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Abstract 

The synthetic cannabinoid receptor agonist (SCRA) market is undergoing important changes since the 

enactment of the 2021 class-wide generic SCRA ban in China, one of the most important source 

countries for new psychoactive substances (NPS). Recently, various compounds with new structural 

features, synthesized to bypass this legislation, have entered the recreational drug market. Certain 

monocyclic pyrazole-carrying “FUPPYCA” SCRAs have been sporadically detected since 2015 without 

gaining further popularity. However, as evidenced by their recent detection in Scottish prisons, 5F-3,5-

AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA have re-emerged, potentially triggered by the new 

legislative ban. The aim of this study was to characterize the in vitro intrinsic CB1 and CB2 receptor 

activation potential of 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA, as well as 4 analogs (5F-3,5-

ADB-PFUPPYCA, 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA) using live 

cell β-arrestin 2 recruitment assays. Most analogs were essentially inactive at either CB1 or CB2, with 

only 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA showing a limited 

activation potential at CB1. Furthermore, the importance of the position of the tail structure was 

demonstrated, with 5,3-regioisomers being more active than their 3,5-analogs. Moreover, all 

compounds exhibited antagonistic behavior at both receptors, which may be associated with their 

structural resemblance to cannabinoid antagonists and inverse agonists. Although the 3,5-

regioisomers of these “FUPPYCA” SCRAs circumvent the Chinese ban, it is unlikely that these SCRAs 

will pose a major threat to public health, given the lack of pronounced CB receptor activity.  

Highlights 

• Generic ban-evading pyrazole FUPPYCA SCRAs have been detected in Scottish prisons.
• Activity at CB1 and CB2 receptor of 6 analogs was found to be limited.
• All tested compounds show signs of antagonism.

Keywords 

Bioassay, FUPPYCA, CB1 cannabinoid receptor, new psychoactive substances, synthetic cannabinoid 
receptor agonists 

© 202. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



Introduction 

One of the largest and most structurally diverse classes of new psychoactive substances (NPS) are 

synthetic cannabinoid receptor agonists (SCRAs)[1]. Their mechanism of action primarily consists of 

interacting with cannabinoid receptors (CB). The cannabinoid 1 (CB1) receptor subtype, through which 

SCRAs mimic the sought-after effects of Δ9-tetrahydrocannabinol (THC), the main component of 

cannabis, is mainly responsible for the psychoactive effects and is widely distributed throughout the 

central nervous system[2]. On the other hand, the cannabinoid 2 (CB2) receptor is present on cells 

associated with the immune system, where it is involved in the regulation of processes such as 

inflammation[2–4]. While THC has been associated with a rather limited acute toxicity[5], there have been 

reports of cases of severe adverse effects after SCRA use, such as agitation, hallucinations, 

cardiovascular toxicity, seizures, rhabdomyolysis, coma and death, as well as mass intoxications with 

highly potent SCRAs [6–8].  

Most NPS, including SCRAs, are manufactured in China and shipped to distributors, sellers and 

consumers all over the world[9,10]. To disrupt this pattern, a stricter and future-proof legal framework 

was necessary, which led to the generic ban on fentanyl analogs in 2019[11] and on SCRAs in 2021[12]. 

Since the approval and enactment of the Chinese class-wide ban on SCRAs[12], a number of new 

substances designed to bypass this measure have made their way onto the recreational drug market. 

As the new Chinese SCRA legislation covers seven common scaffolds[13], there has been an increase in 

newly emerging SCRAs carrying diverse, often unknown core structures, as opposed to the typical 

indole and indazole. Recent examples of these compounds include previously unknown oxoindolin-

bearing SCRAs, such as BZO-HEXOXIZID (MDA-19), BZO-POXIZID, 5F-BZO-POXIZID and BZO-

CHMOXIZID, notified for the first time in the US, China, and Brazil in late 2021 [14–19]. Furthermore, 

SCRAs with a modified linker (in this case an additional methylene group linking the core structure to 

the head group), such as ADB-FUBIATA[20,21], CH-PIATA[22,23] and CH-FUBIATA[24], and compounds 

carrying a brominated core (ADB-5Br-INACA[25], ADB-5’Br-BUTINACA[26] and MDMB-5Br-INACA[27]) have 

been detected. Although these compounds currently make up a relatively small share in the very 

extensive SCRA market, structural analogs of the aforementioned substances as well as other ban-

evading compounds can be anticipated to appear on the market at some point.  

