k̃(Tc�Th)y + k̃Tcb + Tha

a + k̃b
+ T0 f (a;b ; k̃)

h
sinh(a)cosh(wy)

�k̃sinh(wy)cosh(a)
i

cos(wx); (5.231)

ȳB(x;y) =
Umax

w
1

sinh2(b )�b 2

n
wy sinh2(b )cosh(wy)

�
1
2

h
2b 2�wy

�
sinh(2b )�2b

�i
sinh(wy)

o
sin(wx): (5.232)

In the above equations the unknowns are defined by k̃ = kA=kB, a = aw , b = bw ,

f (a;b ; k̃) = 1=(k̃sinh(b )cosha + sinh(a)coshb ), g(a;b ; k̃) = sinh(a) f (a;b ; k̃) and

Umax =�

 
T0sT

mB

!

g(a;b ; k̃)h(a;b ; m̃);

h(a;b ; m̃)

=

�
sinh2(a)�a2

��
sinh2(b )�b 2

�

k̃
�

sinh2(b )�b 2
��

sinh(2a)�2a
�

+
�

sinh2(a)�a2
��

sinh(2b )�2b
� :

Based on their work, the simulations for our phase-field model are carried out in a

2D domain [�l=2; l=2]� [�b;a] with l = 1:6� 10�4, and a = b = 4� 10�5. As the
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e = 0:02 e = 0:01 e = 0:005 e = 0:002 e = 0:001

k=0.1
jjT�T̄ jjL2

jjT̄ jjL2
5:445�10�3 2:503�10�3 1:189�10�3 4:551�10�4 2:200�10�4

jjy�ȳjjL2
jjȳjjL2

4:309�10�2 2:668�10�2 1:614�10�2 6:94�10�3 6:44�10�3

k=0.5
jjT�T̄ jjL2

jjT̄ jjL2
1:585�10�3 5:748�10�4 2:098�10�4 5:167�10�5 1:815�10�5

jjy�ȳjjL2
jjȳjjL2

6:796�10�2 2:208�10�2 8:682�10�3 3:688�10�3 7:318�10�4

Table 5.1: L2 norm of the relative difference between the numerical results and the
analytical solutions for section 6.3.

interface between the two fluids is assumed to be flat and rigid, the initial conditions

for the phase-field is only depending on y, and can be given in the form

c(y) =
1
2

+
1
2

tanh
� y

2
p

2e

�
; for y 2 (�b;a); (5.233)

where e is related to the thickness of the diffuse interface. The periodic boundary

conditions are applied on the left and right sides of the domain. On the top and bottom

walls, the no-slip boundary conditions are imposed such that

u = 0 for y = a;�b: (5.234)

Eq.(5.228) are used as the boundary conditions for temperature with Th = 20, Tc = 10

and T0 = 4. We let the ratio parameter h = 6
p

2 (Eq. (5.198)). Moreover, the fluid

properties are set as mA = mB = 0:2, kB = 0:2, s0 = 2:5� 10�1, k̃ = kA=kB (thermal

conductivity ratio) and sT =�5�10�3 (at Tre f = Tc).

To show the influences of the thermal conductivity ratio on the stream-function and

temperature fields, the simulations are carried for two cases with different value of k̃,

where k̃ = 0:1 for case 1, and k̃ = 0:5 for case 2. Here the variable thermal conductivity

k(c) (Eq. (5.63)) is employed, where we fixed kB(= 0:2), and change the value of kA

for the two cases. The contours of temperature fields and stream function for the
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Figure 5.4: Isotherms of the numerical results and analytical solutions for the example
of thermocapillary convection in a two-layer fluid system with the different thermal
diffusivity ratios, k̃ = 1 and k̃ = 0:2.

