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Abstract
Analyzing the relation between intelligence and neural activity is of the utmost importance in understanding the working
principles of the human brain in health and disease. In existing literature, functional brain connectomes have been used
successfully to predict cognitive measures such as intelligence quotient (IQ) scores in both healthy and disordered cohorts
using machine learning models. However, existing methods resort to flattening the brain connectome (i.e., graph) through
vectorization which overlooks its topological properties. To address this limitation and inspired from the emerging graph
neural networks (GNNs), we design a novel regression GNN model (namely RegGNN) for predicting IQ scores from brain
connectivity. On top of that, we introduce a novel, fully modular sample selection method to select the best samples to
learn from for our target prediction task. However, since such deep learning architectures are computationally expensive
to train, we further propose a learning-based sample selection method that learns how to choose the training samples
with the highest expected predictive power on unseen samples. For this, we capitalize on the fact that connectomes (i.e.,
their adjacency matrices) lie in the symmetric positive definite (SPD) matrix cone. Our results on full-scale and verbal IQ
prediction outperforms comparison methods in autism spectrum disorder cohorts and achieves a competitive performance
for neurotypical subjects using 3-fold cross-validation. Furthermore, we show that our sample selection approach generalizes
to other learning-based methods, which shows its usefulness beyond our GNN architecture.

Keywords Regression · Graph neural network · Sample selection · Functional brain connectome ·
Cognitive score prediction

Introduction

Understanding how the structure of the brain influences
cognitive scores such as IQ plays a vital role in understand-
ing the working principles of the human brain. Cognitive
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scores are indicators of intellectual capacity which were
found to be strongly connected to social factors: while high
correlation between intelligence scores measured in child-
hood and educational success were observed in (Colom
et al., 2007; Deary et al., 2007), they were also linked to
health and mortality (Gottfredson & Deary, 2004; Batty
et al., 2007). Motivated by this fact, many studies have
investigated how far intelligence quotients (IQ) can be pre-
dicted from the structure of the brain. It was found, for
example, that cerebral volume positively correlates with
cognitive ability (Reiss et al., 1996; Mcdaniel, 2005). On a
finer scale, activity and global connectivity of parts of the
brain, especially of the lateral prefrontal cortex, are linked
to IQ (Gray et al., 2003; Woolgar et al., 2010; Cole et al.,
2012; Cole et al., 2015).

Against this background, recent works have explored the
possibility to predict cognitive ability scores from func-
tional brain connectomes (Pamplona et al., 2015; Dubois
et al., 2018; Dadi et al., 2019; Dryburgh et al., 2020; He
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et al., 2020; Jiang et al., 2020). Conventionally, connec-
tomes are obtained from resting-state MRI and charac-
terize the network structure of the brain; they are mod-
eled as graphs whose nodes represent regions of inter-
est (ROIs) and whose edges correspond to correlations
in activity between these ROIs (Sporns et al., 2005). In
order to achieve better generalizability across contexts
and populations, (Shen et al., 2017) proposed a data-
driven protocol for connectome-based predictive modeling
of brain-behavior relationships, using cross-validation, to
train a linear regression model. Building upon it, (Dry-
burgh et al., 2020) improved the results by evaluating neg-
ative and positive correlations of brain regions separately.
They performed their analysis on both neurotypical sub-
jects and subjects with Autism Spectrum Disorder (ASD)
in order to investigate how neural correlates of intelli-
gence scores are altered by atypical neurodevelopmental
disorders.

Although such works achieved significant success, they
mainly relied on classical machine learning approaches,
which do not incorporate the graph structure of the
connectomes; therefore, the local and global topological
properties of the connectomes are not leveraged. (He
et al., 2020) introduced graph neural networks (GNNs) (Wu
et al., 2021), a subfield of geometric deep learning, where
learning is customized to non-Euclidean spaces such as
graphs with complex topologies (Dehmamy et al., 2019).
GNNs are deep neural networks with graph convolution
layers. They have already lead to significant increases
in performance over existing methods in many fields.
For example, they have been successfully applied to
classification tasks on networks (Kipf & Welling, 2017; Qu
et al., 2019), image segmentation (Qi et al., 2017), feature
matching (Sarlin et al., 2020), few-shot learning (Garcia &
Bruna, 2017; Kim et al., 2019), and various graph mining
tasks (Schlichtkrull et al., 2018; Yun et al., 2019; Zhang
et al., 2019). A very recent review on GNNs in the field
of network neuroscience (Bessadok et al., 2021) examined
a variety of graph-based architecture tailored for brain
connectivity classification, integration, superresolution and
synthesis across time and modalities. However, none of the
reviewed methods were designed for brain graph regression
for cognitive score prediction.

In this paper, we propose the first GNN architecture,
namely RegGNN, that is specialized in regressing brain
connectomes to a target cognitive score to predict. Our
GNN utilizes graph convolutional layers to map input
connectomes onto their corresponding cognitive scores,
thereby allowing to extract the learned weights to identify
the brain connectivities between anatomical regions that
fingerprint the target score.

To improve the performance of the GNN, we additionally
propose a novel learning-based sample selection method.

It is independent from RegGNN and can be used with any
architecture or regression learner. The method identifies
training samples with the highest predictive power (i.e.,
those that are most likely to predict unseen test subjects
with the lowest error); only these are then used for
training. Through this, we eliminate the samples that do not
increase—or even decrease—the prediction success of the
model and reduce the computational resources needed for
training the GNN.

Within our sample selection method, we make use of the
fact that the (weighted) adjacency matrix of a functional
brain connectome, when modeled as a correlation matrix, is
symmetric positive semi-definite; and becomes symmetric
positive definite after a simple regularization step (Dodero
et al., 2015; Wong et al., 2018; You & Park, 2021). The
space of SPD matrices forms a nonlinear manifold (Arsigny
et al., 2006), and like (You & Park, 2021), we use a
Riemannian geometric structure on it in order to obtain a
natural notion of distance between two connectomes as well
as tangent matrices that encode the paths that realize this
distance.

We summarize the main contributions of our work as
follows:

1. We introduce a novel, learning-based sample selection
method for graph neural networks that helps to
increase accuracy when predicting cognitive scores
from connectomes.

2. We propose novel similarity measures between brain
connectomes by combining notions from Riemannian
geometry and topology of graphs. These measures
can be used in other applications whenever we deal
with objects that can be interpreted as elements of
Riemannian manifolds.

3. We design a pipeline, consisting of RegGNN with
sample selection, which outperforms state-of-the-art
models in predicting full scale intelligence and ver-
bal intelligence quotients from functional brain con-
nectomes in an autism spectrum disorder cohort and
achieves a competitive performance in a neurotypical
cohort.

