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A B S T R A C T   

It is common in forensic anthropology to draw inferences (e.g., inferences with respect to biological sex of human 
remains) using statistical models applied to anthropometric data. Commonly used models can output posterior 
probabilities, but a threshold is usually applied in order to obtain a classification. In the forensic-anthropology 
literature, there is some unease with this “fall-off-the-cliff” approach. Proposals have been made to exclude 
results that fall within a “zone of uncertainty”, e.g., if the posterior probability for “male” is greater than 0.95 
then the remains are classified as male, and if the posterior probability for “male” is less than 0.05 then the 
remains are classified as female, but if the posterior probability for “male” is between 0.05 and 0.95 the remains 
are not classified as either male or female. In the present paper, we propose what we believe is a simpler solution 
that is in line with interpretation of evidence in other branches of forensic science: implementation of the 
likelihood-ratio framework using relevant data, quantitative measurements, and statistical models. Statistical 
models that can implement this approach are already widely used in forensic anthropology. All that is required 
are minor modifications in the way those models are used and a change in the way practitioners and researchers 
think about the meaning of the output of those models. We explain how to calculate likelihood ratios using 
osteometric data and linear discriminant analysis, quadratic discriminant analysis, and logistic regression 
models. We also explain how to empirically validate likelihood-ratio models.   

1. Introduction 

Forensic anthropology is the medico-legal application of biological 
anthropology. Forensic anthropologists apply to the analysis of human 
remains detailed knowledge of the development, the morphology, and 
the normal and abnormal variation of the human body. Analyses are 
conducted in order to assist legal-decision makers to make decisions 
with respect to identity of human remains [1-3]. Forensic anthropolo-
gists assist in the identification of individuals whose remains are 
severely decomposed, burned, disrupted, mutilated, or otherwise 
rendered difficult to recognize, particularly in cases where DNA evi-
dence or odontological evidence are not available. Forensic anthropol-
ogists work on investigations related to unexplained natural deaths, 

accidents, homicide, war crimes, and genocide. They also increasingly 
work on disaster-victim identification, i.e., investigations related to 
mass fatality such as occur in building collapses, ship sinkings, and plane 
crashes. 

Forensic anthropologists conduct evaluations with respect to chro-
nological age, biological sex, living stature, and ancestry or population 
affinity. The analytical methods used can be divided into:  

• morphoscopic, i.e., based on visual assessment of shape and size; and 
• anthropometric/osteometric, i.e., based on instrumental measure-

ments. The term “osteometric” applies to methods based on mea-
surement of skeletal elements in particular. 
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Morphoscopic methods traditionally require considerable experience 
observing and understanding skeletal variation between individuals, 
populations, and age groups, and may be highly subjective in practice. 
Anthropometric methods are generally considered to be more objective, 
at least in the sense that intra- and inter-observer reliability is easier to 
assess. The most commonly used anthropometric measurements are 
point to point distances and angles. Some practitioners use a combina-
tion of morphoscopic and anthropometric methods. 

It is common in forensic anthropology to draw inferences using 
statistical models applied to anthropometric data. A recently published 
book on the use of statistics and probability in forensic anthropology 
Obertová et al. [4], for instance, includes multiple chapters by different 
authors describing multiple statistical methods, including cluster anal-
ysis [5], logistic regression [6], and discriminant function analysis [7]. 

Use of classification models is common, and binary classification 
models have long been used to draw inferences with respect to biological 
sex, e.g., [8-13]. Commonly used models such as linear discriminant 
analysis, quadratic discriminant analysis, and logistic regression can 
output posterior probabilities, but in the forensic-anthropology litera-
ture a threshold is usually applied in order to obtain a classification.1 For 
example, if the posterior probability for “male” is greater than 0.5 (or 
equivalently the posterior probability for “female” is less than 0.5) then 
the bone is classified as coming from a male, and if the posterior prob-
ability for “male” is less than 0.5 (or equivalently the posterior proba-
bility for “female” is greater than 0.5) then the bone is classified as 
coming from a female. In the forensic-anthropology literature, e.g., 
[14–16], there is evidence of some unease with this “fall-off-the-cliff” 
approach in which results with very different posterior probabilities, e. 
g., 0.51 and 0.99 are treated the same but results with very similar 
posterior probabilities, e.g., 0.49 and 0.51 are treated differently. 

Galeta & Brůžek [7] reviews literature that expresses concern about a 
“zone of uncertainty”, see Fig. 1. In this “zone of uncertainty” the poste-
rior probability is relatively close to 0.5, and the probability that a bone 
will be misclassified is relatively high. In order to attempt to avoid 
misclassification, a procedure is adopted whereby the bone is not classi-
fied unless the posterior probability is relatively far from 0.5, e.g., if the 
posterior probability for “male” is greater than 0.95 then the remains are 
classified as male, and if the posterior probability for “male” is less than 
0.05 then the remains are classified as female, but if the posterior prob-
ability for “male” is between 0.05 and 0.95 the remains are not classified 
as either male or female. In this example, the “zone of uncertainty” is 
between posterior probabilities of 0.05 and 0.95. Galeta & Brůžek [7] 
states that “It is a conservative approach, but it brings a high confidence of 
sex estimation at both the individual and the population level.” The aim is 
to have a high correct-classification rate (a low classification-error rate) 
for the bones that are classified,2 but this comes at the cost of not clas-
sifying some bones and in fact not drawing any inference about the sex of 
the latter bones. Non-classification can occur in a high proportion, even 
the majority, of cases. Galeta & Brůžek [7] discusses trade-off between 
correct-classification rate and proportion of cases not classified. 