Figure 5.5: Streamlines of the numerical results and analytical solutions for the ex-
ample of thermocapillary convection in two-layer fluid system with different thermal
diffusivity ratios, k̃ = 1 and k̃ = 0:2. Positive (negative) values of the stream-function
indicate the clockwise (the counterclockwise) circulation.
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two cases at e = 0:002 are shown in figure 5.4 and figure 5.5 respectively. It can be

seen that our numerical results are in good agreement with the analytical solutions.

In order to show that our phase-field model approaches to the sharp-interface model

as the thickness of diffuse interface goes to zero, the computations are carried out by

using four different values of e(= 0:02;0:01;0:005;0:002). The L2 norm of the relative

difference between the numerical results and analytical solutions are shown in table 2.

We can observe that as the value of e decreases, the L2 norm of relative difference

decreases for both temperature field and stream functions. We also note that there are

slight differences between our numerical results and the analytical predictions. The

reason is two-fold. For one, and most importantly, the thickness of the interface of

our model is finite, and the thermal diffusivity changes across it. The second reason is

that the viscous heating term is considered in our energy balance equation (5.214). As

can be observed from the isotherms in figure 5.4, the cosine like boundary condition

for temperature leads to the non-uniform distributions of the temperature along the

interface. This results in a shear force along the interface that is from the centre to

both sides of the domain. The fluids are set to motion by this shear force and move

from the middle toward both sides of the domain. It is then replaced by the fluid

flowing downwards (upward) from the top (bottom) boundary. Also as the domain is

periodic in the horizontal direction, the velocities of fluid that moves towards both sides

decrease and the fluids are forced to move upward (downward) to the top (bottom) of

the domain. This mechanism results in the formation of the circulation patterns that

can be observed in the stream function fields (figure 5.5), where the fluid flow consists

of four counter-rotating circulation that divide the domain into four parts. Moreover, in

the context of the thermal conductivity ratio, we find that the decrease of the value of

k̃ leads to a more non-uniform distribution of temperature along the interface, and thus

strengthens the thermocapillary-driven convection. This agrees with the recent result

obtained by Liu et al. [86], where the same thermocapillary convection in a two-layer
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fluid system was investigated numerically by using a lattice Boltzmann phase-field

method.

5.7.4 Thermocapillary migration in the limit of zero Marangoni

number

The thermocapillary migration of a gas bubble was first examined experimentally by

[129], who derived an analytical expression for the terminal velocity (also known as

YGB velocity) of the drop in an infinite domain. In his study, both the Marangoni

and Reynolds numbers are assumed to be infinitely small, such that the convective

transport of momentum and energy are negligible. Instead, the terminal velocity of the

gas bubble is derived in a infinite domain with constant temperature gradient fields,

and can be given in the form

VY GB =
2U

(2 + k̃)(2 + 3m̃)
; (5.235)

where U =�sT GT R=mB is chosen as the velocity scale, R is the radius of the drop and

GT stands for the constant temperature gradient, k̃ = kA=kB is the thermal conductivity

ratio and m̃ = mA=mB is the viscosity ratio between the two fluids. In our simulation,

we consider a 2D domain W of size [0;7:5R]� [0;15R] where a planar 2D circular

drop of fluid A with radius R = 0:1 is placed inside the medium of fluid B, with the

drop’s centre located at the center of the box (xc;yc) = (3:75R;7:5R). We set the initial

condition for the phase-field as

c(x;y) =
1
2

tanh

 
R�

h
(x� xc)2 +(y� yc)2

i 1
2

2
p

2e

!

+
1
2

; (5.236)
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where e = 0:001� 15R stands for the thickness of the diffuse interface. In figure 5.6

we present the initial condition (5.236) for the whole domain (left hand side), and for

fixed x = 3:75R (right hand side), where it can be observed that the area with c = 1

represents the drop (fluid A) and the area with c = 0 represents the medium (fluid B),

between which the value of c varies rapidly resulting in a diffuse interface with finite

thickness. Within this transition layer, the dotted contour line is at level c = 0:5 that

represents the dividing surface G. No-slip boundary conditions are imposed on the

top and bottom wall, and periodic boundary conditions are imposed in the horizontal

direction. A linear temperature field is imposed in the y direction

T (x;y) = Tb +
Tt�Tb

15R
y = Tb + GT y; (5.237)

with Tb = 10 on the bottom wall and Tt = 25 on the top wall, resulting in a constant tem-

perature gradient, GT = 10. Again, we let the ratio parameter h = 6
p

2 (Eq.(5.198)).

