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Heart failure is an important manifestation of diabetic heart disease. Before the

development of symptomatic heart failure, as much as 50% of patients with type 2

diabetes mellitus (T2DM) develop asymptomatic left ventricular dysfunction including

left ventricular hypertrophy (LVH). Left ventricular hypertrophy (LVH) is highly prevalent

in patients with T2DM and is a strong predictor of adverse cardiovascular outcomes

including heart failure. Importantly regression of LVH with antihypertensive treatment

especially renin angiotensin system blockers reduces cardiovascular morbidity and

mortality. However, this approach is only partially effective since LVH persists in 20% of

patients with hypertension who attain target blood pressure, implicating the role of other

potential mechanisms in the development of LVH. Moreover, the pathophysiology of LVH

in T2DM remains unclear and is not fully explained by the hyperglycemia-associated

cellular alterations. There is a growing body of evidence that supports the role of

inflammation, oxidative stress, AMP-activated kinase (AMPK) and insulin resistance in

mediating the development of LVH. The recognition of asymptomatic LVH may offer an

opportune target for intervention with cardio-protective therapy in these at-risk patients.

In this article, we provide a review of some of the key clinical studies that evaluated the

effects of allopurinol, SGLT2 inhibitor and metformin in regressing LVH in patients with

and without T2DM.

Keywords: diabetic cardiomyopathy (DCM), heart failure, type 2 diabetes mellitus, metformin, allopurinol, SGLT2

inhibitors, left ventricular hypertrophy (LVH)

INTRODUCTION

Diabetic cardiomyopathy (DCM) is defined as cardiac dysfunction, characterised by abnormal
structural, functional and metabolic changes in the myocardium, that occurs in the absence of
significant coronary, valvular or hypertensive diseases in individuals with diabetes (1). Diabetic
cardiomyopathy was first described five decades ago (2), and the higher incidence of heart
failure (HF) in patients with type 2 diabetes mellitus (T2DM) was further confirmed in several
epidemiological studies, including the Framingham Heart Study (3–5). The aetiology of DCM
in the diabetic heart is complex and is likely to multifactorial (Figure 1). In the early stages of
its progression, DCM is usually asymptomatic and is characterised by subclinical structural and
functional abnormalities including left ventricular hypertrophy (LVH), reduced LV compliance,
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FIGURE 1 | A schematic diagram depicting multiple potential mechanisms that have been implicated in pathophysiology of diabetic cardiomyopathy. AGEs,

advanced glycation end products; AMPK, AMP-activated protein kinase; RAAS, renin-angiotensin-aldosterone system.

myocardial fibrosis and stiffness (6). These pathophysiological
changes associated with subclinical cardiac dysfunction
can be progressive and lead to HF symptoms and to the
clinical syndrome of HF (7). Despite the success of various
antihyperglycemic agents in the intensive management of
hyperglycemia in people with T2DM in reducing the risk of
cardiovascular (CV) complications, the high prevalence of
HF persists (8–10), that might suggest the role of other non-
hyperglycemia associated pathophysiological mechanisms that
might contribute to the development of DCM and consequent
higher risk of HF in T2DM.

LVH is defined by an elevated left ventricular mass (LVM),
either due to an increase in wall thickness or due to
left ventricular cavity enlargement, or both. Typically, the
LV wall thickening manifests in response to hemodynamic
pressure overload, and chamber dilatation occurs in response
to volumetric burden, with the caveat that other molecular and
metabolic mechanisms may play a synergistic and potentially
independent role. Importantly, LVH is strong predictor of CV
events (11, 12), and is a common feature in the diabetic
myocardium (7, 13). The reason why LVH is predictive of
CV events is because it precedes many potentially fatal CV
sequelae of events. For instance, the presence of LVH can lead
to adverse cardiovascular (CV) outcome—LVH impedes left
ventricular (LV) filling and can lead to diastolic heart failure;
it reduces coronary perfusion reserve and can induce ischemia;
it can lead to left atrial enlargement and subsequent atrial

fibrillation and it is intrinsically arrhythmogenic and can cause
sudden cardiac death (14). The development of LVH in T2DM
is not fully explained by the hyperglycemia-associated cellular
alterations alone (15). Specifically, there is extensive body of
clinical and experimental underpinnings that supports the role
of inflammation, oxidative stress, insulin resistance and AMP-
activated kinase (AMPK) in mediating the development of LVH
in T2DM (15–18). While the pathophysiology of LVH in diabetes
is not yet fully elucidated, the increasing recognition that LVH is
an exquisite orchestration of a wide array of pathophysiological
process, that are not limited to hyperglycemia, hypertension and
valvular disease, provided new opportunities to examine new
pharmacological therapies in LVH regression.

