Age estimation in humans through the analysis of aspartic acid racemization from teeth
Matteussi, Giovanna Teixeira; Jacometti, Victor; Franco, Ademir; da Silva, Ricardo Henrique Alves

Published in:
Forensic Science International

DOI:
10.1016/j.forsciint.2021.111154

Publication date:
2022

Licence:
CC BY-NC-ND

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
AGE ESTIMATION IN HUMANS THROUGH THE ANALYSIS OF ASPARTIC ACID RACEMIZATION FROM TEETH: A SCOPING REVIEW OF METHODS, OUTCOMES, AND OPEN RESEARCH QUESTIONS

ABSTRACT

Teeth are considered the most resistant structures in the human body. In forensic odontology, teeth are useful for human identification, especially when dental age estimation is necessary. Despite numerous studies, there is no consensus regarding the best methods for dental age estimation. The analysis of aspartic acid racemization, however, has shown promising results. This scoping review aimed to present a descriptive synthesis of the current literature regarding dental age estimation through aspartic acid racemization. Four electronic databases were screened: PubMed, Scielo, Web of Science, and Scopus. Cross-sectional studies published before April 2021 were selected. From 206 articles found, 26 met the eligibility criteria. Several experimental protocols and laboratory settings were detected, but the different protocols did not seem to significantly reduce error rates in dental age estimation. The analysis of aspartic acid racemization in human dental tissues produced accurate and potentially reliable results for age estimation. Aspartic acid racemization stands out especially in the adulthood – age category in which other methods struggle to deliver proper performances. Studies with larger samples, independent testing, and standardized laboratory procedures are necessary. Equator-like reporting guidelines are encouraged to enable future systematic reviews and meta-analyses.

Keywords: Forensic Dentistry; Age Determination by Teeth; Aspartic acid racemization.

INTRODUCTION

Age estimation plays an essential role in civil and criminal scenarios, with applications in the deceased and the living(1,2). In the former, age contributes to establish the biological profile of unknown victims for human identification. In the latter, age may be used to solve judicial issues that involve children (e.g. adoption, criminal
As the most resistant structure of the human body, teeth are often used to estimate age(4). Specifically, dental age estimation stands out compared to other techniques mainly because of the resistance of the teeth and their continuous development from early childhood to early adulthood.(6). However, the physiological and chronological ages gradually become more distant over the time. In other words, the increasing distance between physiological and chronological ages can lead to higher error rates(3,5) – in this scenario, optimal methods remain necessary.

Despite the recurrent application of dental age estimation in practice, there is no consensus regarding the best method(7). Depending on the parameters of choice, strategies have been suggested to reach more accurate results. The decision behind the method depends not only on the available facilities/laboratories but also on biological conditions(8). In short, dental age estimation using dental development as a parameter usually reach better performances during childhood, when several teeth develop simultaneously(9). In adults, on the other hand, developmental parameters are scarce or null. Alternative methods based on regressive morphological changes were proposed to overcome this challenge(2,10–12), but their error rates were considerably high.

The biochemical analysis of the human teeth emerged as a powerful tool to estimate the age when developmental parameters end (i.e. in adults)(13,14). In the '70s, Helfman & Bada (1975,1976)(15,16) proposed the study of the racemization reaction of amino acids and found a significant correlation between chronological age and the D / L-aspartic acid ratio present in the enamel and dentin. This method became more robust after subsequent studies and was able to reduce standard error rates (below four years in most of the studies)(5). A drawback of the method is the destructive aspect of laboratory techniques required to analyze pulverized/extracted tooth products(17,18). Hence, from a bioethical perspective, the method is only justified in the deceased.

Amino acids that form biological proteins usually exist in the human body in their L-form, except for some proteins synthesized primarily in their D-form(19). The conversion of L-forms into D-forms is a biochemical reaction known as racemization, and happens over the time. Nonetheless, some human body tissues, such as teeth and other structures i.e. the sclera and vertebral discs have a slow turnover, thus D-
aspartic acid is able to accumulate due to slow protein replacement, allowing biochemical analysis (20–22). Of all the amino acids, the one that has the highest racemization rate is the aspartic acid (3,5,23). Helfman & Bada (16,24) observed, for the first time, the association between the accumulation of (enamel and dentin) D-aspartic acid with age.