Moreover, the fluid properties are shown as the following:

mA = mB = 0:2; kB = 0:2; s0 = 2:5�10�1;

k̃ = kA=kB (thermal conductivity ratio); sT =�5�10�3 (at Tre f = Tc);

Using these values, the theoretical terminal velocity of a spherical drop can be given

as

VY GB = 8:333�10�4: (5.238)

Numerically, we use the following equation to calculate the rise velocity vr of the drop

for our phase-field model,

vr =
R

W cu � ĵ dV
R

W c dV
; (5.239)
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where ĵ is the component of the unit vector in y direction.

Figure 5.7 shows the temporal evolution of the drop velocity normalized by VY GB be-

tween two different interface methods, phase-field method and level set method ([62]).

Similar to the last example, we compute our model by using two different interfacial

thickness corresponding to e = 0:002 and 0:001. Both the level set method and phase-

field method seem to converge to a value of vr=VY GB = 0:8, roughly 20% different from

the theoretical prediction. The reason for this discrepancy is two-fold. For one, and

most importantly, the theoretical rise velocity is for an axisymmetric sphere, whereas

our simulations are carried out for a planar 2D drop. The second reason is that the

simulations include small blockage effects from the finite computational domain size

as well as minute deformations of the drop, whereas the theoretical formula assumes

an infinite domain and a non-deformable drop. As the thickness of the diffuse interface

decreases, our results seem to coverage to the that obtained by level-set method ([62]).

For the case e = 0:01, we present the streamlines together with the moving interface

at t = 1 and t = 50 in figure 5.10, where we observe that the streamlines for both cases

exhibit the similar patterns, with two asymmetric recirculations around the drop. Fig-

ure 5.10 shows the meshes together with the drop interface at t = 1 and t = 50. Here

the size of the smaller frame is set to be [3R�3R], in which we take the shortest edge

of the grids inside the frame as 15R=1000 = e , so that at least 7-9 grid cell (corre-

sponding to the definition of the interfacial thickness) is located across the interface to

ensure accuracy of our computations. In addition, the moving velocity of the frame is

set to be equal to the drop rising velocity v f rame = vr, such that, through this relative

long-term behavior, the rising drop is always kept inside the smaller moving frame.
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Figure 5.6: Initial condition of the phase variable c for the example of the thermocap-
illary migration of a drop. The dotted line stands for the dividing surface.

Figure 5.7: The time evolution of the normalized migration velocity of a drop. The
dashed line represents the theoretical prediction for a 3D drop (VY GB), while the solid
line is our numerical results for a 2D planar drop (vr).
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Figure 5.8: The drop interface (black) and the streamlines (colored lines, left), and the
meshes (gray lines, right) at t = 1 and t = 50. Positive values of the stream-function
indicate the clockwise circulation and negative values of the stream-function indicate
the counterclockwise circulation.

5.7.5 Thermocapillary migration with finite Marangoni number

We now compute the example of the thermocapillary motion of a drop with finite

Marangoni numbers. Due to the finite Marangoni numbers, the energy equation is

coupled with the Navier-Stokes equations. This is expected to result in a reduction

of the tangential temperature gradients at the drop interface due to the interfacial flow

driven by the Marangoni stress, which in turn will also be reduced. In this simulation,

we consider a 2D domain W of size [0;10R]� [0;15R], where a planar 2D circular drop

of fluid A with radius R = 0:5 is placed inside the medium of fluid B, with the drop’s

centre located at the centre of the box (xc;yc) = (0;1:5R). At t = 0, Eq.(5.236) is em-