Bartholdy et al. [18] propose reporting the correct-classification rate 
corresponding to the posterior-probability value calculated for the bone of 
interest. They propose either calculating the correct-classification rate at 
the exact posterior-probability value obtained, or precalculating the 
correct-classification rate for a number of preselected posterior-probability 

threshold values, e.g., 0.8, 0.9, 0.95, then, once the posterior-probability 
value for the bone of interest is obtained, selecting the relevant precalcu-
lated result, i.e., if the exact posterior-probability value obtained is be-
tween 0.8 and 0.9, report the correct-classification rate that was 
precalculated excluding test results with posterior-probability values be-
tween 0.2 and 0.8, if the exact posterior-probability value obtained is be-
tween 0.9 and 0.95, report the correct-classification rate that was 
precalculated excluding test results with posterior-probability values be-
tween 0.1 and 0.9, etc. Bartholdy et al. [18] also suggests that results could 
be reported as “female”, “probable female”, “probable male”, and “male” 
for posterior-probability ranges of, e.g., 0–0.2, 0.2–0.5, 0.5–0.8, and 0.8–1 
respectively (see Fig. 1). Jerković et al. [17] propose the inverse solution of 
choosing a desired correct-classification rate and then finding the 
posterior-probability range that should be excluded in order to obtain this 
correct-classification rate.3 

In the present paper, we propose what we believe is a simpler solu-
tion to the concerns expressed in the forensic-anthropology literature. 
We propose a move away from approaches in which the output is dis-
cretized into two or more bins, to an approach which makes direct use of 
continuously-valued output. Statistical models that can implement this 
approach are already widely used in forensic anthropology – all that is 
required to adopt this approach are minor modifications in the way 
those models are used and a change in the way practitioners and re-
searchers think about the meaning of the output of the models. What we 
propose is implementation of the likelihood-ratio framework using 
relevant data, quantitative measurements, and statistical models. 

We focus on explaining how to calculate likelihood ratios using 
linear discriminant analysis, quadratic discriminant analysis, and lo-
gistic regression models applied to osteometric data. For simplicity of 
exposition, we use data consisting of measurements made on a single 
skeletal element from each individual. The skeletal element we use is a 
humerus – humeri exhibit sexual dimorphism. The computer code for 
performing the calculations described in the present paper is provided at 
http://geoff-morrison.net/#LR_anthropology_2021. Parallel versions of 
the code are provided for Matlab, Python, and R. 

2. Likelihood-ratio framework 

Use of the likelihood-ratio framework is advocated by many who 
work in the area of forensic inference and statistics, e.g., Aitken et al. 
[19] with 31 authors/supporters, Morrison et al. [20] with 19 author-
s/supporters, and Morrison et al. [21] with 20 authors/supporters. Its 
use is also recommended in guidance documents issued by the following 
organizations: 

1 In the forensic-anthropology literature, the term “sectioning point” is often 
used rather than “threshold”.  

2 Jerković et al. [17] claims that a 95% correct-classification rate “is the 
minimal level set by modern forensic and legal standards”. We traced the 
publications that Jerković et al. [17] cited in support of this claim and the 
publications cited in those publications, but could find no support for the claim 
that this is a legal requirement. Nor could we find any evidence that it is a 
requirement of any standard on forensic science developed by a national or 
international standards-development organization. 

3 Note that if the data used for training and testing the statistical models were 
sampled from the same populations and the population distributions conformed 
to the assumptions of the models, then the expected value of the correct- 
classification rate would be predictable from the posterior-probability 
threshold and vice versa. If the posterior-probability threshold were τ, i.e., 
only data with posterior probabilities for male p(HM) ≥ τ and p(HM) ≤ (1 − τ), 
or equivalently p(HF) ≥ τ, were used for calculating the correct-classification 
rate κ, then the expected correct-classification rate would be κ =

(p(p(HM)≥ τ) + p(p(HF)≥ τ))/2 = (τ + τ)/2 = τ, e.g., if τ = 0.95 then the 
expected value for κ = 0.95. Despite the difference in name, “posterior-prob-
ability threshold” versus “correct-classification rate”, τ and κ represent the same 
underlying concept, with τ being the predicted value and κ being the empiri-
cally derived value. In practice τ and κ would usually differ because of viola-
tions of model assumptions, model overfitting, and/or sampling variability. 
With respect to sampling variability, keeping τ fixed but changing the sample 
used for training or the sample used for testing would usually result in a 
different value for κ. Separate sets of training and test data are used to assess the 
extent to which the model is useful. 
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• Association of Forensic Science Providers of the United Kingdom and 
of the Republic of Ireland (AFSP)4 in 2009 [22].  

• Royal Statistical Society (RSS)5 in 2010 [23].  
• European Network of Forensic Science Institutes (ENFSI)6 in 2015 

[24].  
• National Institute of Forensic Science of the Australia New Zealand 

Policing Advisory Agency (NIFS ANZPAA)7 in 2017 [25].  
• American Statistical Association (ASA)8 in 2019 [26].  
• Forensic Science Regulator for England & Wales (FSR)9 in 2021 [27]. 