At first, D-aspartic acid accumulation was considered solely a stable outcome from the racemization process. Further studies, however, found out that this process is much more complex, and involved spontaneous protein degradation and succinimide formation (67). The evolving knowledge behind the method raised questions that are pertinent to specific situations, i.e. long post-mortem intervals (68).

Cunha et al. (2009)(3) pointed out the existing gap in the forensic literature by highlighting the scarcity of systematic reviews dedicated to age estimation methods. A systematic review was the initial design planned for the present study, but the current literature could not provide enough evidence to answer more focused questions on this matter. In this context, the present study is the first scoping review to describe state of the art regarding main laboratory settings, variables, and covariables in dental age estimation through aspartic acid racemization. The review aims to investigate and map the studies carried out regarding the topic; to clarify the availability of evidence in the field; and to assess methodological research procedures.

MATERIAL AND METHODS

The PECO strategy (25) was used to establish descriptors to maximize the search power. The established parameters were: Population (P): human with known chronological age; Exposure (E): age estimation via racemization of aspartic acid from teeth (15,16); Comparison (C): chronological age (studies should analyze the age difference between the estimated age and the chronological age); and Outcome (O): reliability of the racemization of aspartic acid from human teeth for age estimation (e.g. differences between estimated and chronological age).

Search Strategy

Two reviewers searched the electronic literature independently in four databases: PubMed/Medline, Web of Science, Scielo and Scopus and in three
languages: Portuguese, English, and Spanish. Descriptors used to build the search strategies were: (((age estimation OR age assessment OR age determination)) AND (aspartic acid OR enantiomer OR enantiomers OR racemization)) AND (teeth OR tooth OR dental). The search was restricted to articles published until April 2021. The articles were selected in a three-step process: title, abstract and full-text reading, sequentially. A third reviewer was consulted in case of disagreement. Cross-sectional studies that used the racemization of aspartic acid for dental age estimation were included. Exclusion criteria were: literature reviews, case reports, conference proceedings, studies outside the scope of forensic odontology, letters addressed to other authors or editors, studies involving analysis of non-human materials (animals), experimental studies that evaluated only the influence of laboratory and experimental steps to obtain the amino acids of interest, experimental studies that evaluated the influence of taphonomic changes in the sample, and studies in languages other than Portuguese, English and Spanish.

During the selection of articles, the reviewers were not blind to the authors and journals of publication. All the eligible articles were imported to Mendeley Desktop software, version 1.19.4 (Mendeley Ltd. Elsevier Inc., New York, USA) to enable organization and preliminary exclusion of duplicates.

Data extraction

The following data were extracted: (I) general information: authorship, year of publication and complete citation of the study, the country where the study was carried out, study design, and population; and (II) specific information: objective(s) of the study, sample size, the age interval of the sample (minimum and maximum ages), laboratory protocols, teeth that were analyzed, tissue sampled from the teeth, methodological techniques to separate the enantiomers, authors' scientific remarks and primary outcomes. The experimental and analytical items assessed in our study were based on their relevance to build an adequate methodology(23).

Additionally, the following results were assessed (when available): mean and standard deviation of estimated and chronological ages; mean error of the method (the difference between estimated and chronological ages); and the standard deviation of the error.
RESULTS

The initial search strategy resulted in 362 articles (Figure 1). Out of the 29 articles selected for full-text reading, four were excluded. These articles did not provide enough detail behind age estimation procedures, or involved samples with taphonomic changes (i.e. pink teeth). An additional article that was not available in full was requested to the authors and received via email(27). Manual search in reference lists resulted in an additional study(16). The final sample of the review consisted of 26 articles that met the eligibility criteria.