Methods

In this section, we detail the architecture of our RegGNN.
Furthermore, we introduce our proposed sample selection
method and show how we incorporate it into the training
process of the GNN. To start with, we recount some facts
on the Riemannian geometry of SPD matrices. Furthermore,
we recall graph-topological centrality measures. The
mathematical notations that we use in the following are
summarized in Table 1.
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Table 1 Major mathematical notations used in this paper

Notation Dimension Definition

nTrain N number of subjects in the training group

nTest N number of subjects in the test group

d N number of brain regions (i.e, ROIs)

ns N number of elements in the train-in group

nh N number of elements in the holdout group

SPD(n) - manifold of n × n symmetric positive definite matrices

TPSPD(n) - tangent space at P ∈ SPD(n) (can be identified with the vector
space of symmetric matrices of the same size)

I R
d×d identity matrix

Ps
i R

d×d functional brain connectome (SPD) of subject i from the train-in group s

Ph
l R

d×d functional brain connectome (SPD) of subject l from the holdout group h

S̃
s,s

i,j R
d×d tangent matrix (symmetric matrix) encoding the geodesic between

connectomes i and j from the train-in group s at Ps
i

S̃
s,h

j,l R
d×d tangent matrix (symmetric matrix) encoding the geodesic between

connectomes j from the train-in group s and l from the holdout
group h at Ps

j

Ss,s
i,j R

d×d parallel translation (symmetric matrix) of S̃
s,s

i,j to TISPD(n)

Ss,h
j,l R

d×d parallel translation (symmetric matrix) of S̃
s,h

j,l to TISPD(n)

v
s,s
i,j R

d feature vector extracted from Ss,s
i,j

v
s,h
j,l R

d feature vector extracted from Ss,h
j,l

IQs
i R cognitive score (IQ) of subject i from the train-in group s

IQh
l R cognitive score (IQ) of subject l from the holdout group h

Preliminaries

The space of n-by-n symmetric positive definite matrices
SPD(n) = {P ∈ R

n,n : PT = P, all eigenvalues of P
are positive} forms a cone-like manifold in the set of all
matrices of the same size (Faraut & Korányii, 1994). Being
a manifold, there is a well-defined tangent space at every
point P ∈ SPD(n), which we denote by TPSPD(n). It is a
basic fact that each TPSPD(n) can be identified with the set
of symmetric n-by-n matrices. Therefore, in order to avoid
later confusion, we call their elements tangent matrices
instead of “tangent vectors” (which is the standard term in
differential geometry).

As a manifold, SPD(n) can be endowed with a
Riemannian geometric structure (do Carmo, 1992). Such
a structure is determined by the choice of a Riemannian
metric, i.e., a smoothly varying inner product on the tangent
spaces. With its help, we can measure angles between
(and norms of) tangent matrices. Furthermore, it induces
a distance d on the space. Consequently, geodesics can be
defined as (locally) shortest paths. Like a straight line in
Euclidean space, a geodesic γ that connects two points
P,Q ∈ SPD(n) can be represented by a unique tangent

matrix log(P,Q) ∈ TPSPD(n).1 In particular, log(P,Q)

points in the direction of Q, i.e., is parallel to γ at P and has
norm (measured in the one induced from the metric) equal to
the distance between P and Q. Because of this, we can view
log(P,Q) as the linearized “difference” between Q and P.

In contrast to Euclidean geometry, tangent matrices from
different tangent spaces of a Riemannian manifold cannot
be compared directly. Instead, they must be transported
along curves to the same tangent space; this process is
called parallel translation. This means that although tangent
matrices at different points P ∈ SPD(n) and Q ∈ SPD(n)

are symmetric matrices, we must bring them to a common
point in order to compare them. The SPD space and parallel
translation of vectors are illustrated in Fig. 1.

Since all notions depend on the Riemannian structure,
we must fix one. For SPD(n), several can be found
in the literature, the most popular being the Log-
Euclidean metric (Arsigny et al., 2006) and the affine-
invariant metric (Moakher, 2005; Pennec et al., 2006).

1It is denoted like this because the corresponding map is called
Riemannian logarithm.
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Fig. 1 Illustration of geodesics and parallel transport of tangent
matrices on the SPD cone. The dashed lines are the geodesics between
the matrices P1,P2,P3 ∈ SPD(n). The tangent matrices S̃1,2 :=
log(P1,P2) and S̃2,3 := log(P2,P3) are the yellow and red arrow,
respectively; their parallel translations to the tangent space TISPD at
the identity matrix I are S1,2 and S2,3

They have been applied successfully to connectomes for
classification (Dodero et al., 2015; Yamin et al., 2020),
regression (Wong et al., 2018), fingerprint extraction (Abbas
et al., 2021), and statistical analysis (You & Park, 2021). We
choose to work with the Log-Euclidean metric because it
allows for comparatively efficient algorithms. Furthermore,
parallel transport does not depend on the chosen path and
a unique length-minimizing geodesic exists between any
two points—both properties do not hold for most other
metrics.

We now recall three basic topological centrality measures
for an undirected2 graph G: degree centrality, eigenvector
centrality, and closeness centrality; we recount them in
Appendix Topological centrality measures. They measure
how far a node is central to the (graph) network in the sense
that most of the communication passes through it. A good
reference on this is the book (Fornito et al., 2016).

We are now ready to introduce the graph neural network,
and afterwards, the sample selection process.

2Of course, the centrality measures can also be defined for directed
graphs but we do not need this here.

RegGNN

Our GNN for regression, RegGNN, consists of two graph
convolution layers and a downstream fully connected
layer; a visualization is on the bottom left of Figure 2.
In the following we denote the number of ROIs by
d . Since adjacency matrices of connectomes are d-by-d
correlation matrices C, they can have zero (but no negative)
eigenvalues. Therefore, we can simply regularize them
to being symmetric positive definite by adding a small
multiple of the identity matrix I, i.e.,

P := C + μI (1)

for some small μ > 0; see (Dodero et al., 2015) or
(Wong et al., 2018). For training RegGNN—but not for
the sample selection—we set all negative eigenvalues to
zero, as positive correlations have been shown to be more
important in brain network analysis Fornito et al. (2016).
Indeed, in our experiments the results improved when
negative correlations were ignored. RegGNN receives the
regularized, positive adjacency matrix P of a connectome
and predicts the corresponding IQ score from it by applying
graph convolutions.

In the literature, there are various implementations of
graph convolutions, which mainly differ by the propagation
rule. Let H(i) denote the activation matrix at the i-th layer
for i = 0, 1, 2. It is propagated to the next layer according
to the general rule H(i+1) = gi(H(i),P) with functions
gi : Rd,di−1×SPD(d) → R

d,di for i = 1, 2. As initialization
we choose H(0) := I. Furthermore, we choose the gi as
proposed by (Kipf & Welling, 2017). Define P̃ := P+ I and
let D̃ be the diagonal degree matrix of P̃, we then formalize
gi as follows:

gi(H(i),P) := ReLU(D̃− 1
2 P̃D̃− 1

2 H(i)W(i)),

where W(i) ∈ R
d,di is the learnable weight matrix; we

chose d0 := d = 116, d1 := 64, and d2 := 1. We
thus use the graph convolution layers to reduce the size
of the connectomes and obtain an embedding for the brain
graphs into R

d . We apply a dropout layer after the first
graph convolution operation for regularization. Finally, the
obtained embedding passes through a fully connected layer
(linear layer) which produces a continuous scalar output.
The goal of the linear layer is to embed the resulting vector
containing d features into a scalar value presenting the
predicted IQ score.