Introductory texts on the likelihood-ratio framework include 
[28-35]. Publications advocating or describing application of the 
likelihood-ratio framework in forensic anthropology include [36-41].10 

In the present paper, we do not attempt to provide a general intro-
duction to the likelihood-ratio framework and arguments in favour of its 
use. Such information can be found in the references listed above. 
Instead, we focus on how to calculate likelihood ratios using the kinds of 

data and statistical models already familiar to practitioners and re-
searchers in forensic anthropology. More complicated models can be 
used, and could potentially result in better performance, but for 
simplicity we focus on linear discriminant analysis, quadratic discrimi-
nant analysis, and logistic regression.11 

For illustrative purposes, we use the humeral-measurement data from 
Bartholdy et al. [18]. The dataset contains measurements of maximum 
length, head diameter, and epicondylar breadth from the humeri of 36 
males and 48 females. The dataset is small and the population does not 
reflect one that would be relevant for any modern forensic case, but it is a 
convenient dataset that will suffice to illustrate some statistical concepts. 
For univariate models we use the head-diameter measurements, and for 
bivariate models we use both head-diameter and epicondylar-breadth 
measurements. 

The introductory literature on the likelihood-ratio framework tends 
to focus on what is often called “source attribution” or “individualiza-
tion”, e.g., situations in which a legal-decision maker wants to decide 
whether the bone in question comes from a particular individual or from 
some other individual randomly selected from a specified relevant 
population. Here, we focus on a simpler “classification” problem with 

Fig. 1. Example (based on humeral-head-diameter 
data from [18]) of a univariate linear discriminant 
analysis model showing multiple threshold values at 
different posterior probabilities for the hypothesis 
that the osteometric measurement comes from a male. 
In this example, the prior probabilities for “male” 
versus “female” are equal. Also shown are a “zone of 
uncertainty” between posterior probabilities of 0.05 
and 0.95, and verbal expressions corresponding to the 
posterior probability ranges 0–0.2, 0.2–0.5, 0.5–0.8, 
and 0.8–1 (the latter proposed in [18]).   

4 http://www.afsp.org.uk/.  
5 https://rss.org.uk/.  
6 https://enfsi.eu/.  
7 https://www.anzpaa.org.au/forensic-science/nifs-home/.  
8 https://www.amstat.org/.  
9 https://www.gov.uk/government/organisations/forensic-science-regulator 

/.  
10 The likelihood-ratio framework for evaluation of forensic evidence should 

not be confused with likelihood-ratio tests used to assess difference in goodness 
of fit between competing models. Konigsberg et al. [42], for example, makes 
use of likelihood-ratio tests. Other references to likelihood ratios in that paper, 
e.g., “Taken as an evidentiary problem and assuming equal priors for male as 
for female within the population at large, the LR from the quadratic discrimi-
nant function is 1.997. This is found by calculating the [multivariate normal] 
density for obtaining ‘Mr. Johnson’s’ measurements from the males and from 
the females …, averaging these densities across the two sexes, and dividing the 
male density by this average.” (p. 80), are not likelihood ratios as understood in 
the likelihood-ratio framework. As defined in the quote, they are twice the 
posterior probability. The definition in the quote is equivalent to our Eq. (1) 
multiplied by two and assuming equal priors. The likelihood ratio corre-
sponding to the value stated in the quote would actually be 666. 

11 Discriminant analysis assumes that the data from each class have Gaussian 
distributions, and linear discriminant analysis further assumes that the distri-
butions from all classes have the same variance (in the univariate case) or the 
same covariance matrix (in the multivariate case). Histogram plots of the 
Bartholdy et al. [18] data reveal that these assumptions do not hold for 
epicondylar-breadth measurements: the female data appear to have a positive 
skew and the male data appear to be bimodal. Logistic regression is more robust 
to violations of these assumptions, but will not be robust to the bimodal dis-
tribution of the male data. Exploratory analysis of the data therefore suggest 
that none of linear discriminant analysis, quadratic discriminant analysis, or 
logistic regression are appropriate. Our purpose here, however, is simply to 
illustrate how to use these models, that are common in forensic anthropology, 
to calculate likelihood ratios. Whether these are good models to apply to these 
data, how well they perform when applied to these data, and the 
likelihood-ratio values that they output when applied to these data are not 
actually of concern. Use of linear discriminant analysis and logistic regression 
in the present paper also allows for direct comparison with their use in Bar-
tholdy et al. [18] with the same dataset. 
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only two mutually-exclusive classes, e.g., a situation in which a legal- 
decision maker’s task is to decide whether the skeletal element in 
question comes from a male or from a female from the specified relevant 
population. 

3. Calculating a likelihood ratio using linear discriminant 
analysis 

Traditionally in forensic anthropology, linear discriminant analysis 
is used to calculate a posterior probability to which a threshold is then 
applied to make a classification. When first developed, without the aid of 

modern computers, calculations for linear discriminant analysis were 
laborious. Linear discriminant functions were therefore used ([43], 
[44]). For a two-class problem, multivariate data could be transformed 
to values on a univariate linear discriminant function, and, assuming 
equal priors, each test datum could then be classified according to 
whether it was closer to the centroid of one class or the other. A higher 
prior probability for one class, and concomitantly lower prior proba-
bility for the other, would shift the threshold on the linear discriminant 
function further from the centroid of the first class and closer to the 
centroid of the second class. The calculation of the linear discriminant 
function was laborious, but thereafter classifying test data was easy as it 

Fig. 2. Example (based on humeral-head-diameter data from [18]) of calculation of likelihood ratio using a univariate linear discriminant analysis model. (a): 
Calculation based on probability-density functions. (b): Calculation based on a linear equation. 
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did not require calculating the exact posterior probability for each new 
datum. 

Using modern computers, the calculation of posterior probabilities 
(or of likelihoods) based on Gaussian distributions is trivial: all that is 
required is to enter training data into functions that calculate mean 
vectors and covariance matrices, then enter those statistics and the test 
data into functions that calculate probability densities. These functions 

are easily accessible in many programming languages and software 
packages. A posterior probability can be calculated as in Eq. (1), in 
which: HM is the hypothesis that the humerus comes from a male in the 
relevant population; HF is the hypothesis that the humerus comes from a 
female in the relevant population; p(HM|xQ) is the posterior probability 
that the “male” hypothesis HM is true given the measurement vector xQ 

from the bone in question; f(x|μ,Σ) is the probability density (the like-

Table 1 
Example likelihood-ratio values calculated using the same example measurement vector and different univariate and bivariate models.   