All the articles were cross-sectional. Table 1 includes a list of the studies with summarized descriptive data. The distribution of publications over time was uniform, with representative studies in all decades – starting in the 70’s(16). Most of the studies were published in journals focused on forensics or anthropology, except for the studies by Alkass et al. (2010), Benesová et al. (2004), and Gillard et al. (1990) published in journals referring to molecular and cell proteomics, analytical chemical separation, and archaeometry, respectively(30-32). Besides, the pioneering articles by Helfman & Bada (1975, 76) were published in a journal belonging to the US National Academy of Sciences(16) and in Nature(15) journal.

Among the studies that reported the origin (geographic population) of the sample, we noticed that Japan was the predominant country based on the number of studies (n = 8)(18,33-36). Other populations in Asia were investigated, such as Kuwait(37), India(29,38), and China(4,39). Study samples that were not part of Asia came from Europe, such as Sweden(30), the Czech Republic(31,40), the United Kingdom(32,41), Scandinavia(18), and Poland(28). Studies’ sample ranged from n=2(42) to n=90(29). Some studies used training samples to produce regression equations, then applied these equations on testing sets. Independent test sample sets varied their size between n=5(36,43) and n=90(29). Some studies(4,18,29,33–36,38,39) used the same sample size and set to produce and test regression equations. Other studies used independent sets(18,37).

As for descriptive statistics, such as means and standard deviations of chronological and estimated ages, some of the studies did not report the information,
namely the studies by Ohtani et al., 2003 and 2005(35,43), Griffin et al. 2008 and 2009(17,44) and Helman & Bada, 1975 and 1976(16) and Pilin et al.(40). In the remaining articles, descriptive values were collected directly from the text or calculated (indirectly) from the reported figures and graphs. The estimated (dental) ages were constantly very close to the chronological ages.

Regarding standard deviation, the detected values ranged between 4.76 and 23.15 years for the chronological age and between 4.94 and 26.08 years for the estimated age. Despite the evident dispersion in the studied samples, the standard deviation of the chronological and estimated ages generally assumed similar values, which indicates that the distribution of the estimated age is similar to the chronological age.
Several tooth types were used to carry out the laboratory analysis. Premolars were more prevalent (28,29,32,37–39,41), followed by canines (31,40,42) and molars (4,47,48). Some studies did not inform which tooth was used for the analysis (15,17,44).
As for the dental tissue analyzed: dentin was the preferred material(4,15,18,28–31,33,35–43,45–49), while the enamel was less frequent: in two studies, a solubilized portion was removed from the enamel surface(17,44); in one study, the enamel was pulverized(16); and in another one, the enamel was removed from 1mm healthy longitudinal sections – it was unclear whether the specimen underwent other experimental interventions(43). In two studies, the whole tooth was used for chromatographic analysis(32,42).

When dentin was the chosen material, in most studies, longitudinal sections of it were retrieved for the analysis(4,18,30,33,35,36,38,42,43). Some studies restricted the examination to coronal dentin only (29,45,46,48,49), while others analyzed only the root portion(28,37). One study separately analyzed both coronal and root dentin for comparison(47).

Addressing laboratory and experimental procedures and settings, fixatives (10% formalin) were used only in 5 studies (28,33,39,45,46). The use of bleaching solution for cleaning samples was uncommon (n = 4)(17,29,32,44). The washing-out step was carried out in most studies; however, it was unclear in some studies if this procedure was performed(18,31,32,38,45). Powdering of the used dental tissue was common, but unclear in a few studies (29,32,43,49).

The protein fraction separated and analyzed differed across studies. The use of the complete sample was predominant(15,16,18,28,29,33,35,38–40,42,45,46), while in four studies (4,31,32,41) only the insoluble portion of these proteins were analyzed. Two studies used only the soluble portion(17,44), and two used both the soluble and insoluble portions separately(47,48). The remaining four did not provide related information(30,37,43,49).

Demineralization protocols have been reported in a few studies. Studies that described these protocols used HCl predominantly(17,32,41,44,47,48), followed by the use of EDTA(4,31,38,40). Regarding the hydrolysis protocols, the opposite occurred. Most studies reported their protocols, with variations in the use of hydrochloric acid as a hydrolytic agent, with slight variations in temperature and time.