Learning-based sample selection

We now introduce our learning-based sample selection
strategy. The underlying idea is the following. Imagine
the (rather extreme) case that our subjects are clustered
(possibly with outliers) in k tight groups according to their
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Fig. 2 Illustration of the proposed sample selection strategy to train
our regression graph neural network RegGNN. A) We split the data
in training (green) and testing (violet) sets. B-i) The training set is
divided into a train-in (yellow) and a holdout (red) set. We then extract
tangent matrices for geodesics connecting elements from the train-in
set (yellow) and tangent matrices encoding geodesics from elements
of the train-in to elements of the holdout group (red). B-ii) The infor-
mation from the tangent matrices is compressed into vectors through
topological feature extraction. B-iii) With linear regression, we train a
mapping f on the train-in-to-train-in feature vectors (yellow) to learn

differences in target score and record for each element j of the train-in
group the k elements from the holdout group for whom the predicted
difference in target score to j was smallest. B-iv) For each sample in
the holdout set, we count how often it was among the top k predictors
for a sample from the train-in group. C) After repeating B) in an N-fold
cross validation manner, the k samples (blue) with the highest accu-
mulated top-k frequency are selected. After negative correlations have
been set to zero the graph neural network is trained (only) on them.
Finally, the testing set is used to evaluate the overall performance.

cognitive scores. Then, training a GNN on k representatives,
one from each cluster, should yield good results; it should
even perform better than a GNN trained on the full data set
because it was not “distracted” by outliers during training.
Ideally, as representatives we would choose the k most
central samples of each group, i.e., those with the smallest
average difference in cognitive score to the other samples.
Now, since we want to predict cognitive scores from
connectomes, we do not know the differences beforehand.
On the other hand, existing studies validated the relationship
between brain connectivity patterns and brain behavior and
cognition. For instance, recent papers (Pamplona et al.,
2015; Shen et al., 2017; Dubois et al., 2018; Dadi et al.,
2019; Dryburgh et al., 2020; Jiang et al., 2020; He et al.,
2020) have shown that the cognitive ability of a person can
be predicted quite accurately from the human connectome,
indicating that the brain cognitive and behavior are encoded
in its connectivity to a measurable degree. Such prediction

would have been elusive if similar data inputs (here brain
connectomes) cannot be mapped to similar outputs (here
cognitive scores). Consequently, we assume that similar
brain connectivity networks are correlated in cognition
whereas brain connectomes that vary in topological patterns
might elicit different cognitive scores. Such hypothesis
might seem somewhat reductionist as there are many other
factors that contribute to molding and predicting brain
cognition such as genetics and epigenetics (Goldberg &
Weinberger, 2004; Deary et al., 2006; Reichenberg et al.,
2009). However, such factors remain out of the scope of
this study. Therefore, our idea is to use the differences
between the connectomes to learn the differences between
the target scores in order to identify those “representatives”.
Our experiments below show that this idea of—to represent
predicted local aggregations of data by (few) representatives
and training only with them—generalizes well to real
data.
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Implementing the idea, we represent differences between
connectomes by tangent matrices and assume that the
difference in IQ between two subjects depends linearly
on (notions deduced from) the tangent matrix log(P,Q)

that encodes the geodesic between the corresponding
connectomes P,Q ∈ SPD(d). This model is flexible, but
at the same time allows for fast computations. Our sample
selection method learns this linear map, which we call f

in the following, via regression and uses it to identify the
k samples with the lowest predicted average difference in
target score to all other samples. As motivated above, we
assume that they are representative of the whole set but
do not contain (most of) the outliers that hinder successful
training of the GNN. The structure and terminology of our
method are inspired by the work of (Errica et al., 2019).

The sample selection method consists of four steps,
which are visualized in part B of Fig. 2. Given a connectome
data set, these are repeated in a nested N-fold cross-
validation manner to make our selection of samples more
robust. In cross-validation, we split the data set into two
groups: a training subset which we call train-in group,
and a validation subset which we call holdout group; we
perform different train-in and holdout group splits so that
each sample from the training set will be in the train-in
group exactly N −1 times. We denote the (constant) sizes of
the train-in and the holdout sets by ns and nh, respectively.

i) Riemannian tangent matrix derivation. For each pair
of regularized connectomes Ps

i , Ps
j ∈ SPD(d) in the train-in

group, we compute the tangent matrix

S̃
s,s

i,j := log(Ps
i ,P

s
j ) ∈ TPs

i
SPD(d)

that encodes the geodesic between them and parallel
translate it to TISPD(d); we denote the resulting symmetric
d-by-d matrix by Ss,s

i,j . As a result, we obtain a set of
ns (ns − 1)/2 tangent matrices in TISPD(d) that represent
the pairwise differences between the connectomes from the
train-in group. Analogously, we get a tangent matrix Ss,h

j,l ∈
TISPD(d) for each pair with one sample Ps

i from the train-in
and another sample Ph

l from the holdout group; this results
in another set consisting of ns nh tangent matrices. The latter
are the outgoing “difference matrices” from the train-in into
the holdout set.

ii) Topological feature extraction from tangent matri-
ces. The tangent matrices are still rather high dimensional,
which leads to long computation times. Thus, we suggest to
extract topological features in order to encode the informa-
tion in more compact form. We select degree, closeness, and
eigenvector centrality as well as combinations of them as
our candidates for feature extraction. Note that in our case a
tangent matrix represents the “difference” between two con-
nectomes. The above features thus encode information on
linearized changes in node connectivity. To the best of our
knowledge, this is the first time that these notions were used

in conjunction. As a result, from all in-group tangent matri-
ces Ss,s

i,j as well as outgoing tangent matrices Ss,h
j,l we obtain

feature vectors v
s,s
i,j and v

s,h
i,j , respectively.

iii) Learning a linear regression mapping for predictive
sample selection. We learn the linear map f via regression
by training to map the vectors v

s,s
i,j corresponding to samples

i and j from the train-in group to the absolute difference in
target score |IQs

j − IQs
i | between them. We then apply the

learned linear regression mapping f to the vectors v
s,h
j,l to

predict the differences in target score between all samples j

from the train-in and samples l from the holdout group.
iv) Frequency map. We record for each holdout sample

Ph
l the k subjects from the train-in group with the smallest

predicted difference under f and increment a frequency
map (i.e., a counter) that is initialized at the start of the
sample selection process. The frequency value of a subject
is then the number of times it was one of the top k predictive
samples. These frequencies give an approximated ranking
whereby the top samples are closest to the largest number
of other samples in (predicted) target score.

After the cross-validation is finished, we extract the top
k samples3 with the highest cumulative frequencies. We
expect these samples to have the highest representative
power as they consistently predicted samples in different
holdout groups with low error.

Training process

In the following, we explain how we integrate the sample
selection method into the training process of RegGNN. The
whole pipeline is shown in Fig. 2.

Given the data set of connectomes our proposed training
pipeline consists of the following steps A-C.

A- Training-test split First, we split the data set into a
training and a test set. The test set is used only for the final
evaluation of RegGNN.

B- Learning-based sample selection Then, we select the
top k samples with the highest representative power from
the training set by applying the sample selection method
from Section Learning-based sample selection.

C- RegGNN architecture for regression Finally, we
train RegGNN on the top k samples using cross-validation
to evaluate model generalizability against perturbations of
training and testing data distributions. The final testing is
done on the unseen test set.