Univariate (head diameter) Bivariate (head diameter, epicondylar breadth) 

Linear discriminant analysis 3.23 2.44 
Logistic regression 2.26 1.91 
Quadratic discriminant analysis 4.22 2.64  

Fig. 3. Example (based on humeral head-diameter, HD, and epicondylar-breadth, EB, data from [18]) of calculation of likelihood ratio using a bivariate linear 
discriminant analysis model. (a): Calculation based on probability-density functions. (b): Calculation based on a linear equation. 
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lihood) of a Gaussian model with mean vector μ and covariance matrix Σ 
evaluated at vector x; μM and μF are mean vectors calculated using a 
sample of data known to come from males in the relevant population and 
a sample of data known to come from females in the relevant population 
respectively; Σ is a covariance matrix calculated using data pooled from 
both the male and female samples12; p(HM) is the prior probability that 
the “male” hypothesis is true; and p(HF) is the prior probability that the 
“female” hypothesis HF is true. 

p(HM|xQ)=
f (xQ|μM,Σ)p(HM)

f (xQ|μM,Σ)p(HM) + f (xQ|μF,Σ)p(HF)
(1) 

Since HM and HF are mutually exclusive and exhaustive, p(HF) = 1−
p(HM) and p(HF|xQ) = 1 − p(HM|xQ), and Eq. (1) can be rearranged to 
obtain Eq. (2), which is a version of the odds-form of Bayes’ Theorem. 

p(HM|xQ)

p(HF|xQ)
=

f (xQ|μM,Σ)
f (xQ|μF,Σ)

×
p(HM)

p(HF)
(2)  

posterior odds= likelihood ratio × prior odds 

In the odds-form of Bayes’ Theorem:  

• the prior odds represent the legal-decision maker’s belief as to the 
relative probability that the “male” hypothesis is true versus that the 
“female” hypothesis is true before they consider the forensic practi-
tioner’s statement of the strength of the evidence;  

• the likelihood ratio is the forensic practitioner’s statement of the 
strength of the evidence;  

• and the posterior odds represent the legal-decision maker’s belief as to 
the relative probability that the “male” hypothesis is true versus that 
the “female” hypothesis is true after they have considered the 
forensic practitioner’s statement of the strength of the evidence. 

The likelihood ratio therefore quantifies the amount by which, in 
light of the evidence, the legal-decision maker updates their belief with 
respect to the relative probabilities of the “male” and the “female” hy-
potheses. This assumes that the legal-decision maker is applying Bayes’ 
Theorem and using the likelihood ratio provided by the forensic prac-
titioner. These assumptions are adopted in order to explain the meaning 
of a likelihood ratio, not to describe how a legal-decision maker actually 
acts or to advise how a legal-decision maker should act. 

For the likelihood-ratio value to be meaningful, one must also be 
satisfied that the data used for training the statistical models (e.g., the 
data used for calculating the mean vectors and the covariance matrix) 
are reasonably representative of the relevant population for the case. 

The prior odds could be based on an estimate of the ratio of males to 
females in the relevant population, but could also depend on other ev-
idence already presented in the case that has influenced the legal- 
decision maker’s belief with respect to the relative probabilities of the 
two hypotheses. 

In the likelihood-ratio framework, the task of the forensic practi-
tioner is to assess and present the value of the likelihood ratio. The 
likelihood-ratio value can, in theory, be any number in the range 0 to 
+∞ (the log-likelihood-ratio value can be any number in the range –∞ to 
+∞). The larger the number the greater the support it gives for the 
hypothesis in the numerator of the likelihood ratio (in this example, 
HM), and the smaller the number the greater the support it gives for the 
hypothesis in the denominator of the likelihood ratio (in this example, 
HF). If the likelihood-ratio value is 1 (the log-likelihood-ratio value is 0), 
it gives equal support for both hypotheses, and the posterior odds will be 

the same as the prior odds. 
Assuming equal priors, p(HM) = p(HF), hence prior odds p(HM)/

p(HF) = 1, a “zone of uncertainty” based on posterior probability for 
male between 0.05 and 0.95 would correspond to likelihood-ratio values 
in the range 0.05/0.95 to 0.95/0.05 (= 1/19 to 19). Unlike an approach 
which does not draw any inference about the sex of bones with posterior 
probabilities within this “zone of uncertainty”, likelihood ratios provide 
meaningful information both outside and within this range, and they do 
not suffer from a “fall-off-the-cliff” effect. Likelihood-ratio values of 2, 
10, or 1/15, for example, provide information that a legal-decision 
maker could logically use to update their beliefs, and likelihood-ratio 
values of 18.9 and 19.1 will not be presented to legal-decision makers 
as if they had very different meanings. 

Eq. (3) shows a univariate example of the calculation of a likelihood 
ratio Λ(x), and Eq. (4) show a bivariate example of the calculation of a 
likelihood ratio Λ(x). Fig. 2(a) shows a graphical representation of Eq. 
(3) in which the likelihood ratio for measurement scalar x is the height 
of the “male” curve relative to the height of the “female” curve, and 
Fig. 3(a) shows a graphical representation of Eq. (4) in which the like-
lihood ratio for measurement vector x is the height of the “male” surface 
relative to the height of the “female” surface. The values inserted into 
the equations and used to plot the figures are taken from the Bartholdy 
et al. [18] dataset. One measurement (from a male) was selected and 
used as x = xQ in the univariate case and x = xQ in the bivariate case 
(hereinafter we drop the Q subscript), and the remainder of the data 
were used to calculate the values for μM, μF, σ, μM, μF, and Σ. 