Most studies used gas chromatography (GC) (n=16) (16,18,28–30,33,35,36,40,42,46–50), while nine studies used high-performance liquid chromatography (HPLC) (4,15,17,32,37–39,41,44). A single study used both techniques to compare them with each other(31).
A significant number of studies did not report or provide enough information to indicate the values of the mean and standard deviation of the error (difference between the estimated and chronological age) (15–17, 44, 47–49). For the studies that reported errors, the mean error ranged between 0.72(37) and 12.5(41) years. As for the standard deviations, the values ranged from a minimum of 0.0034(15) to a maximum of 20.2(44) years.

Regarding the sample's eligibility criteria, most of the studies lacked a clear definition (15–18, 30–32, 35, 39, 40, 44–46, 49). Likewise, detailed information about the sample's origin, sex characteristics, and demographics, were absent in most of the studies (15, 17, 31, 32, 35, 43, 44, 47–49). We had to be flexible in our analysis since most of the studies had, somehow, prototypical aspects regarding experimental settings, especially the first studies in the field. This is noticeable after a deeper look into the recent studies (4, 28, 29, 37, 38, 42), which make use of more refined laboratory protocols.

DISCUSSION

The eligible studies detected in this review showed three main methodological strategies to investigate aspartic acid racemization: (1) finding more efficient and valid ways to experimentally conduct biochemical analysis on racemization, (2) determining the correlation between altered enantiomer ratios and human chronological age (51), and (3) validating the accuracy of aspartic acid racemization as a reliable age estimation method.

The data assessment performed in this scoping review whoed promising results in most studies. Means and standard deviations of the method's errors were frequently below many morphological and developmental methods for dental age estimation (5). Recently, the field of age estimation in adults using dental methods has been supplied with systematic reviews (52, 53). Compared to morphological (regressive) and developmental (in general, radiological), aspartic acid racemization seems to reach optimal outcomes.

The correlation values of methods based on computed tomography and magnetic resonance imaging are much lower (52) than those of the aspartic acid racemization (51). Marroquin et al. (2017) conducted a systematic review of several imaging-based age estimation methods in adults (53). According to the authors, there
are only few occasions when imaging-based methods reach outcomes as good as those from aspartic acid racemization. Imaging-based methods (54, 55) have a mean error considerably higher than the results reported in our study. Among the volumetric methods, only the method by Tardivo et al. (2014) obtained a mean absolute error (at least) close to some error rates reported with aspartic acid racemization. Tardivo’s method was also described by Bjork & Kvaal (2018) as the volumetric method that found the highest correlation coefficient with chronological age (52, 56). It is noteworthy that our scoping review found the lowest mean values (37), standard deviations (43, 57–61), and standard errors of the estimated age (15) reported amongst all dental age estimation methods in adults (not previously highlighted by any other scoping/systematic review on the topic). A drawback found both in the selection and the analysis of the studies selected in this review was the lack of standardization to report method and results. Although we observed homogeneity in the statistical analyses used across studies (which would generally be a good sign for a meta-analysis), other aspects had strong heterogeneity, such as the different variables and co-variables studied in the eligible articles.

An important limitation of the eligible studies was the lack of detailed sample description. Samples (individuals with known age) should be large enough to be representative, should have uniform allocation in age categories and balanced sex distribution (62), so the results could be more reliable. In our review, there were cases of small samples (18, 31, 32, 39, 41) and cases where the sample number for the regression equation was expressive despite the small test sample (30, 42, 45, 46). Small samples are a significant problem because the “real” reliability of the method is clouded, even if the central concept behind the method is apparently sound.

Outcome reporting was also very obscure. Few studies have not directly reported mean error values nor reported sufficient data for their calculation (15–17, 44, 47–49), but all provided data regarding the standard error of bias or the value of the standard error of the estimates (SEE). This information, combined with the methodological information collected in this review enabled an informative overview of the topic. Hence, we were able to observe how laboratory and procedural variables possibly affected the results. We observed several settings for the selection of tooth type and analysis, with no evident difference between them regarding results. Even the studies that used
multiple tooth positions (types) obtained satisfactory results (33). It must be noted, however, that studies that obtained exceptional results - with an average error of less than one year (29,37), used only one tooth type for analysis (premolars). The explanation for this phenomenon is given by Ohtani et al. (2003): Different dental types have different rates of dentin formation. Therefore, estimating age based on the extent of racemization of a specific tooth type produces better results than mixing them in the regression analysis (35). This fact was corroborated by Ohtani et al. (2005) and Ohtani et al. (2011) when the researchers observed that the lack of standard related to the tooth type seems to have a more significant influence on age estimation performance than the ethnic origin of the sample (18,43).