Data andmethodology

We used the pipeline from Section Training process to
predict the full scale intelligence quotient (FIQ) and the

3Note that we could pick a different number here. We leave exploring
possible other choices for future work.
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verbal intelligence quotient (VIQ) from brain connectomes
for both neurotypical (NT) subjects as well as subjects
with autism spectrum disorder (ASD). In the following, we
summarize these experiments.

Dataset We used samples from the Autism Brain
Imaging Data Exchange (ABIDE) Preprocessed dataset
(Craddock et al., 2013) for our experiments. It contains
data from 16 imaging sites, preprocessed by five different
teams using four pipelines: the Connectome Computation
System (CCS), the Configurable Pipeline for the Analysis
of Connectomes (CPAC), the Data Processing Assistant for
rs-fMRI (DPARSF) and the NeuroImaging Analysis Kit.
The preprocessed data sets are available online4. To account
for possible biases due to differences in sites, we used
randomly sampled subsets of the available data for both
cohorts; the same sets were also used by (Dryburgh et al.,
2020). The NT cohort consisted of 226 subjects (with mean
age = (15 ± 3.6)), while the ASD cohort was made up
of 202 subjects (with mean age = (15.4 ± 3.8)). FIQ and
VIQ scores in the NT cohort have means 111.573 ± 12.056
and 112.787 ± 12.018, whereas FIQ and VIQ scores in the
ASD cohort have means 106.102 ± 15.045 and 103.005 ±
16.874, respectively. The brain connectomes were obtained
from resting-state functional magnetic resonance imaging
using the parcellation from (Tzourio-Mazoyer et al., 2002)
with 116 ROIs. The functional connectomes are represented
by 116-by-116 matrices, whose entry in row i and column
j is the Pearson correlation between the average rs-fMRI
signal measured in ROI i and ROI j .

Software All experiments are done in Python 3.7.10. We
used Scikit-learn 0.24.2 (Pedregosa et al., 2011) for machine
learning models and PyTorch Geometric 1.6.3 (Fey &
Lenssen, 2019) for graph neural network implementations.
For Riemannian geometric computations in the SPD
space, we used the SPD class from the Morphomatics
package of (Ambellan et al., 2021). To extract the graph
topological features from the tangent matrices we used
NetworkX (Hagberg et al., 2008).

Parameter settings We trained our method with Adam
optimizer (Kingma & Ba, 2017) for 100 epochs with a
learning rate of 0.001 and weight decay at 0.0005 based on
our empirical observations. The dropout rate after the first
graph convolutional layer was set to 0.1. To regularize the
adjacency matrices, we used μ = 10−10 in (1). In order
to explore the parameter space for the number of selected
training samples k, we varied it between 2 and 15.

Evaluation and comparison methods To test the
generalizability and robustness of our method, we used
3-fold cross-validation on both NT and ASD cohorts
separately for both FIQ and VIQ prediction. We report the
mean absolute error (MAE) and the root mean squared error

4http://preprocessed-connectomes-project.org/abide/

(RMSE) for all methods. For the sample selection methods,
we additionally give the mean, standard deviation, minima
and maxima over all tested k = 2, . . . , 15 to test our sample
selection methods sensitivity to the selection of k.

To benchmark against our method, we chose state-of-the-
art methods from both deep learning and machine learning.
The first baseline was CPM (Shen et al., 2017), which
was specifically designed for behavioral score prediction
on brain connectomes; the second being PNA (Corso
et al., 2020), which outperformed common GNNs on both
artificial and real-world benchmark regression tasks (but has
not been applied to brain connectomes yet). PNA comes
with principal neighborhood aggregation layers that are
defined similarly to graph convolution operations. They
are designed to increase the amount of information that
is used from the local neighborhoods in the graphs. In
our experiments, we inserted PNA layers in our RegGNN
architecture. We implemented both a simpler setup with sum
aggregation and identity scaling only (denoted by PNA-S),
as well as various aggregation (sum, mean, var and max) and
scaling (identity, amplification and attenuation) methods
(denoted by PNA-V) as detailed in the paper of (Corso
et al., 2020). The code of both CPM5 and PNA6 is available
online.

In order to assess the effect of the sample selection
method, we also always trained each architecture on all
samples as a baseline.

Evaluation of the sample selection For each archi-
tecture, we compared several methods that can be used
as measure of difference in the sample selection (viz.,
Section Learning-based sample selection part (ii)) to train
the linear mapping f .

The first class of methods was the proposed one:
we encoded the differences via tangent matrices in the
SPD space. To identify a good choice for handling the
information that is contained in the tangent matrices, we
compared several methods. As one option, we trained f on
the vectorized upper triangular part (including the diagonal)
of the tangent matrix; this method is denoted by (tm). Since
the matrices are symmetric, ignoring the lower part speeds
up computations while not losing information. Further, we
used degree centrality, eigenvector centrality, and closeness
centrality (see Appendix Topological centrality measures),
and applied them to the tangent matrices; they are denoted
by (dc), (ec), and (cc), respectively. Note that during the
process, the topology of each connectome is not altered.
The mapping f was then trained on the resulting centrality
vectors. Additionally, we tested whether the concatenation
of the above centrality measures into a single vector is
even more informative. To this end, we used both an

5https://github.com/esfinn/cpm tutorial
6https://github.com/lukecavabarrett/pna/

http://preprocessed-connectomes-project.org/abide/
https://github.com/esfinn/cpm_tutorial
https://github.com/lukecavabarrett/pna/
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unscaled and a scaled version, denoted by (cnu) and (cns)
respectively. The unscaled version was generated by simple
concatenation of the three feature vectors. However, as
the three centrality measures have different ranges, we
additionally tested scaling each feature vector first. For this,
we used min-max scaling. Remember that min-max scaling
of a vector v is defined element-wise by

ṽi := vi − max(v)

max(v) − min(v)
.

Each centrality vector was scaled before concatenating,
which then gave a vector with elements in [0, 1] as data for
the regression.

We complemented these methods with two baselines.
In order to check whether the additional directional
information that the tangent matrices contain helps, we also
tested whether it suffices to train f on the Riemannian
geometric distances d(Ps

i ,P
s
j ) between the connectomes

from the train-in group alone; this method is denoted by
(g). To assess whether we improve by using the manifold
structure of the SPD space at all, we trained f on the
Euclidean absolute distance between the upper triangular
parts ̂Ps

i ,
̂Ps

j of each pair of connectomes Ps
i ,P

s
j , i.e., on the

scalars ‖̂Ps
i −̂Ps

j‖F (F standing for the Frobenius norm); we
denote this method by (a).

We report the p-value between the best performing
sample selection method MAE and the baseline MAE
according to a t-test for all architectures.

Results and Discussion

The results for the NT and ASD cohorts are shown in
Tables 2 and 3, respectively. We observe that while the state-
of-the-art machine learning model CPM surpasses naive
applications of GNNs in the form of PNA, our RegGNN,
paired with sample selection, outperforms CPM in all tasks
according to both MAE and RMSE with the exception
of the NT (FIQ) task. Improvements by our method are
especially visible in the ASD cohort. Interestingly, we see
that the results of all methods are worse on the ASD cohort
compared to the NT cohort. This was also observed by
(Dryburgh et al., 2020). We hypothesize that the difficulty
of predicting IQ scores in ASD cohort might be caused
by the inter-subject heterogeneity that is characteristic for
ASD (Tordjman et al., 2018). Another factor may be
that ASD samples from ABIDE are biased towards high-
functioning individuals (Craddock et al., 2013).