ployed as the initial condition for phase variable, and a linear temperature distribution

from Tb = 0 at the bottom to Tt = 1 at the top is imposed for the bulk liquid, and we

assume that the drop has the same initial linear temperature distribution as the bulk

liquid. Again, no slip boundary conditions are imposed on the top and bottom bound-

aries, and periodic boundary conditions are imposed in the horizontal direction. The

two fluids are assumed to have the same densities and viscosities. We set the thermal

conductivity k1 = 0:1 for the drop and k2 = 1 for the bulk fluid. Moreover, we set

the non-dimensional parameters as e = 0:002, Re = 10, M = 1, Pe = 100=e , Ca = 1,
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Figure 5.9: The time evolution of rise velocity of a drop with different finite Marangoni
number.

Ec = 1. Five different values of Marangoni number are employed for the computa-

tions, such that Ma = 50;100;500;1000;1500.

Figure 9 shows the velocity of the drop versus time for the five cases. As the time

progresses, the rise velocity reduces in all five cases, where we can observe that the

increase in Ma leads to the decrease in the rise velocity, which is consistent with the

simulations in [62, 128, 135].

Figure 10 shows snapshots of the isotherms at 4 different times for the corresponding

three cases, where the dependence of the migration velocity on the Marangoni number

can easily be explained. Obviously, the enhanced convective transport of momentum

and heat with the increase of the Marangoni number results in more disturbances of

the temperature field. Inside the drop, as we increase the Marangoni number, the larger

variations can be observed, leading to a substantial reduction in the surface temperature

gradient and the corresponding rise velocities.

5.8 Discussion

In this chapter, we present a thermodynamically consistent phase-field model for two-

phase flows with thermocapillary effects, which allows the binary incompressible fluid
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Figure 5.10: The snapshots of drop interface (black) and isotherms (colored lines) for
different time and different Ma as indicated.
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(quasi-incompressible fluid) to have different physical properties for each component,

including densities, viscosities and thermal conductivities. To the best of our knowl-

edge, such a phase-field model is new. We chose the mass concentration as the phase

variable, where the corresponding variable density and mass-averaged velocity lead to

a quasi-incompressible formulation for the binary incompressible fluid. As the ther-

mocapillary effects are produced by the non-homogenous distribution of a temperature

dependent (linearly) surface tension, we introduce the square-gradient (Cahn-Hilliard)

term into the internal energy and entropy of our phase-field model, so that the interfa-

cial free energy that is associated with the surface tension in our model, can be linearly

dependent on the temperature. Our model equations, including mass balance equa-

tion, Navier-Stokes equation with extra stress term, advective Cahn-Hilliard equation,

energy balance equation and entropy balance equation, are derived within a thermo-

dynamic frame based on entropy generation. Comparing with the classical energy

balance equation employed by other phase-field models, the non-classical terms as-

sociated with the square-gradient term appear in our energy balance equation (5.116)

accounting for the energy spent by the variations of the phase-field. In addition, we

verify the first and second thermodynamic laws from the system of equations to show

that thermodynamic consistency is maintained in our model.

In the sharp-interface analysis, we show that the system of equations and jump con-

ditions at the interface for the classical sharp-interface model are recovered from our

model, which reveals the underlying physical mechanisms of the phase-field model,

and provides a validation of our model. It is worth mentioning that, in the jump condi-

tion of the momentum balance, we identify the square-gradient term of the free energy

as the surface tension (Eq.(5.162)) of our phase-field model. We further relate it to

the physical surface tension through a ratio parameter, where a relation (Eq.(5.194)) is

provided to determine the value of this parameter.

We also compute two examples, including thermocapillary convection in a two-layer
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fluid system and thermocapillary migration of a drop. The results for both examples

are in good agreement with the existing analytical solutions, which validates our phase-

field model. Thus, on the whole, we conclude that the phase-field model can be very

suitable for simulating multiphase flows with thermocapillary effects.