Λ(x) =
f (x|μM, σ)
f (x|μF, σ)

=
f (x = 46.5 | μM = 49.4, σ = 2.50)
f (x = 46.5 | μF = 41.6, σ = 2.50)

=
0.0790
0.0245

= 3.23

(3)  

Λ(x) =
f (x|μM,Σ)
f (x|μF,Σ)

=

f

([
x1

x2

]⃒
⃒
⃒
⃒
⃒

[
μM,1

μM,2

]

,

[
σ1,1 σ1,2

σ2,1 σ2,2

])

f

([
x1

x2

]⃒
⃒
⃒
⃒
⃒

[
μF,1

μF,2

]

,

[
σ1,1 σ1,2

σ2,1 σ2,2

])

=

f

([
46.5

59.0

]⃒
⃒
⃒
⃒
⃒

[
49.4

63.9

]

,

[
6.26 4.84

4.84 15.8

])

f

([
46.5

59.0

]⃒
⃒
⃒
⃒
⃒

[
41.6

55.3

]

,

[
6.26 4.84

4.84 15.8

])

=
0.00687
0.00282

= 2.44

(4) 

Table 1 collects the example likelihood-ratio values calculated using 
the same measurement vector x and all the different models presented in 
the present paper. 

Before leaving linear discriminant analysis and moving on to logistic 
regression, in Eqs. 5–7 we show the derivation of the linear equation for 
the calculation of a likelihood ratio using linear discriminant analysis. 
For simplicity, we only show the derivation of the univariate equation: 
y = a+ bx, in which y is the natural logarithm of the likelihood ratio, a is 
the intercept, b is the slope, and x is the head-diameter measurement 
made on the humerus. 

12 We used the formula for the unbiased estimate of the covariance matrix, i. 
e., dividing by 1 − n rather then by n (where n is the number of data point used 
to calculate the covariance matrix). We gave equal weight to each data point, i. 
e., we subtracted the class mean from the data in each class, pooled the data, 
and then calculated the covariance matrix. 
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y = ln(Λ(x) ) = ln
(

f (x|μM, σ)
f (x|μF, σ)

)

= ln

⎛

⎜
⎜
⎜
⎝

1
σ
̅̅̅̅̅
2π

√ e
(x− μM)2

− 2σ2

1
σ
̅̅̅̅̅
2π

√ e
(x− μF)

2

− 2σ2

⎞

⎟
⎟
⎟
⎠

= ln

(

e
(x− μM)2

− (x− μF)
2

− 2σ2

)

=
x2 + μ2

M − 2xμM − x2 − μ2
F + 2xμF

− 2σ2

=
− μ2

M + 2xμM + μ2
F − 2xμF

2σ2

=
− μ2

M + μ2
F

2σ2 +
μM − μF

σ2 x

= a + bx

(5)  

b=
μM − μF

σ2 (6)  

a=
− μ2

M + μ2
F

2σ2 = − b
μM + μF

2
(7) 

In Eqs. (8) and (9), we show a univariate example of the calculation 
of a likelihood ratio Λ(x) given the same values as previously used in Eq. 
(3). Note that the final result in Eq. (9) is the same as the final result in 
Eq. (3). The same example is graphically represented in Fig. 2(b). Note 
that the straight line in Fig. 2(b) could be constructed by sweeping a 
probe along the x axis of Fig. 2(a) and at each point calculating the 
natural logarithm of the height of the “male” curve relative to the height 
of the “female” curve. 

y = a + bx

=
− μ2

M + μ2
F

2σ2 +
μM − μF

σ2 x

=
− 49.42 + 41.62

2 × 2.502 +
49.4 − 41.6

2.502 × 46.5
= − 56.8 + 1.25 × 46.5
= 1.17

(8)  

Λ(x)= ey = e1.17 = 3.23 (9) 

The bivariate example is graphically represented in Fig. 3(b). Note 
that the plane in Fig. 3(b) could be constructed by sweeping a probe 
around the x1-x2 plane of Fig. 3(a) and at each point calculating the 
natural logarithm of the height of the “male” surface relative to the 
height of the “female” surface. The multivariate equation in general 
would be: y = β0 + β1x1 + β2x2 + …+ βmxm, in which β0 is the intercept 
and β1,…, βm are the slopes corresponding to the m dimensions of the 
data. 

4. Calculating a likelihood ratio using logistic regression 

Traditionally in forensic anthropology, logistic regression is used to 
calculate a posterior probability to which a threshold is then applied to 
make a classification. A posterior probability can be calculated as in Eq. 
(10), in which β0 is an intercept and β1,…, βm are slopes corresponding 
to the m dimensions of the data. The values for β0,…, βm are calculated 
using an iterative algorithm. We do not describe the details of fitting 
logistic-regression models here, the interested reader is referred to texts 
such as [45] and [46]. For our calculations, we used the Newton itera-
tive fitting algorithm with conjugate gradient ascent. 

p(HM|x)=
1

1 + e− (β0+β1x1+β2x2+…+βmxm)
(10) 

Since HM and HF are mutually exclusive and exhaustive, p(HF|x) =

1 − p(HM|x), and Eq. (10) can be rearranged to obtain Eq. (11). Eq. (11) 
gives the logged posterior odds, and this is the form in which the model 
is actually fitted. 

ln
(

p(HM|x)
p(HF|x)

)