We observe further that sample selection improved the
results for RegGNN in all tasks except ASD (VIQ), and for
CPM in the ASD cohort. For PNA based architectures, there
are drastic improvements in NT (FIQ) and ASD (VIQ) and
incremental improvements in the remaining other tasks. An

exception to this is the PNA-V setup for ASD (FIQ), where
most models with sample selection perform worse than the
one trained on all samples. This might be partly explained
by the more complicated structure of PNA with various
aggregation models, which might demand more samples for
correct training.

For all models, we see that the minimum MAE over k

is lower than the MAE version that was trained on the full
data sets even when the mean MAE across k is higher in
all tasks. This indicates that improvements are highly likely
with fine-tuning of parameter k.

Our experiments did not reveal a clear trend for the value
of k for which the minimum was attained. Nevertheless, our
observations show that the proposed RegGNN network is
more stable to changes in the parameter K . Calculating for
each architecture the average of the standard deviations (std)
of the mean absolute error7 (see the results table) over all
feature extraction methods, we first note that the averages
for RegGNN are 0.455, 0.145, 0.877, 0.369 for NT (FIQ),
NT (VIQ), ASD (FIQ) and ASD (VIQ), respectively. While
RegGNN therefore shows small variation with respect to K ,
CPM is highly sensitive to the changes of this parameter
with averages of 2.901, 2.613, 1.803 and 2.754 respectively.
This is approximately a 2 to 10 fold increase in variability.
Consequently, RegGNN can better capture the brain graph
structure, whereas CPM treats graphs as flattened vectors
without preserving their topological features.

Improvements to the performance of CPM are not
statistically significant (p = 0.87 for ASD (FIQ), p = 0.15
for ASD (VIQ)). Similarly, we observed that improvements
to the performance of RegGNN are only statistically
significant in NT (VIQ) task (p < 0.05 for NT (VIQ),
p = 0.98 for NT (FIQ), p = 0.64 for ASD (FIQ)). The
performance increases for PNA models are more consistent,
as PNA-S improved significantly in three out of four tasks
(p < 0.01 for NT (FIQ), p = 0.11 for NT (VIQ), p < 0.05
for ASD (FIQ), p < 0.01 for ASD (VIQ)), and PNA-V
improved significantly in two out of four tasks (p < 0.05
for NT (FIQ), p = 0.21 for NT (VIQ), p = 0.11 for ASD
(FIQ), p < 0.01 for ASD (VIQ)).

Within the sample selection pipelines, the best perform-
ing methods always utilize the Riemannian geometric struc-
ture of the SPD space with respect to MAE, apart from
PNA-V results for the NT (VIQ) task. In the majority of
cases, the methods that rely on tangent matrices perform
best with the vectorized version of the whole tangent matrix
being the best method in NT (VIQ) and ASD (FIQ). We also
see that the three centrality measures and concatenated ver-
sions perform well consistently. Our results do not reveal
any finer pattern among the sample selection measures, but

7The standard deviations include variations over different K .
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we can conclude that using Riemannian structure of con-
nectomes to estimate their predictive power outperforms
methods that do not leverage these geometric properties.
Thus, other metrics should also be considered when decid-
ing for one. The tangent matrix method seems to perform
very well but is also the most time consuming since no
dimension reduction is performed. On the contrary, com-
puting centrality measures significantly reduces the size of
the matrices which speeds up the process sufficiently. In

our experiments, we observed that training linear regression
models using tangent matrices took up to 16 times more
time compared to training models using centrality measures.
To understand the latter methods and how they work better,
it would be helpful to analyze their behavior on the tan-
gent matrices mathematically. In contrast to their use for
adjacency matrices of graphs, this is, to the best of our
knowledge, unknown. It is thus an interesting venue for
future work.

Table 2 Comparison of regression methods on the NT cohort

Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)

NT (FIQ)

CPM 9.672 12.440

CPM (a) 11.383 ± 4.806 (9.589, 28.675) 13.972 ± 4.986 (12.075, 31.911)

CPM (g) 10.546 ± 1.407 (9.729, 14.989) 13.358 ± 1.831 (12.393, 19.358)

CPM (tm) 10.245 ± 2.086 (9.523, 17.745) 12.959 ± 2.515 (12.096, 22.009)

CPM (dc) 10.577 ± 2.487 (9.561, 19.394) 13.525 ± 2.751 (12.131, 23.210)

CPM (ec) 10.537 ± 2.131 (9.595, 18.159) 13.456 ± 2.393 (12.366, 21.976)

CPM (cc) 10.074 ± 1.307 (9.370, 14.741) 12.931 ± 1.669 (12.065, 18.895)

CPM (cnu) 10.895 ± 4.402 (9.463, 26.749) 13.775 ± 4.633 (12.194, 30.465)

CPM (cns) 11.262 ± 4.585 (9.623, 27.771) 14.156 ± 4.822 (12.406, 31.521)

PNA-S 17.217 21.008

PNA-S (a) 12.267 ± 0.948 (11.002, 14.480) 15.338 ± 1.079 (13.914, 18.110)

PNA-S (g) 12.305 ± 1.246 (10.814, 15.267) 15.474 ± 1.357 (13.897, 18.777)

PNA-S (tm) 11.537 ± 0.727 (10.639, 12.890) 14.466 ± 0.814 (13.322, 15.853)

PNA-S (dc) 12.211 ± 1.119 (10.751, 14.012) 15.389 ± 1.289 (13.619, 17.191)

PNA-S (ec) 12.124 ± 1.307 (10.956, 16.118) 15.270 ± 1.466 (13.865, 19.509)

PNA-S (cc) 12.166 ± 0.898 (10.727, 13.895) 15.413 ± 1.098 (13.615, 17.309)

PNA-S (cnu) 12.608 ± 1.204 (10.935, 15.944) 15.799 ± 1.378 (13.827, 19.684)

PNA-S (cns) 12.509 ± 0.963 (11.152, 14.747) 15.737 ± 1.172 (13.960, 18.528)

PNA-V 20.109 25.113

PNA-V (a) 15.979 ± 3.730 (11.607, 26.483) 19.617 ± 4.111 (14.575, 30.983)

PNA-V (g) 14.570 ± 4.115 (11.014, 26.962) 18.020 ± 4.329 (13.984, 30.811)

PNA-V (tm) 15.450 ± 4.313 (11.259, 26.906) 19.030 ± 4.804 (14.273, 32.059)

PNA-V (dc) 14.300 ± 2.111 (11.475, 17.750) 17.900 ± 2.588 (14.313, 22.516)

PNA-V (ec) 15.385 ± 3.141 (11.504, 21.710) 19.294 ± 3.905 (14.779, 27.041)

PNA-V (cc) 15.288 ± 3.023 (11.709, 20.592) 18.845 ± 3.378 (14.770, 24.803)