In the future work, besides exploring various applications and extension of the model,

we aim to provide an asymptotic analysis of the solution of the model, and use it as

a further validation of our model. We also plan to design a numerical method with

respect to thermodynamic consistency at the discrete level. Thermodynamic consis-

tency is critical not only to the phase-field modelling, but also to the numerical method

designing. In our previous work [54], the quasi-incompressible NSCH model [87] was

investigated. The numerical method that preserves the thermodynamic law (energy

law) at the discrete level is presented to show that it captures the pinch off and the

feature of quasi-incompressibility of the system, namely, the numerical results reveal

that away from interfaces the fluid is incompressible, while near interfaces waves of

expansion and contraction are observed. For the phase-field model developed here,

we will present a thermodynamic consistency preserving numerical method with the

corresponding numerical results in a forthcoming work [52].
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we have used the phase-field method to study the two-phase flow with

the variable density and thermocapillary effects. On the whole, we conclude that the

phase-field model can be very suitable for simulating two-phase flows with variable

density and thermocapillary effects. Moreover, we show that thermodynamic consis-

tency is a critical feature for the phase-field modelling and also for the designing of

numerical methods.

In the case of variable density flows, we show that the energy preserving numerical

method can be robust when handling the highly nonlinear and coupled phase-field

model equations. Through the numerical examples (kissing drop and rising drop),

we show that the coalescence and pinch-off of the interface are captured smoothly

using our numerical method, and the discrete energy functional of the system is non-

increasing, as predicted by our numerical method. Moreover, in the NSCH model, the

velocity is not solenoidal near interfaces because fluids of different densities may mix;

our simulations capture this feature. Namely, the numerical results reveal that away
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from interfaces the fluid is incompressible, while near interfaces waves of expansion

and contraction are observed. Increasing the density ratio results in narrower waves

with larger magnitudes.

In the case of thermocapillary effects, we show that, for two-phase flows, the temper-

ature dependence of the surface tension can be coupled easily to the model equations,

and can be implemented easily by using the phase-field method. We also show that the

thermodynamic framework can be a strong tool for phase-field modelling, where the

model equations can be identified by ensuring the non-negativity of the entropy gen-

eration, and the model equations satisfy the law of thermodynamics automatically. In

the sharp-interface analysis, we show that the system of equations and jump conditions

at the interface for the classical sharp-interface model are recovered from our model,

which reveals the underlying physical mechanisms of the phase-field model, and pro-

vides a validation of our model. It is worth mentioning that, in the jump condition of

the momentum balance, we identify the square-gradient term of the free energy as the

surface tension of our phase-field model, and we relate it to the physical surface ten-

sion through a ratio parameter, where a relation (Eq.(5.194)) is provided to determine

the value of this parameter. We also compute two examples, including thermocapillary

convection in a two-layer fluid system and thermocapillary migration of a drop. The

results for both examples are in good agreement with the existing analytical solutions,

which validates our phase-field model.

Together with the energy law preserving numerical method, we show that the adap-

tive mesh is also very desirable for the computations of the phase-field methods. In

chapter 4 and 5, the numerical examples are all computed with the help of the adaptive

mesh. For the phase-field model, we show that it is sufficient to finely resolve only the

interfacial region, and the relative coarser grids are sufficient for the bulk regions.
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6.2 Future work

In future work, we will perform extensive studies of the two-phase problems with

more complicated interface dynamics, e.g., the moving contact line problems, where

the fluid-fluid interface interacts with solid wall, and the dynamics of interface with

Marangoni effects, where surface tension gradients are induced by inhomogeneous

distributions of surfactants, which can be absorbed at the liquid/gas or liquid/liquid in-

terfaces. For the model developed in chapter 5, we plan to design a thermodynamically

consistent numerical method for the full model, where the energy law of the phase-field

model can be preserved at the discrete level. The quasi-incompressibility together with

the thermocapillary effects will be studied by using our numerical methods.
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