As defined by the American College of Cardiology/American
Heart Association (ACC/AHA) guidelines, HF progresses as a
clinical continuum of four stages (19). Stage B HF represents
patients with structural heart disease including LVH, but with no
current or prior symptoms of HF (19). To prevent progression
to symptomatic HF (Stage C HF), it is important to identify
the presence of DCM at the early stages of its development.
While the electrocardiogram (ECG) is a widely used method
to diagnose LVH, its diagnostic accuracy is limited due to its
poor sensitivity in detecting LVH (20, 21). Echocardiography
has been conventionally considered a test of choice to evaluate
the presence of cardiac dysfunction and early structural changes
of the heart including LVH (22). Its sensitivity is significantly
higher than ECG in detecting LVH (23), and can also diagnosis
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other subclinical cardiac abnormalities and valvular heart disease.
However, cardiac magnetic resonance imaging is considered
the gold standard due to high precision and reproducibility
in estimating LV mass (24) and other structural cardiac
abnormalities, albeit its use is limited due to its high costs and
limited availability.

In addition to multiple comorbidities and several molecular
and metabolic mechanisms, several studies have reported that
LVH is also influenced by various other factors such as age,
gender, ethnicity and genetic factors. For instance, LVH is more
prevalent in blacks compared with other race/ethnic groups
(25, 26). The prevalence of LVH is not reported to be dissimilar
between men and women, irrespective of diagnostic criteria
applied (27). The prevalence of LVH also increased significantly
with age, occurring in 33% of men and 49% of women over
70 (28). Furthermore, genome wide association studies (GWAS)
have also reported substantial heritability for LVH in diverse
populations including diabetic patients (29, 30).

In this mini-review, we summarise the epidemiology of LVH
in T2DM and the key pathophysiological mechanisms and
provide a review of some of the key studies that evaluated the
effects of different classes drugs on LVH regression.

LEFT VENTRICULAR HYPERTROPHY IN
DIABETIC CARDIOMYOPATHY

Prevalence and Economic Impact
It is becoming increasingly recognised that T2DM is an
independent risk factor for LVH, even in the absence of overt
cardiovascular diseases (CVD) (31, 32). T2DM is often associated
with cardiomyopathy, manifested by LVH, and the reported
prevalence of LVH in patients with T2DM ranges from 32 to
71% in different studies, depending on the criteria used for
defining LVH (12, 33–36). Importantly, previous research has
demonstrated that LVH regression per se independently reduces
CV mortality and events (37, 38). Thus, routine screening of
LVH, followed by targeted intervention could be a promising
way of reducing CV events and mortality in people with T2DM.
Furthermore, disability caused by CVD carries major health
economic consequences at both individual levels, and the society
as a whole, and this burden is expected to increase in the future.
Therefore, routine screening of LVH and targeted treatment may
have the potential to reduce the economic burden of CVD.While
it is difficult to evaluate the economic value of saving life, the
costs of screening for and treating LVH is anticipated to be low,
primarily due to the high prevalence of the condition and the low
unit cost of echocardiography (39).

Efficacy and Cost-Effectiveness of
Screening
The efficacy and cost effectiveness of early screening for
traditional CV risk factors has already been proven in the
general population (40–42). However, an ongoing challenge is
to develop adequate screening strategies that are cost-effective
that can identify individuals at risk for future CV events, prior
to developing overt CVD. Since people with T2DM are at a