= β0 + β1x1 + β2x2 +… + βmxm (11) 

In order to use logistic regression to calculate a likelihood ratio, the 
data points in the training data should be weighted such that the two 
classes have the same weight; hence, p(HM) = p(HF), the prior odds 
p(HM)/p(HF) = 1, and the posterior odds will equal the likelihood ratio 
(see Eq. (2)). Eqs. 12–15 repeat the same examples as for linear 
discriminant analysis above but with the coefficients values (a and b, 
and β0, β1, β2) obtained using logistic regression. For parallelism with 
the linear equation derived for linear discriminant analysis in the pre-
vious section, the univariate example uses a and b for the intercept and 
slope. Note that the values for a and b in Eq. (12) are not the same as 
those obtained using linear discriminant analysis in Eq. (8). Figs. 4 and 5 
show a graphical representation of the calculation of the likelihood ratio 
for the univariate and bivariate examples. Compare Figs. 4(b) and 5(b) 
with Figs. 2(b) and 3(b) respectively. In these examples, the slopes ob-
tained using logistic regression are all shallower then the slopes ob-
tained using linear discriminant analysis. 

ln(Λ(x))= y= a+ bx= − 42.3+ 0.928× 46.5= 0.815 (12)  

Λ(x)= ey = e0.815 = 2.26 (13)  

ln(Λ(x))= y= β0 + β1x1 + β2x2 = − 42.9+ 0.809× 46.5+ 0.102× 59.0= 0.648
(14)  

Λ(x)= ey = e0.648 = 1.91 (15) 

Logistic regression is a discriminative model, not a generative model 
– it does not actually calculate the ratio of two likelihoods – but under 
ideal circumstances it would give the same results as linear discriminant 
analysis ([47] §4.4.5).13 Because of its analogy with linear discriminant 
analysis, a generative model which actually calculates the ratio of two 
likelihoods, the output of logistic regression can be interpreted as a log 
likelihood ratio. Because it is not dependent on the assumptions of 
Gaussian distributions with the same covariance matrix, logistic 
regression is more robust than linear discriminant analysis when the 
data deviate from those assumptions. If the assumptions are met and the 
sample size is small; however, linear discriminant analysis will be less 
prone to overfit the training data. 

5. Calculating a likelihood ratio using quadratic discriminant 
analysis 

Quadratic discriminant analysis is the same as linear discriminant 
analysis, except that (in the present context) instead of using a single 
covariance matrix Σ calculated using data pooled from male and female 
samples, it uses two separate covariance matrices. ΣM is calculated using 
data sampled from males and ΣF is calculated using data sampled from 
females. Eq. (16) gives the quadratic-discriminant-analysis version of 
the odds-form of Bayes’ Theorem, cf. Eq. (2). 

p(HM|xQ)

p(HF|xQ)
=

f (xQ|μM,ΣM)

f (xQ|μF,ΣF)
×

p(HM)

p(HF)
(16)  

posterior odds= likelihood ratio × prior odds 

Fig. 6 and Eq. (17) show the univariate example of the calculation of 
a likelihood ratio, and Fig. 7 and Eq. 18 show the bivariate example. 
Note that in Figs. 6(b) and 7(b) the mapping functions between x and 

13 A generative model is a model that estimates a probability density for the 
measurements. 
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ln(Λ(x)) and between x and ln(Λ(x)) are not linear, they are a curve and 
a curved surface respectively. 

Λ(x) = f (x|μM ,σM)

f (x|μF ,σF)

=
f (x = 46.5 | μM = 49.4, σM = 2.78)
f (x = 46.5 | μF = 41.6, σF = 2.31)

=
0.0813
0.0192

= 4.22

(17)  

Λ(x) = f(xQ |μM ,ΣM)
f(xQ|μF ,ΣF)

=

f
([

x1
x2

]⃒
⃒
⃒
⃒

[
μM,1
μM,2

]

,

[
σM,1,1 σM,1,2
σM,2,1 σM,2,2

])

f
([

x1
x2

]⃒
⃒
⃒
⃒

[
μF,1
μF,2

]

,

[
σF,1,1 σF,1,2
σF,2,1 σF,2,2

])

=

f
([

46.5
59.0

]⃒
⃒
⃒
⃒

[
49.4
63.9

]

,

[
7.71 6.93
6.93 23.2

])

f
([

46.5
59.0

]⃒
⃒
⃒
⃒

[
41.6
55.3

]

,

[
5.35 3.43
3.43 10.7

])

=
0.00680
0.00258

= 2.64

(18)  

Fig. 4. Example (based on humeral-head-diameter data from [18]) of calculation of likelihood ratio using a univariate logistic regression model. Compare Fig. 4(b) 
with Fig. 2(b). 
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6. Validation of likelihood-ratio models 

The performance of a model is assessed by:  

1. Taking data that represent the relevant population for the case, that 
reflect conditions of the case, and for which the true class of each 
datum is known (e.g., each measurement vector is made on a hu-
merus known to be from a male or know to be from a female from the 
population of interest);  

2. Inputting each measurement vector into the model;  
3. Then comparing the output of the model in response to each input 

with the known truth about the class of the corresponding input. 

The test data must be separate from the data used to train the model, 
otherwise the results will be overly optimistic with respect to how well 
the model will perform when applied to previously unseen data, e.g., the 
measurements made on the humerus of questioned biological sex in the 
case. 

Typically in the forensic-anthropology literature, the results are 
summarized using correct-classification rate, i.e., the proportion of all 

inputs that were correctly classified.14 In the examples used in the 
present paper, the class of each input is either “male” or “female”. In a 
classification framework, the class of each output would be either 
“male” or “female”. If there is an imbalance in the number of “male” 
inputs and the number of “female” inputs in the validation data, the 
correct-classification rate can be separately calculated for each input 
class, then the mean over both classes calculated. 