PNA-V (cnu) 16.800 ± 5.053 (12.352, 28.022) 20.470 ± 5.736 (15.180, 32.794)

PNA-V (cns) 15.910 ± 5.976 (12.507, 36.704) 19.671 ± 6.875 (15.478, 43.397)

RegGNN 9.768 12.270

RegGNN (a) 10.360 ± 1.090 (9.624, 14.027) 12.997 ± 1.278 (12.158, 17.335)

RegGNN (g) 10.032 ± 0.330 (9.576, 10.790) 12.563 ± 0.310 (12.148, 13.311)

RegGNN (tm) 9.820 ± 0.512 (9.525, 11.613) 12.378 ± 0.528 (12.116, 14.259)

RegGNN (dc) 9.714 ± 0.332 (9.485, 10.634) 12.531 ± 0.458 (12.064, 13.716)

RegGNN (ec) 9.815 ± 0.245 (9.469, 10.334) 12.609 ± 0.334 (12.171, 13.286)

RegGNN (cc) 9.777 ± 0.391 (9.461, 10.757) 12.516 ± 0.425 (12.121, 13.523)

RegGNN (cnu) 9.745 ± 0.451 (9.438, 11.018) 12.482 ± 0.473 (12.085, 13.758)

RegGNN (cns) 9.716 ± 0.292 (9.452, 10.474) 12.466 ± 0.217 (12.207, 12.982)
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Table 2 (continued)

Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)

NT (VIQ)

CPM 9.517 12.049

CPM (a) 11.035 ± 4.970 (9.481, 28.895) 13.728 ± 5.243 (12.031, 32.518)

CPM (g) 10.363 ± 1.682 (9.549, 16.146) 13.253 ± 2.126 (12.236, 20.633)

CPM (tm) 10.194 ± 2.316 (9.503, 18.543) 12.922 ± 2.928 (12.035, 23.477)

CPM (dc) 10.065 ± 1.760 (9.391, 16.386) 12.767 ± 2.386 (11.877, 21.332)

CPM (ec) 9.942 ± 1.768 (9.323, 16.275) 12.614 ± 2.209 (11.828, 20.532)

CPM (cc) 10.233 ± 1.264 (9.514, 14.667) 12.911 ± 1.595 (12.035, 18.505)

CPM (cnu) 10.544 ± 3.585 (9.480, 23.469) 13.256 ± 4.058 (12.022, 27.885)

CPM (cns) 10.583 ± 3.560 (9.526, 23.416) 13.326 ± 3.891 (12.108, 27.343)

PNA-S 12.838 16.130

PNA-S (a) 11.846 ± 0.942 (10.795, 13.764) 15.057 ± 1.099 (13.824, 17.279)

PNA-S (g) 12.439 ± 1.183 (10.913, 14.774) 15.648 ± 1.322 (13.895, 18.469)

PNA-S (tm) 12.489 ± 3.099 (10.759, 23.367) 15.884 ± 4.323 (13.983, 31.268)

PNA-S (dc) 11.694 ± 0.814 (10.302, 12.901) 14.707 ± 0.904 (13.126, 16.115)

PNA-S (ec) 12.091 ± 1.006 (10.543, 14.032) 15.122 ± 1.061 (13.436, 17.200)

PNA-S (cc) 13.074 ± 1.693 (11.258, 17.486) 16.326 ± 1.795 (14.474, 20.701)

PNA-S (cnu) 12.682 ± 1.308 (10.857, 15.196) 15.950 ± 1.536 (13.795, 18.775)

PNA-S (cns) 12.014 ± 0.859 (10.545, 14.031) 15.141 ± 0.944 (13.503, 17.302)

PNA-V 14.695 18.903

PNA-V (a) 14.107 ± 2.081 (11.923, 19.482) 17.696 ± 2.693 (14.832, 25.550)

PNA-V (g) 14.983 ± 5.211 (11.639, 32.479) 18.681 ± 6.224 (14.715, 39.771)

PNA-V (tm) 15.489 ± 4.211 (11.717, 27.980) 19.157 ± 4.775 (14.624, 33.183)

PNA-V (dc) 14.332 ± 2.931 (11.188, 20.545) 18.170 ± 3.917 (14.284, 26.511)

PNA-V (ec) 14.924 ± 3.424 (11.360, 21.703) 18.539 ± 4.185 (14.392, 27.289)

PNA-V (cc) 16.049 ± 4.185 (11.237, 24.616) 20.035 ± 4.966 (14.408, 29.373)

PNA-V (cnu) 14.805 ± 2.587 (11.890, 21.107) 18.344 ± 2.883 (15.171, 25.473)

PNA-V (cns) 14.915 ± 2.845 (11.898, 22.045) 18.674 ± 3.612 (14.895, 28.544)

RegGNN 10.195 13.044

RegGNN (a) 9.587 ± 0.206 (9.477, 10.311) 12.223 ± 0.299 (12.054, 13.261)

RegGNN (g) 9.779 ± 0.126 (9.551, 9.964) 12.530 ± 0.199 (12.190, 12.803)

RegGNN (tm) 9.514 ± 0.036 (9.471, 9.594) 12.041 ± 0.035 (12.004, 12.140)

RegGNN (dc) 9.639 ± 0.161 (9.468, 10.000) 12.213 ± 0.235 (12.008, 12.707)

RegGNN (ec) 9.599 ± 0.243 (9.453, 10.189) 12.199 ± 0.274 (12.020, 12.846)

RegGNN (cc) 9.711 ± 0.193 (9.499, 10.161) 12.313 ± 0.284 (12.023, 13.062)

RegGNN (cnu) 9.521 ± 0.042 (9.473, 9.651) 12.134 ± 0.050 (12.050, 12.266)

RegGNN (cns) 9.581 ± 0.153 (9.497, 10.109) 12.236 ± 0.199 (12.102, 12.907)

The best performing method for each architecture is bold while the second best is underlined. The mean ± standard deviation as well as minima
and maxima over k = 2, . . . , 15 (in brackets) are given. The overall best performing method according to mean error and the best sample selection
performance are indicated in blue. Abbreviations are: (a) absolute Euclidean distance, (g) geometric Log-Euclidean distance, (tm) full tangent
matrix, (dc) degree centrality, (ec) eigenvector centrality, (cc) closeness centrality, (cnu) concatination unscaled, (cns) concatination scaled

An important advantage of using sample selection in
training graph neural networks is the decrease in the
computational power needed for the training process. Using
the computational power more efficiently leads to shorter
training times on fixed amount of data, which opens up
opportunities to train more complex models on more data

or in shorter amounts of time. While the exact time required
for sample selection is heavily dependent on the hardware
used and varies based on the model architecture, number
of epochs in training, number of training samples, and the
number k of samples to select, our observations during
the experiments show that sample selection reduces the
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Table 3 Comparison of regression methods on the ASD cohort

Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)

ASD (FIQ)

CPM 12.533 15.965

CPM (a) 13.673 ± 3.748 (12.082, 26.912) 16.783 ± 4.048 (15.043, 31.074)

CPM (g) 13.267 ± 1.367 (12.166, 17.792) 16.728 ± 1.672 (15.433, 22.297)

CPM (tm) 12.464 ± 1.090 (12.093, 16.386) 15.522 ± 1.336 (15.084, 20.333)