Dentin was the dental tissue that was found more frequently in the eligible studies. The methodological decision behind the selection of this tissue (instead of enamel (43)) may be justified by the (more) stable development and reduced susceptibility to environmental changes such as heat and pathological changes (15), compared to enamel. Griffin et al. (2009) suggests that the loss of amino acids to the soil can make the racemization method unfeasible in ancient archaeological specimens (44). Cementum was analyzed by Ohtani et al. (1995) and figured as a low metabolic tissue in which the racemization rate occurs similarly to the dentin - making the tissue potentially useful in practice. Future studies remain necessary (33).

The analyzed fraction of proteins from dentin or enamel is also part of a methodological decision that seems to have a particular influence in the analysis of racemization rates. In the literature, the fraction were previously pointed out as one of the factors responsible for the inconsistencies in the published error rates (23). While most studies usually use the total fraction of dentin proteins (from the crown or root), some studies detected in our review analyzed the soluble portion of dental enamel (17,44). Despite being a practical material (17) (as it enables fast racemization) (65), some precautions must be taken. Waite et al. (1999) inferred that soluble portions could be lost if this procedure is performed in cadavers - fact that confirmed by Griffin et al. (2009), with archaeological samples (23,44), and Mahlke et al. (2021) (68). Furthermore, the soluble portions are more susceptible to damage by exposure to acid. Ritz et al. (1993) found no significant differences between the analysis of total protein fraction and acid-soluble fraction. The former was slightly more accurate for age estimation compared to the latter. Differently, the insoluble fraction of
proteins performed remarkably worse among the three portions (i.e. soluble, total, insoluble)(47).

The last methodological parameter addressed in this scoping review was the type of chromatographic analysis (HPLC or GC). Both techniques have pros and cons, and one is not necessarily better than the other (Waite et al., 1999). Deciding between both will depend on the researcher's access and experience with units and facilities. Benesová et al. (2004) compared the two techniques and observed favorable results for HPLC based on the higher sensitivity and better results for age estimation using the technique(31). It is worth noting that other studies have obtained better results via GC(18,28,29,33,35,43,45,46). Hence, this parameter (HPLC or GC) does not seem to induce more or less favorable results.

Beyond the method's technical and scientific aspects there are also logistical and social obstacles to be considered. Specialized staff or training is required due to the complexity of the various stages of sample preparation(66). There must be standardization of the method(23,37). In some countries, especially the least developed ones, the use of complex and potentially expensive laboratory techniques is not feasible on a routine basis(37). However, this should in no way be an argument against its development and use. Additionally, the standardization of the method and studies should be sought as soon as possible to enable the dissemination of the method worldwide, so validation could be encouraged and performed(18).

Despite the issues related to how eligible studies report methods and results, it is clear that aspartic acid racemization brings an optimistic light to dental age estimation of adults. Future studies with standardized report writing, such as Equator guidelines, are encouraged to enable further systematic reviews, meta-analyses and (consequently) high-level evidence..

CONCLUSION

Contrasting with other methods that struggle to estimate age in adults aspartic acid racemization seems to produce accurate and reliable results. - Given the lack of standardized report writing (for methods and results) among eligible studies, the evidence was not homogeneous enough to enable systematic reviews and meta-analyses. Future studies in the field should benefit from the existing and compiled data of this scoping review to support methodological decisions and optimize research time.
REFERENCES