An alternative to correct-classification rate is classification-error rate, 
which is the proportion of inputs that were misclassified. This is equiva-
lent to one minus the correct-classification rate.15 The classification-error 
rate, Eclass, with equal weighting for each class can be calculated as in Eq. 
(19), in which NM and NF are the number of inputs in the validation data 
known to be from males and the number of inputs in the validation data 

Fig. 5. Example (based on humeral head-diameter, HD, and epicondylar-breadth, EB, data from [18]) of calculation of likelihood ratio using a bivariate logistic 
regression model. Compare Fig. 5(b) with Fig. 3(b). 

14 In the forensic-anthropology literature, correct-classification rate is usually 
expressed as a percentage. In the present paper, we express it as a proportion.  
15 If classification-error rate and correct-classification rate are expressed as a 

percentages, the classification-error rate is 100 minus the correct-classification 
rate. 
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known to be from to be from females respectively, and YM and YF are 
classification outputs from the model in response to inputs known to be 
from males and inputs known to be from females respectively. In Eq. (19), 
a cost of 0 is assigned for a correct classification and a cost of 1 for an 
incorrect classification, the mean cost is calculated for inputs known to be 
from males and separately the mean cost is calculated for inputs known to 
be from females, then the mean of the latter two means is calculated. Eclass 

is an average cost calculated over all the test data. 

Eclass =
1
2

(
1

NM

∑NM

i

(
0 if YMi = M
1 if YMi = F

)

+
1

NF

∑NF

j

(
0 if YFj = F
1 if YFj = M

))

(19) 

Eclass is a number between 0 and 1 inclusive. Lower Eclass values 
indicate better performance, i.e., fewer misclassifications. The expected 
Eclass value for a model whose output was random would be 0.5. A model 
with an Eclass value greater then 0.5 would be performing worse than 
chance. 

In the likelihood-ratio framework, the output of the model is not a 
classification but a continuously-valued likelihood-ratio value. In our 
examples, which have HM in the numerator and HF in the denominator, 

the higher the likelihood-ratio value the greater the support for HM 
relative to HF and the lower the likelihood-ratio value the greater the 
support for HF relative to HM. If the input is from a male, the higher the 
likelihood-ratio value the greater the support for the correct hypothesis 
relative to the incorrect hypothesis. Mutatis mutandis, if the input is from 
a female, the lower the likelihood-ratio value the greater the support for 
the correct hypothesis relative to the incorrect hypothesis. Therefore, in 
order to assess the performance of a model that outputs likelihood ratios, 
we should not assign a cost of 0 or 1 based on classification, but rather a 
cost based on how good or how bad each likelihood-ratio values is:  

• If we know the input was from a male we should assign a small cost 
value for a very large likelihood-ratio value, a larger cost value for a 
smaller likelihood-ratio value, and a much larger cost value for a 
very small likelihood-ratio value.  

• Mutatis mutandis, if we know the input was from a female we should 
assign a small cost value for a very small likelihood-ratio value, a 
larger cost value for a larger likelihood-ratio value, and a much 
larger cost value for a very large likelihood-ratio value. 

Fig. 6. Example (based on humeral-head-diameter data from [18]) of calculation of likelihood ratio using a univariate quadratic discriminant analysis model.  
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A commonly used metric in the forensic-inference-and-statistics 
literature (and especially in the forensic-voice-comparison literature 
[21]) is the log-likelihood-ratio cost, Cllr [48], see Eq. (20), in which ΛM 
and ΛF are likelihood-ratio outputs from the model in response to inputs 
known to be from males and inputs known to be from females respec-
tively. The functions within the leftmost summation and rightmost 
summation of Eq. (20) are plotted in Fig. 8. 

Cllr =
1
2

(
1

NM

∑NM

i
log2

(

1 +
1

ΛMi

)

+
1

NF

∑NF

j
log2

(
1 + ΛFj

)
)

(20) 

Cllr is a number between 0 and +∞. Lower Cllr values indicate better 
performance. A model that always output a likelihood ratio of 1 irre-
spective of the input would give no useful information: the posterior 
odds would always be the same as the prior odds. A model that gave no 
useful information would have a Cllr value of 1. Models that are mis-
calibrated can output likelihood ratios substantially larger than 1, but 
their performance can be improved by calibrating the system (see [49] 
for an introduction to this topic). Well calibrated systems will have Cllr 

values in the range 0 to ~1. 

Returning to our univariate and bivariate examples, we validate the 
previously described models using leave-one-out cross validation, in 
which one measurement vector is held out, the remainder of the vectors 
are used to train the model, and the likelihood-ratio value is then 
calculated for the held-out vector. This is then repeated holding out each 
measurement vector in turn. This makes best use of the limited amount 
of data available while still avoiding training and testing on the same 
data. The resulting Cllr values are given in Table 2. 

Based on the Cllr values in Table 2, the univariate models performed 
better than the bivariate models.16 The simpler univariate linear models 

Fig. 7. Example (based on humeral head-diameter, HD, and epicondylar-breadth, EB, data from [18]) of calculation of likelihood ratio using a bivariate quadratic 
discriminant analysis model. 

16 As mentioned in note 11, the epicondylar-breadth data violates the as-
sumptions of all the models tested. Epicondylar breadth and head diameter 
were also highly correlated (Pearson’s linear correlation coefficient ρ = 0.794). 
There may have been little additional useful information that the bivariate 
models could have exploited compared to their univariate counterparts, espe-
cially given the sampling variability associated with the small sample sizes. 
Univariate models based on epicondylar breadth had Cllr values in the range 
0.5–0.6. 
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(linear discriminant analysis and logistic regression) also performed a 
little better than the more complex univariate quadratic discriminant 
analysis. 