higher risk for future CV events than non-diabetic people, it may
be more cost-effective to target subclinical cardiac abnormalities
including LVH in diabetic population. Whilst this approach
may initially increase healthcare costs, especially with the costs
associated with CV imaging and treatment, such an approach
may in the longer term reduce CV related mortality and
morbidity in patients with T2DM.Witham et al. in a hypothetical
analysis of the cost-effectiveness of screening LVH, suggested
that this may indeed be a very cost-effective strategy to reduce
CV events in high-risk people including those with T2DM (39).
Biomarkers may prove to be an alternate tool that is even more
cost-effective, when used in CVD risk prognostication (43). In
this context, previous studies have utilised a biomarker-based
approach for the identification of subclinical LV abnormalities
in patients without CVD. For instance, in patients with T2DM
and without HF, higher levels of B-type natriuretic peptide (BNP)
associated with LVH and lower left ventricular ejection fraction
(44). Another study of non-diabetic individuals without overt
CVD, found that high sensitivity cardiac troponin T (hs-cTnT)
and BNP may be suitable for (the c-statistic for screening with
BNP ± hs-cTnT was 0·81) identifying asymptomatic cardiac
diseases including LVH (45). If the results of these studies can
be confirmed in future large studies, pre-screening of people with
T2DM using the biomarker approach may offer a cost-effective
modality in screening LVH. Further systematic health economics
studies are warranted to assess the cost-effectiveness of screening
T2DM patients for LVH, and then pre-emptive treatment.

Pathophysiology of LVH and Potential
Targets
Inflammation
Inflammation is a prominent hallmark of LVH. Pro-
inflammatory cytokines are found to modulate left ventricle
LV structure and play a critical role in LV remodelling (46).
Inflammatory mediators can result in changes in cardiac size,
shapes, and composition, including myocyte hypertrophy,
alterations in expression of foetal gene, and progressive myocyte
loss through apoptosis (46). Pro-inflammatory cytokines such
as IL-1, IL-6 and tumour necrosis factor-alpha (TNF-α) are
normally not expressed in the heart, but they are activated and
up regulated as response to myocardial injury or mechanical
stress, contributing to cardiac remodelling (46). Soon after
ischemic myocardial injury, TNF-α and IL-6 are elaborated
and trigger additional cellular inflammatory responses (47).
Chronically, to repair and remodelling, these cytokines activate
matrix metalloproteinases and collagen formation, and regulate
angiogenesis and progenitor cell mobilisation, resulting in
development of myocardial hypertrophy, collagen deposition,
and fibrosis (47). In macrophages, lipopolysaccharide (LPS),
tumour necrosis factor-α, and interferon-γ, has been shown
to be implicated in cardiac hypertrophy via their effects on
the expression of microRNA-155 (miR-155) expression, a
powerful mediator of cardiac hypertrophy (48). Notably, variable
myocyte hypertrophy and inflammatory cell infiltration with
activation of nuclear factor kappa B (NF-κB) have been identified
in endomyocardial tissue of patients with Hypertrophic
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cardiomyopathy (HCM) while the levels of in interleukins (IL-
1β, IL-1RA, IL-6, IL-10) and high-sensitivity C-reactive protein
(hsCRP) have been found to be significantly higher in patients
with HCM than in control subjects (49). These suggest that a
low-grade inflammatory response may play an important role in
the development of cardiac hypertrophy in patients with HCM
and support the causative significance of inflammatory signalling
in hypertrophic heart disease, demonstrating the feasibility of
therapeutic targeting of inflammation in heart failure.

Oxidative Stress
Growing evidence points to the potential involvement of
oxidative stress in the pathophysiology of cardiac hypertrophy
via different possible mechanisms. Dysregulated expression
of nitrogen oxides (NOX) proteins, which are predominant
isoforms expressed in cardiac tissue, has been proposed
to contribute to the development of cardiac hypertrophy
and is believed to driven by eroxisome proliferator-activated
receptor α (PPARα) downregulation (50). Upregulation of
NOX4 by angiotensin II, which is primary in mitochondria
of cardiomyocytes, can also result in inducing nuclear export
of histone deacetylase 4 (HDAC4), a crucial precursor of
cardiac hypertrophy (51). NOX2 and NOX4 have also been
found to be associated with cardiac hypertrophy and fibrosis
in diabetic rats, and the elevation of NOX2 has been shown
to be associated with an increase in cardiomyocytes size in
mice subjected to high fat diet (50). Furthermore, In an
experimental guinea pig model of pressure-overload induced
cardiac hypertrophy, increased oxidative stress can result in
an increase in cardiac ROS production, which induces cardiac
hypertrophy through activation of redox-sensitive protein
kinases such as mitogen activated protein kinase (MAPK) (52).
In neonatal cardiomyocytes, however, ROS has been found
to active a wide variety of hypertrophic signalling kinases
and transcription factors, including the tyrosine kinase Src,
GTP-binding protein Ras, protein kinase C, mitogen-activated
protein kinases (extracellular response kinase and extracellular
signal–regulated kinase), and Jun-nuclear kinase, NK-KB and
Phosphoinositol 3-kinase, which is required for H2O2-induced
hypertrophy (53). Finally, in diabetic patients, it is hypothesised
that myocardial kinases β isoform of protein kinase C (PKCβ),
which is preferentially overexpressed in diabetic myocardium
accompanied with increased upregulation of pro-oxidant enzyme
NAPH oxidase, that is a major upstream moderator of oxidative
stress and that inhibition of PKCβ can attenuate myocardial
hypertrophy (54). All these observations support the role of
oxidative stress in the pathophysiology of cardiac hypertrophy.