13. Gouveia R, Corte-Real A, Alves S. Estimativa da idade por métodos dentários -

TABLES
<table>
<thead>
<tr>
<th>Studies</th>
<th>Year</th>
<th>Design</th>
<th>Population</th>
<th>Sample Size for Age Estimation (Known Age)</th>
<th>Sample Size for producing regression equation (Known Age)</th>
<th>Age range – (Years)</th>
<th>Real Ages Mean (Years)</th>
<th>Real Ages SD</th>
<th>Estimated Ages Mean (Years)</th>
<th>Estimated Ages SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkass et al.</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>Sweden</td>
<td>20</td>
<td>44</td>
<td>13-70 (Estimation)</td>
<td>33,38</td>
<td>21,74</td>
<td>33,04</td>
<td>24,73</td>
</tr>
<tr>
<td>Benesová et al.</td>
<td>2004</td>
<td>Cross-sectional</td>
<td>Czech Rep.</td>
<td>3</td>
<td>9</td>
<td>16-84 (Equation) / 25-66 (Estimation)</td>
<td>41</td>
<td>21,93</td>
<td>51,33 (GC)/38(HPLC)</td>
<td>26,08(GC)/21,38(HPLC)</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>2016</td>
<td>Cross-sectional</td>
<td>China</td>
<td>58</td>
<td>58</td>
<td>18-63</td>
<td>31,49</td>
<td>10,56</td>
<td>31,58</td>
<td>10,92</td>
</tr>
<tr>
<td>Elfawal et al.</td>
<td>2014</td>
<td>Cross-sectional</td>
<td>Kuwait</td>
<td>39 (Validation group) / 50 (Test group)</td>
<td>50</td>
<td>10-31 (Test group) / 10-30 (Validation group)</td>
<td>14,98 (Test group) / 15,1 (Validation group)</td>
<td>4,76 (Test group) / 5,16 (Validation group)</td>
<td>15,06 (Test group) / 15,21 (Validation group)</td>
<td>4,94 (Test group) / 5,21 (Validation group)</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Country</td>
<td>Sample Size</td>
<td>Cases 1</td>
<td>Cases 2</td>
<td>Cases 3</td>
<td>Cases 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fu et al.</td>
<td>1995</td>
<td>Cross-sectional</td>
<td>China</td>
<td>3 cases / 28 test group</td>
<td>14-69 (Test group) / 16-60 (Cases)</td>
<td>35,57 (Test group) / 38 (Cases)</td>
<td>14,84 (Test group) / 21,28 (Cases)</td>
<td>35,64 (Test group) / 39,67 (Cases) / 15,01 (Test group) / 22,19 (Cases)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gillard et al.</td>
<td>1990</td>
<td>Cross-sectional</td>
<td>UK</td>
<td>11 cases (Archaeological data) / 21 modern data</td>
<td>9-69,74 (Modern data) / 19-68 (Archaeological data tested)</td>
<td>42,27</td>
<td>17,77</td>
<td>48,23</td>
<td>17,31</td>
<td></td>
</tr>
<tr>
<td>Griffin et al.</td>
<td>2009</td>
<td>Cross-sectional</td>
<td>UK & Switzerland (Archaeological)</td>
<td>100 cases / 100 cases</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffin et al.</td>
<td>2008</td>
<td>Cross-sectional</td>
<td>UK</td>
<td>31 cases / 31 cases</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helfman & Bada</td>
<td>1975</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>N/A cases</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study Design</td>
<td>Location</td>
<td>Sample Size</td>
<td>Age Range</td>
<td>X-ray Size</td>
<td>Width</td>
<td>Height</td>
<td>Length</td>
<td>Width</td>
</tr>
<tr>
<td>--------------------</td>
<td>------</td>
<td>----------------</td>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Helfman & Bada</td>
<td>1976</td>
<td>Cross-sectional</td>
<td>USA</td>
<td>N/A</td>
<td>20</td>
<td>11-75</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ogino, Ogino & Nagy</td>
<td>1985</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>6</td>
<td>61</td>
<td>14-74</td>
<td>63.50</td>
<td>16.86</td>
<td>62.17</td>
<td>15.14</td>
</tr>
<tr>
<td>Ohtani</td>
<td>1995</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>24</td>