CPM (dc) 12.644 ± 1.498 (12.082, 18.027) 15.685 ± 1.723 (15.116, 21.887)

CPM (ec) 12.825 ± 1.400 (12.074, 17.527) 15.922 ± 1.654 (15.017, 21.252)

CPM (cc) 13.310 ± 1.331 (12.430, 17.821) 16.703 ± 1.654 (15.618, 22.335)

CPM (cnu) 12.934 ± 2.460 (12.094, 21.790) 16.039 ± 2.817 (15.086, 26.182)

CPM (cns) 12.742 ± 1.527 (12.166, 18.129) 15.796 ± 1.838 (15.077, 22.298)

PNA-S 17.162 22.023

PNA-S (a) 15.260 ± 0.865 (13.947, 17.049) 18.768 ± 0.940 (17.527, 20.665)

PNA-S (g) 15.025 ± 1.321 (13.207, 17.762) 18.844 ± 1.641 (16.642, 22.009)

PNA-S (tm) 14.781 ± 1.182 (13.168, 18.488) 18.630 ± 1.496 (16.522, 23.426)

PNA-S (dc) 14.248 ± 0.533 (13.595, 15.651) 17.715 ± 0.723 (16.654, 19.644)

PNA-S (ec) 14.758 ± 1.277 (13.207, 18.534) 18.263 ± 1.608 (16.440, 23.134)

PNA-S (cc) 14.558 ± 0.666 (13.824, 16.586) 18.126 ± 0.894 (17.296, 20.806)

PNA-S (cnu) 14.038 ± 0.434 (13.353, 14.915) 17.438 ± 0.580 (16.469, 18.642)

PNA-S (cns) 14.023 ± 0.401 (13.465, 14.782) 17.620 ± 0.550 (16.853, 18.605)

PNA-V 15.671 20.085

PNA-V (a) 17.386 ± 2.428 (14.453, 23.263) 21.234 ± 2.922 (18.006, 28.505)

PNA-V (g) 17.611 ± 2.228 (14.770, 23.572) 22.035 ± 3.023 (18.422, 30.646)

PNA-V (tm) 18.458 ± 5.559 (13.770, 32.776) 23.112 ± 6.498 (17.326, 38.914)

PNA-V (dc) 16.358 ± 2.793 (14.045, 24.543) 20.325 ± 3.344 (17.355, 29.689)

PNA-V (ec) 17.085 ± 4.124 (13.778, 28.115) 21.095 ± 4.885 (17.101, 33.584)

PNA-V (cc) 16.172 ± 1.181 (14.541, 18.242) 19.942 ± 1.346 (17.970, 22.102)

PNA-V (cnu) 19.552 ± 6.530 (13.840, 33.875) 24.470 ± 8.514 (17.399, 44.199)

PNA-V (cns) 15.601 ± 2.041 (13.820, 20.748) 19.406 ± 2.359 (17.484, 25.427)

RegGNN 12.564 15.624

RegGNN (a) 12.588 ± 0.541 (12.170, 13.825) 15.628 ± 0.598 (15.102, 17.006)

RegGNN (g) 12.977 ± 1.073 (12.137, 16.292) 16.194 ± 1.358 (15.146, 20.300)

RegGNN (tm) 12.148 ± 0.072 (12.078, 12.379) 15.130 ± 0.067 (15.074, 15.355)

RegGNN (dc) 12.247 ± 0.167 (12.073, 12.667) 15.214 ± 0.178 (15.058, 15.693)

RegGNN (ec) 12.361 ± 0.246 (12.106, 12.905) 15.320 ± 0.265 (15.040, 15.895)

RegGNN (cc) 12.720 ± 0.466 (12.134, 14.008) 15.756 ± 0.560 (15.074, 17.321)

RegGNN (cnu) 12.301 ± 0.226 (12.064, 12.804) 15.331 ± 0.250 (15.120, 15.881)

RegGNN (cns) 12.300 ± 0.159 (12.132, 12.763) 15.306 ± 0.201 (15.114, 15.894)

training time by 20% on average. Therefore, usage of our
sample selection pipeline can enable the use of deeper
neural network architectures on connectomes and provides
a topic of interest in future work.

So far, we evaluated our method on a young population;
however, our RegGNN demonstrated its generalizability by
the utilized cross-validation strategy and across both NC

and ASD brain connectivity datasets. The proposed model
can be easily used to map a particular brain connectivity
population (e.g., elderly population) to target scores to
predict. To proliferate replication studies on other cohorts,
we publicly shared our RegGNN source code8.

8https://github.com/basiralab/RegGNN

https://github.com/basiralab/RegGNN


Brain Imaging and Behavior

Table 3 (continued)

Method Mean MAE ± std (min, max) Mean RMSE ± std (min, max)

ASD (VIQ)

CPM 14.171 18.834

CPM (a) 15.006 ± 5.390 (12.920, 34.315) 19.034 ± 5.458 (16.887, 38.586)

CPM (g) 14.336 ± 3.490 (12.669, 26.704) 18.646 ± 3.660 (16.845, 31.560)

CPM (tm) 15.496 ± 2.494 (13.694, 21.575) 20.191 ± 3.140 (17.994, 28.150)

CPM (dc) 14.449 ± 1.882 (13.289, 19.795) 18.767 ± 2.166 (17.421, 24.648)

CPM (ec) 13.697 ± 1.389 (12.824, 18.258) 17.985 ± 1.737 (16.838, 23.693)

CPM (cc) 14.954 ± 3.088 (13.432, 25.694) 19.613 ± 3.506 (17.508, 31.570)

CPM (cnu) 14.698 ± 1.565 (13.046, 19.980) 18.917 ± 1.715 (17.412, 24.674)

CPM (cns) 15.417 ± 2.761 (13.593, 22.869) 20.041 ± 4.128 (17.648, 32.850)

PNA-S 19.955 25.848

PNA-S (a) 15.993 ± 1.096 (14.125, 18.861) 20.500 ± 1.284 (18.349, 23.726)

PNA-S (g) 15.540 ± 1.176 (14.139, 18.017) 20.037 ± 1.548 (18.256, 23.559)

PNA-S (tm) 16.766 ± 1.330 (15.020, 20.365) 21.548 ± 1.583 (19.513, 25.735)

PNA-S (dc) 16.820 ± 2.161 (14.332, 21.360) 21.386 ± 2.303 (18.685, 25.724)

PNA-S (ec) 16.445 ± 1.598 (14.518, 21.308) 21.150 ± 1.900 (18.760, 26.560)

PNA-S (cc) 16.113 ± 1.458 (14.600, 19.985) 21.012 ± 1.715 (19.057, 25.231)

PNA-S (cnu) 16.359 ± 1.450 (14.661, 20.737) 20.880 ± 1.714 (18.905, 26.173)

PNA-S (cns) 15.887 ± 0.773 (14.621, 17.091) 20.282 ± 0.843 (18.785, 21.847)

PNA-V 22.518 28.804

PNA-V (a) 18.145 ± 3.017 (14.837, 26.420) 22.937 ± 3.373 (19.233, 31.651)

PNA-V (g) 16.906 ± 1.566 (14.975, 21.123) 21.791 ± 2.210 (19.658, 28.209)