ROLE OF INSULIN SIGNALLING, MTOR,
AND AMPK IN CARDIAC HYPERTROPHY

Insulin resistance has long been recognised as a common
factor in and contributing towards the intersection between
diagnosis of heart disease and diabetes in the same patient (55).
In brief, development of insulin resistance over time, initially
compensated by hyperinsulinemia, but ultimately resulting in

beta cell failure, likely results in successive periods where there
is first overstimulation and then under stimulation of anabolic
insulin-sensitive signalling pathways in cardiomyocytes and
other tissues, any of which, as well as the metabolic flexibility
inherent in insulin resistance, may contribute to pathology.
Many of the proteins mediating insulin signalling are encoded
by more than one gene, which has complicated mechanistic
genetic analysis. Consistent with the likely complex role of insulin
signalling in heart disease, deletion of IRS1 and IRS2 docking
proteins in liver results in heart failure in mice, whereas deletion
of the same genes in cardiac tissue resulted in smaller ventricular
mass (56). These findings also illustrate that insulin signalling in
cardiac tissue and in non-cardiac tissue, are both likely to have an
important impact on progression of heart disease. More work is
required to determine the critical metabolic regulatory pathways
underlying these effects.

One of the metabolic signalling pathways most studied in
cardiac dysfunction is mammalian target of rapamycin (mTOR)
signalling. ThemTOR signalling pathways are at the crossroads of
anabolic and catabolic cellular process (57). mammalian target of
rapamycin complex 1 (mTORC1) promotes anabolic metabolism
in response to growth factor signalling, nutrients (particularly
amino acids), and increased energy supply. mTORC1 also
suppresses autophagy (58). mTORC1 phosphorylates Unc-51
like autophagy activating kinase (ULK1), a kinase that forms
a complex with ATG13, FIP2000, and ATG101 and drives
autophagosome formation, disrupting the interaction between
Ulk1 and AMPK and prevent Ulk1 activation by AMPK (59).
At transcriptional level, mTORC1 can also regulate autophagy.
It prevents nuclear transport of the transcription factor EB
(TFEB), which drives genes expression for lysosomes biogenesis
and the autophagy machinery (60). In these ways mTORC1 is
understood largely to determine the extent of cellular anabolic
and catabolic processes, whilst in contrast mTORC2 seems to
function mainly as an effector of insulin/IGF-1 signalling ref 8.
mTORC2 activates and phosphorylates protein kinase B (PKB), a
key effector of insulin/PI3K signalling. Phosphorylation of PKB
results in cell promotion and proliferation via activation and
suppression of many key substrates including the transcription
factors of FoxO1/3a, the metabolic regulator (GSK3β), and the
mTORC1 inhibitor (TSC2) (58). mTORC2 is also regulated by
mTORC1 through a negative feedback loop between mTORC1
and insulin PI3K signalling. mTORC1 activates (Grb10), a
negative regulator of insulin/IGF-1 receptor signalling upstream
of Akt and mTORC2 (58).

In the cardiovascular system, mTOR pathways are understood
to be important regulators of the hypertrophic response (61).
Loss of function genetic studies indicate that mTORC1 activation
is indispensable for development of cardiac hypertrophy in
response to pressure overload. An animal study showed that
the deletion of Rheb 1, which mediates mTORC1 activation, in
cardiomyocytes confers cardioprotection against pathological
remodelling in pressure overload (62). The mTORC1 regulates
cardiac function and myocyte survival through 4E-BP1
inhibition in mice. A study showed a significant improvement
in apoptosis and heart function when Mtor and the gene
encoding 4E-BP1, an mTOR-containing multiprotein complex-1
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(mTORC1) substrate that inhibits translation initiation, was
deleted together (63).