A graphical representation of likelihood-ratio validation results 
commonly used in the forensic-inference-and-statistics literature (and 
especially in the forensic-voice-comparison literature [21]) is a Tippett 
plot [50]. Tippett plots for the previously described likelihood-ratio 
models are given in Fig. 9. The likelihood-ratio value corresponding to 
each measurement vector is plotted as a dot, and straight lines are drawn 
between adjacent dots. In our examples, a Tippett plot displays the 
empirical cumulative distribution of all the likelihood-ratio values 
resulting from test data known to be from males, and the empirical 
cumulative distribution of all the likelihood-ratio values resulting from 
test data known to be from females. The empirical cumulative distri-
butions are plotted so that for the curve rising to the right the value on 
the y axis is the proportion of male inputs resulting in likelihood-ratio 
values equal to or less than the value on the x axis, and for the curve 
rising to the left the value on the y axis is the proportion of female inputs 
resulting in likelihood-ratio values equal to or greater than the value on 
the x axis. 

In general, the better the performance of the system that generated 
the likelihood-ratio results, the greater the separation between the 
“male” and “female” curves on the Tippett plots, and, concomitantly, the 
shallower the slopes of the curves. Given this, the results from quadratic 

discriminant analysis (shown in the bottom panels of Fig. 9) may appear 
to be better than the results from linear models (linear discriminant 
analysis and logistic regression shown in the top and middle panels), but 
the results from quadratic discriminant analysis also include some large- 
magnitude positive log-likelihood-ratio values for bones known to be 
from females. The results from the bivariate models (shown in the panels 
on the right) also include some large-magnitude positive log-likelihood- 
ratio values for bones known to be from females, and, in addition, some 
large-magnitude negative log-likelihood-ratio values for bones known to 
be from males. The extent of these likelihood-ratio results supporting 
contrary-to-fact hypotheses is less for the univariate linear models: 
univariate linear discriminant analysis and univariate logistic regression 
(shown in panels (a) and (c)). As already indicated by the Cllr values, the 
best results were obtained for the univariate linear models. 

All models provide useful information, Cllr is substantially less than 
1, and appear to give reasonably well-calibrated output – the curves in 
the Tippett plots cross relatively close to ln(LR) = 0. For more complex 
models in which larger numbers of parameter values need to be esti-
mated, it is usually necessary to calibrate their output using an explicit 
calibration model, see [51], [21], and [52]. 

Some of the models output likelihood-ratio values into the tens of 
thousands and even into the millions. These numbers are difficult to 
justify given the small sample sizes. To avoid complicating the present 
paper we do not address this issue here, but direct the interested reader 
to some solutions explored in [53]. 

Considering both Cllr and Tippett plots and the discussion above, 
given the Bartholdy et al. [18] dataset, the univariate logistic regression 
model appears to have resulted in the best performance. Note that it did 
not give the “best” results for the example feature vector (it did not give 
the largest likelihood-ratio value for this male feature vector), but it 
gave the best results averaged over all feature vectors. Given the small 
dataset, its lack of relevance for any modern forensic context, and the 
fact that the epicondylar-breadth data violate the assumptions of all the 
models tested, one should not draw any generalizations from any of the 
particular results presented here. 

Fig. 8. Cost functions within the leftmost summation and rightmost summation of Eq. (20).  

Table 2 
values for different likelihood-ratio models applied to data from [18].   

Univariate (head 
diameter) 

Bivariate (head diameter, 
epicondylar breadth) 

Linear discriminant 
analysis 

0.300 0.341 

Logistic regression 0.306 0.349 
Quadratic discriminant 

analysis 
0.321 0.339  
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For other descriptions of both Cllr and Tippett plots see [54-57] and 
[21]. 

7. Conclusion 

Use of the likelihood-ratio framework for evaluation of forensic ev-
idence is advocated by many who work in the area of forensic inference 
and statistics, and in guidance documents issued by prominent organi-
zations. So far, there has been little use of the likelihood-ratio frame-
work in forensic anthropology, but, with respect to adoption of the 
likelihood-ratio framework, forensic anthropology has advantages 
over some other branches of forensic science: it is a branch of forensic 
science in which it is already common to draw inferences on the basis of 
relevant data, quantitative measurements, and statistical models. In the 
present paper, we explained how to calculate likelihood ratios using 
anthropometric data, and statistical models that are already commonly 
used in forensic anthropology: linear discriminant analysis, quadratic 
discriminant analysis, and logistic regression. We also explained how to 
empirically validate likelihood-ratio models. We hope that this will 
contribute to greater understanding and wider adoption of the 
likelihood-ratio framework in forensic-anthropology research and 
practice. 
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meet predefined accuracy criteria: a proposal for a novel approach to osteometric 
sex estimation, Forensic Sci. Int. 311 (2020), https://doi.org/10.1016/j. 
forsciint.2020.110273 article 110273. 

[18] B.P. Bartholdy, E. Sandoval, M.L.P. Hoogland, S.A. Schrader, Getting rid of 
dichotomous sex estimations: why logistic regression should be preferred over 
discriminant function analysis, J. Forensic Sci. 65 (2020) 1685–1691, https://doi. 
org/10.1111/1556-4029.14482, 2020. 

[19] C.G.G. Aitken, C.E.H. Berger, J.S. Buckleton, C. Champod, J.M. Curran, A.P. Dawid, 
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