PNA-V (tm) 19.040 ± 3.597 (15.631, 30.284) 24.162 ± 4.053 (19.972, 36.701)

PNA-V (dc) 19.734 ± 4.936 (15.055, 33.387) 25.088 ± 6.380 (19.898, 43.769)

PNA-V (ec) 17.837 ± 2.000 (14.973, 21.401) 22.721 ± 2.341 (19.373, 27.477)

PNA-V (cc) 18.663 ± 4.268 (14.969, 32.436) 24.016 ± 5.063 (19.679, 40.173)

PNA-V (cnu) 17.314 ± 2.329 (14.660, 22.610) 22.128 ± 2.772 (19.026, 28.786)

PNA-V (cns) 17.714 ± 2.833 (14.697, 24.781) 22.630 ± 3.748 (18.958, 32.707)

RegGNN 13.090 17.250

RegGNN (a) 13.356 ± 0.443 (12.834, 14.402) 17.272 ± 0.480 (16.782, 18.502)

RegGNN (g) 13.316 ± 0.545 (12.687, 14.700) 17.474 ± 0.663 (16.877, 19.186)

RegGNN (tm) 14.110 ± 1.237 (13.194, 17.014) 18.288 ± 1.656 (17.130, 22.128)

RegGNN (dc) 14.516 ± 2.043 (13.369, 19.931) 18.381 ± 2.261 (17.140, 24.445)

RegGNN (ec) 13.419 ± 0.705 (12.766, 15.061) 17.526 ± 0.945 (16.815, 19.958)

RegGNN (cc) 14.021 ± 1.001 (13.149, 16.812) 18.731 ± 1.242 (17.563, 21.916)

RegGNN (cnu) 14.001 ± 0.605 (12.762, 14.885) 18.084 ± 0.569 (17.022, 18.924)

RegGNN (cns) 14.020 ± 0.440 (12.950, 14.650) 18.007 ± 0.434 (17.008, 18.571)

The best performing method for each architecture is bold while the second best is underlined. The mean ± standard deviation as well as minima
and maxima over k = 2, . . . , 15 (in brackets) are given. The overall best performing method according to mean error and the best sample selection
performance are indicated in blue. Abbreviations are: (a) absolute Euclidean distance, (g) geometric Log-Euclidean distance, (tm) full tangent
matrix, (dc) degree centrality, (ec) eigenvector centrality, (cc) closeness centrality, (cnu) concatination unscaled, (cns) concatination scaled

Explainability and biomarker discovery In order
to identify the brain regions of interest that influence
the prediction most, we extracted for each of the four
tasks the learned weights of the RegGNN utilizing the

best-performing sample selection method. The weights
came from the fully connected layer that maps a 116-
dimensional vector to the output score. (Remember that
the input vector represents the learned embedding of the
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Fig. 3 The top three most relevant brain regions for each task according to the learned weights extracted from the last layer of the trained RegGNN.
The colors indicate the task. NT: neurotypical subjects. ASD: autism spectrum disorder subjects. FIQ: fluid intelligence quotient. VIQ: verbal
intelligence quotient

graph.) Thanks to the end-to-end network training, the
backprogation process as well as our network design (which
preserves the structure of the connectome in both the first
and second layer), the learned weights in the final fully
connected layer quantified the importance of its nodes in
the target prediction task. Hence, a node with a higher
weight in the fully connected layer is more influential for
the prediction of the output score.

In Fig. 3, we show the regions of interest with the 3
highest weights averaged over k = 2, . . . , 15; underlying
is the AAL parcellation atlas (Tzourio-Mazoyer et al.,
2002).9 For the FIQ prediction task in the NT cohort, we
see that the left superior dorsal frontal gyrus (SFGdor.L),
right superior frontal medial gyrus (SFGmed.R), and right

9The brain networks were visualized with the BrainNet Viewer (Xia
et al., 2013).

cerebellum 6 (CRBL6.R) have the highest weights. For the
VIQ prediction task in the same cohort, left hippocampus
(HIP.L), left heschl gyrus (HES.L), and left cuneus (CUN.L)
possess the highest weights. In the ASD cohort, the highest
weights for FIQ prediction are left insula (INS.L), left
calcarine cortex (CAL.L), and right pallidum (PAL.R),
while the highest weights for VIQ prediction have the
left superior frontal medial gyrus (SFGmed.L) left middle
occipital gyrus (MOG.L), and left cuneus (CUN.L).

According to our results, the more important regions of
interest in IQ prediction lie in the left hemisphere of the
brain. Our findings are in line with other studies, that found
that the insula shows greater activity in various cognitive
tasks (Critchley et al., 2000) and that the surface areal
change in the left cuneus correlates strongly with full IQ,
especially in perceptual tasks in young adults with very low
birth weight (Skranes et al., 2013). Furthermore, we observe

http://www.nitrc.org/projects/bnv/
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that the left cuneus was influential in predicting VIQ in both
cohorts. Finally, as (Dryburgh et al., 2020), our experiments
indicate that the middle frontal gyrus is a significant region
in IQ prediction.

A highly interesting question for future work is to
investigate why the sample selection method improves
the prediction, i.e, why there seem to be clusters within
the data that can be represented by central samples.
This is a challenging question that most likely requires
the development of new analytical tools. Nevertheless,
we think that it will be worth the effort as common
structures and connections between these central samples
could give us a lot more insights into the interplay
between the connectivity structure of the brain and cognitive
ability.

Conclusion

In this work, we applied RegGNN, a new graph neural
network, to connectome data of neurotypical subjects and
subjects with autism spectrum disorder to predict full scale
and verbal intelligence quotients. We trained it using a novel
sample selection method, which tries to identify samples
within the training set that are expected to better predict
the cognitive scores of new subjects. This enabled us to
train the network with only 15 samples or less, while
the testing performance was on par or even better than
state-of-the-art methods for cognitive score prediction from
connectomes. Both the sample selection and RegGNN are
easy to implement in open access software and can be used
in clinical practice.

Topological centrality measures

Let A be the (weighted) adjacency matrix of G, V the set of
vertices of G, and v ∈ V .10 The degree centrality D(v) of v
is defined by

D(v) :=
∑

w∈V
w �=v

Avw,

i.e., it assigns to each node its weighted sum of neighbors.
Let x be the unit norm eigenvector of A that corresponds

to the largest eigenvalue λ1 and has only non-negative

10With a slight abuse of notation, we identify nodes v ∈ V and the
integers we assign to them in order to construct A, e.g., we write Avw

for the entry that corresponds to the edge between nodes v and w.

entries. The eigenvector centralityE(v) of v is the v-th entry
of x; that is,

E(v) := 1

λ1

∑

w∈V

Avwxw,

s.t. ‖x‖2 = 1 and xw ≥ 0 for all w ∈ V .

It measures, in a relative sense, how influential a node is
in the network. Intuitively, a high score means that a node
has many neighbors that themselves have high eigenvector
centrality scores.

Let lvw be the length of the shortest path between two
nodes v and w, and n = |V |. The closeness centrality C(v)

of v is defined by

C(v) := n − 1
∑

w∈V
w �=v

lvw

,

i.e., as the inverse of the average distance of v to all other
nodes.
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