Furthermore, in mice, ablation of cardiac raptor, a gene
required for normal cardiac physiological function and for heart
adaptation to increased workload, is shown to impair adaptive
hypertrophy, change metabolic gene expression, and causing
heart failure (64). In raptor-cKOmice, pressure overload causes a
significant cardiac dilatation and immediate reduction in ejection
fraction (64).

Consistent with this, pharmacological inhibition of mTORC1
also suppresses hypertrophy. Rapamycin, a specific inhibitor
of mTOR, inhibits established cardiac hypertrophy via a
complete suppression the phosphorylation of S6K1 and S6
phosphorylation in response to pressure overload (65). This
can explain the attenuation of the increase in myocyte cell size
induced by aortic constriction after administering Rapamycin
to mice (66). Rapamycin is also shown to extend lifespan of
mice (67). However, although it is shown that rapamycin can
reverse age-dependent defects in cardiac function (68) and can
protect against the changes of atherosclerosis (69), it is still
unclear if an increase in lifespan owes to effects on cardiovascular
system (67).

AMPK is another protein kinase that regulates many
aspects of cellular energy balance and is seen as a promising
target for anti-hypertrophic drugs. AMPK activation reverses
increased protein O-GlcNAcylation, which is associated
with cardiac hypertrophy, mainly through controlling
the glutamine: fructose-6-phosphate aminotransferase
(GFAT) phosphorylation, resulting in a decrease in O-
GlcNAcylation of proteins such as troponin T (70). In
line with this, an increase in cellular O-GlcNAc levels in
response to O-linked N-acetylglucosamine (O-GlcNAc)
inducers completely supresses the anti-hypertrophic effect of
AMPK (70).

Metformin and AICAR have each been shown in preclinical
studies to inhibit cardiac hypertrophy. Long-term metformin
treatment significantly increases AMPK phosphorylation and
attenuates cardiac hypertrophy induced by Transverse aortic
constriction (TAC) (71). Interestingly, the antihypertrophic
effects of metformin were not observed in AMPKα2–/– mice
(71), suggesting that the chronic activation of AMPK during the
development of cardiac hypertrophy is an important mechanism
that mediates the beneficial effect of metformin. Moreover, long-
term activation of AMPK by AICAR has been shown to block
load-induced calcineurin–NFAT pathway as calcineurin is also
regulated by MAPK pathway. Thus, the activation of AMPKmay
counteract MAPK pathway though blocking calcineurin–NFAT
pathway (72).

However, counterbalancing these promising findings is
recent evidence that a pan-AMPK activator improves glucose
homeostasis, but at the cost of increased hypertrophy. Chronic
activation of MK-8722, pan-AMPK activator, increases glucose
uptake into skeletal muscle, but it results in cardiac hypertrophy
associated with increased cardiac glycogen contents (73). To
determine which of these beneficial and less beneficial aspects
of the drugs really do owe to AMPK, further genetic studies
are required.

Role of Drug Repurposing in LVH
Regression
Due to the high attrition rates, significant economic burden
and lengthy new drug discovery process, repurposing of ‘old’
drugs (also known as drug repositioning, reprofiling or re-
tasking) to treat both common and rare diseases is increasingly
becoming a promising field in drug discovery. Drug repurposing
identifies new therapeutic uses for already approved drugs that
are outside the scope of the original use (74). This is an attractive
proposition because it involves the use of existing compounds
that have undergone rigorous testing with potentially lower
overall development costs and shorter development timelines.

Hypertension is the most common causes of LVH and
therefore, controlling blood pressure (BP) especially with drugs
that blocks the renin-angiotensin system (RAS) is the standard
approach to the management of LVH. However, this approach is
only partially effective since LVH persists in 20% of hypertensives
that attain target BP (75). Thus “normotensive LVH” is very
common (12). Indeed, BP only contributes 25% to the variability
in LV mass seen in a population (76). Despite a “normal”
BP, normotensive LVH is just as risky as is hypertensive
LVH (77). Nevertheless, regressing LVH irrespective of BP
changes is an effective way to reduce the incidence of all
major CV events including specifically sudden deaths, heart
failure hospitalisations, new onset AF and strokes (37, 38,
78–83). The LIFE study demonstrates that LVH regression
per se reduces future cardiovascular events irrespective of BP
(84). Since controlling BP and using a RAS blocker is only
partially effective at regressing LVH, we now need additional
ways of regressing LVH. In addition to BP, as we have
discussed above, the pathophysiology of LVH may involve a
complex cocktail of various non-hemodynamic disease processes
including inflammation, oxidative stress, obesity, and insulin
resistance (15, 29, 31, 53, 85–90).