<td>24</td>
<td>21-82</td>
<td>46.29</td>
<td>15.69</td>
<td>46.33</td>
<td>15.54</td>
</tr>
<tr>
<td>Ohtani et al.</td>
<td>2005</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>49</td>
<td>5-6-8-8-8-8-6</td>
<td>58-88</td>
<td>68.50</td>
<td>11.82</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ohtani & Yamamoto</td>
<td>2010</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>5</td>
<td>5-5-5-6-5</td>
<td>18-66</td>
<td>40.2</td>
<td>20.9</td>
<td>40.6</td>
<td>21.33</td>
</tr>
<tr>
<td>Study</td>
<td>Year</td>
<td>Design</td>
<td>Country</td>
<td>Sample Size</td>
<td>Gender/Mix</td>
<td>Age Range</td>
<td>Mean MP</td>
<td>Mean MP</td>
<td>Mean MP</td>
<td>Mean MP</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Ohtani, Ito & Yamamoto</td>
<td>2003</td>
<td>Cross-sectional</td>
<td>Japan</td>
<td>56</td>
<td>-</td>
<td>7-9-9-8-9-5-9 (Type specific) and 56 (whole tooth equation)</td>
<td>58-88</td>
<td>69,3</td>
<td>11,34</td>
<td>-</td>
</tr>
<tr>
<td>Pilin et al.</td>
<td>2001</td>
<td>Cross-sectional</td>
<td>Czech Republic</td>
<td>71</td>
<td>-</td>
<td>71 (Total Sample) /46 (Under 60 years old sample only)</td>
<td>15-95</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rajkumar et al.</td>
<td>2013</td>
<td>Cross-sectional</td>
<td>India</td>
<td>36</td>
<td>-</td>
<td>11-70</td>
<td>40,64</td>
<td>17,81</td>
<td>40,25</td>
<td>18,10</td>
</tr>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Study Type</td>
<td>Location</td>
<td>Sample Size</td>
<td>Number of Teeth</td>
<td>Tooth Type</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rastogi et al.</td>
<td>2017</td>
<td>Cross-sectional</td>
<td>India</td>
<td>90</td>
<td>90</td>
<td>11-70</td>
<td>41,67, 20,22, 41,64, 20,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritz et al.</td>
<td>1993</td>
<td>Cross-sectional</td>
<td>Germany</td>
<td>N/A</td>
<td>70 (total dentin) / 39 (acid soluble & insoluble fractions)</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritz et al.</td>
<td>1990</td>
<td>Cross-sectional</td>
<td>Germany</td>
<td>N/A</td>
<td>46</td>
<td>13-82</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ritz et al.</td>
<td>1995</td>
<td>Cross-sectional</td>
<td>3</td>
<td>62</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sakum a et al.</td>
<td>2012</td>
<td>Cross-sectional/Two cases report</td>
<td>Japan</td>
<td>2</td>
<td>24 (12 dentin samples and 12 whole tooth samples)</td>
<td>17-76</td>
<td>43,67 (Equation), 20 (Equation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wochn a et al.</td>
<td>2018</td>
<td>Cross-sectional</td>
<td>Poland</td>
<td>64</td>
<td>75 (Divided into: Group I: Central Incisor (21) / Group II: Lateral Incisor (14) / Group III: Canines (15) / Group IV: First Premolars (14))</td>
<td>30-68 (Group I) / 30-68 (Group II) / 34-68 (Group III) / 20-68 (Group IV)</td>
<td>48,33 (Group I) / 47,71 (Group II) / 51,33 (Group III) / 47,71 (Group IV)</td>
<td>14,72 (Group I) / 14,68 (Group II) / 13,33 (Group III) / 16,29 (Group IV)</td>
<td>48,43 (Group I) / 47,71 (Group II) / 51,33 (Group III) / 47,79 (Group IV)</td>
<td>14,28 (Group I) / 14,25 (Group II) / 13,09 (Group III) / 15,45 (Group IV)</td>
</tr>
</tbody>
</table>
Table 1. Data on study design, population, sample sizes, real and estimated ages means and standard deviations, gathered on the studies selected for the review, when available. SD = Standard deviation.
1. LEGENDS TO FIGURES

Fig. 1 Flowchart of the study selection stages performed in this scoping review