Below, we provide a narrative review of some of the key
clinical trials that evaluated the effects of interventions targeting
LVH in patients with and without T2DM, in the context of
normal BP.

Targeting LVH With Allopurinol
Allopurinol, a xanthine oxidase (XO) inhibitor, has been the
mainstay of treatment for patients with gout associated with
hyperuricemia for several decades. In addition, there is mounting
evidence to suggest cardioprotective effects of allopurinol (91–
93). Allopurinol has been shown to exert its cardioprotective
effects through three key mechanisms: (i) reduction of uric
acid concentrations which has pro-inflammatory effects; (ii)
inhibiting xanthine oxidase mediated production of reactive
oxygen species (ROS) which aggravate endothelial dysfunction
and atherosclerosis plaque instability; and (iii) increasing local
tissue availability of adenosine triphosphate and oxygen by
inhibiting purine metabolism (94).

Allopurinol has been shown to regress LVM in different
cohorts along the cardiovascular spectrum with significant pre-
existing disease, oxidative stress and inflammation. In a RCT
of people with T2DM, 9 months treatment of allopurinol
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treatment significantly reduced absolute left ventricular mass
(LVM) (allopurinol −2.65 ± 5.91 g vs. placebo group +1.21 ±

5.10 g; p = 0.012) and LVM indexed (LVMI) to body surface
area (allopurinol −1.32 ± 2.84 g/m(2) vs. placebo group +0.65
± 3.07 g/m(2); p = 0.017) (18). In another RCT of people
with ischemic heart disease, allopurinol treatment significantly
reduced LVM (allopurinol −5.2 ± 5.8 g vs. placebo −1.3 ±

4.48 g; p = 0.007) and LVMI (allopurinol −2.2 ± 2.78 g/m(2)
vs. placebo −0.53 ± 2.5 g/m(2); p = 0.023) (17). Furthermore,
Kao et al., in another RCT of patients with severe renal
disease (CKD 3) reported significant reduction in LVM with 9
months allopurinol treatment (95). In contrast, a recent study
by Gingles et al., reported that LVM regression was significantly
reduced with allopurinol treatment than placebo, suggestive of
a potential adverse effect (96). However, unlike other studies,
in this RCT, the study population had well-controlled BP and
were normouricemic with low oxidative stress. This may have
negated any direct effect of allopurinol, who rely on urate
for antioxidant defence, in reducing ROS generation by XO
inhibition, and consequent null effect on LVH. Therefore, the
regressive effect of allopurinol may not be observed universally
in all study populations.

Targeting LVH With Metformin
Metformin is an oral antihyperglycemic agent that has been
used widely for the treatment of T2DM for over many decades.
Beyond its antihyperglycemic effects, there is now accumulating
evidence to suggest that metformin is cardioprotective (97).
While the exact mechanism of cardioprotective actions of
metformin is not fully understood, several ancillary mechanisms
have been proposed to explain the metformin induced
LVH regression. First, as stated already, insulin resistance,
inflammation, oxidative stress, endothelial dysfunction and
obesity is understood to contribute to the development of LVH

(15, 53, 85–89), and metformin has been shown to reduce insulin
resistance (98), inflammation (99), oxidative stress (100–104),
central obesity (105) and endothelial dysfunction (106), albeit
the latter is not a consistent finding (107). Second, in vivo
studies have reported activation of AMP-activated protein
kinase (AMPK) as one of the putative mechanisms for the
anti-hypertrophic effect of metformin (15), leading to the view
that AMPK stimulation is a promising new strategy to prevent
or reduce LVH (108–110).

For clinical trials, to date, only one study: The MET-
REMODEL trial, has explicitly investigated the effect of
metformin on LVH in non-diabetic CAD patients identified to
have IR and/or diabetes. This study demonstrated that 12 months
metformin treatment (2 g/day) significantly reduced LVMI
(absolute mean difference −1.37 (95% CI: −2.63 to −0.12, P =

0.033) (111). In this study, metformin also significantly reduced
LVM, systolic blood pressure, and oxidative stress. In line with
these findings, few other clinical studies and a network analysis
also reported anti-hypertrophic effects of metformin (112–114).

Targeting LVH With SGLT2 Inhibitors:
Multipronged Approach
The sodium-glucose linked cotransporter type 2 (SGLT2) class
of inhibitors was developed as a novel anti-diabetic agent that
acts independent of the insulin-incretin pathway to lower blood
sugar. Various classes of SGLT2 inhibitors such as empagliflozin,
canagliflozin and dapagliflozin have been shown to reduce
cardiovascular mortality in patients with diabetes mellitus (115–
118), but its cardioprotective mechanism remains elusive. More
recent evidence from RCTs, suggest the potential of dapagliflozin
in reducing the risk of worsening heart failure or CV mortality,
even in non-diabetic population (119, 120). However, it is not
clear whether the cardioprotective effects of SGLT2 inhibition

FIGURE 2 | Plausible mechanisms by which metformin (111), SGLT-2 inhibitor (128) and allopurinol (17, 18) regressed left ventricular hypertrophy.
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in non-diabetic patients is class effect or drug-specific effect
(121–124). Unlike other antidiabetic agents that are dependent
on pancreatic beta-cell function and insulin sensitivity for the
glucose lowering effect, the principal mechanism by which
SGLT2 inhibitors lower blood glucose is by excreting excess
glucose by enhancing urinary glucose excretion. Part of the off-
target effects that have been observed with this class of drugs
include weight loss, improved glycemia/lipid profile, arterial
stiffness, reduce preload and afterload (blood pressure) and
diuresis (125, 126)—all of which are key risk factors implicated
in the development of LVH (15).

The DAPA-LVH study was the first placebo controlled RCT
to investigate the efficacy of dapagliflozin in regressing LVH
in normotensive patients with T2DM, without pre-existing
CVD (127). At 12 months, dapagliflozin treatment significantly
reduced LVM in people with T2DM, as assessed by cardiac
magnetic resonance imaging (128). In this study, dapagliflozin
was also shown to significantly reduce systolic BP, body weight,
abdominal obesity (both visceral and subcutaneous), insulin
resistance, and hsCRP. A similar finding was observed in the
EMPA-HEART study that reported anti-hypertrophic effect of
empagliflozin (129). In the DAPA-LVH trial, LVH regression was
greater in those with higher baseline LVM (128). It is to be noted
that a recent subgroup analysis of the EMPA-REG OUTCOME
trial reported lower incidence of CVD in patients with LVH
compared with those without LVH (130). Furthermore, post-hoc
exploratory analysis from DAPA-LVH trial suggest dapagliflozin
may improve subclinical dysfunction, as evidenced by improved
myocardial longitudinal function (131). Taken together, there is
compelling evidence to suggest that SGLT2 have the potential to
promote reverse LV remodelling in patients with diabetes, which
may, at least in part, explain the cardioprotective effects observed
in large outcome trials of SGLT2.

CONCLUSIONS

In this mini-review, we have argued that LVH is a good surrogate
marker of diabetic cardiomyopathy and discussed the trials
targeting LVH as a manifestation of Stage B Cardiomyopathy,
and potential mechanisms behind LVH regression (Figure 2)
in patients with T2DM or in insulin-resistant individuals. We

believe that cardiovascular outcome trials are still needed to
provide definitive evidence for the cardio-protective role of the
proposed repurposed drugs. With respect to metformin, the
results of the on-going outcome trials such as the VA IMPACT
trial (VA IMPACTNCT02915198) andGlucose Lowering in Non-
diabetic hyperglycaemia Trial (GLINT; ISRCTN34875079), will
be informative and might provide the needed evidence for
recommending metformin in these at risk patients.

FUTURE RESEARCH

All the clinical studies discussed in this manuscript were “proof
of concept” studies, conducted in small sample size, to evaluate
the possible mechanisms behind the purported cardio-protective
effects of each drugs. Unlike, the LVH regression observed
in previous hypertension trials, the magnitude of the LVH
regression observed in these trials were small, which may
be, at least in part due to the shorter follow-up period and
treatment duration. The results of these proof-of-concept trials
are encouraging and help underpin.future large cardiovascular
outcome trials, with longer follow-up period, incorporating
better hard end points. One such trial is the VA-IMPACT trial
(VA IMPACT NCT−02915198) of metformin. Such trials will be
informative and help provide the medical evidence to support the
use these drugs in diabetic cardiomyopathy.
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