Another rather small group of SCRAs with distinct structural features are monocyclic pyrazole core-

carrying compounds, of which 5F-5,3-AB-PFUPPYCA (AZ-037, N-(1-amino-3-methyl-1-oxobutan-2-yl)-

1-(5-fluoropentyl)-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide) was the first to be notified to the 

EU Early Warning System (EWS), operated by the European Monitoring Centre for Drugs and Drugs 

Addiction (EMCDDA), in France in June 2015[10,28]. That same year a similar compound, 3,5-AB-



CHMFUPPYCA (N-(1-amino-3-methyl)1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl-1H-

pyrazole-5-carboxamide) appeared in dried herbal material in Japan (named AB-CHFUPYCA)[29]. In 

October 2018, the Center for Forensic Science Research and Education (CFSRE) (Willow Grove, PA, US) 

reported on the seizure of 5F-3,5-AB-PFUPPYCA (N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(5-

fluoropentyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide), the regioisomer of 5F-5,3-AB-

PFUPPYCA[30]. More recently, in 2021, the EU EWS reported on the seizure of 5,3-AB-CHMFUPPYCA (N-

[(1S)-1-(aminocarbonyl)-2-methylpropyl]-1-(cyclohexylmethyl)-5-(4-fluorophenyl)-1H-pyrazole-3-

carboxamide), the 5,3 regioisomer of AB-CHFUPYCA/3,5-AB-CHMFUPPYCA, in Germany[31].  In general, 

this class of SCRAs apparently gained little popularity on the recreational drug market, as both 

literature and further information on seizures is scarce. Of interest is that 3,5-regioisomers of these 

pyrazole SCRAs bypass the Chinese generic ban, while 5,3-analogs are covered by this legislation. The 

pharmacological characteristics of these SCRAs remain poorly studied to this day. Analytical 

characterization of some compounds has been published, for instance Girreser et al. identified another 

analog, 5F-3,5-ADB-PFUPPYCA (N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-

fluorophenyl)-1H-pyrazole-5-carboxamide) in a Russian sample of which the origin is unclear[32]. 

Uchiyama et al. and McLaughlin et al. analyzed 3,5-AB-CHMFUPPYCA, the latter identifying the 

substance in a sample that was incorrectly advertised as 5F-5,3-AB-PFUPPYCA, while also showing the 

synthesis and characterization of the regioisomer 5,3-AB-CHMFUPPYCA[29,33]. Furthermore, 

metabolism of these compounds was investigated by Franz et al.[34], who also looked at their thermal 

stability, and more recently by Wagmann et al.[35].  

This study was inspired by the detection, as reported here, of two pyrazole SCRAs in seized samples 

from Scottish prisons in 2021 and 2022: 5F-3,5-AB-PFUPPYCA and another analog, 3,5-ADB-4en-

PFUPPYCA ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-3-(4-fluorophenyl)-1-(pent-4-en-1-yl)-1H-

pyrazole-5-carboxamide). The (re-)emergence of these SCRAs suggests a possibly rising interest in 

these compounds, potentially driven by the Chinese ban. Given the poor understanding of the 

pharmacology of these compounds, this study focused on the pharmacological characterization of a 

set of pyrazole SCRAs (5F-3,5-AB-PFUPPYCA, 5F-3,5-ADB-PFUPPYCA, 3,5-AB-CHMFUPPYCA, 5,3-AB-

CHMFUPPYCA, 3,5-ADB-4en-PFUPPYCA and 5,3-ADB-4en-PFUPPYCA; structures are shown in Figure 

1), using live cell CB1 and CB2 β-arrestin2 (βarr2) recruitment bioassays.  

 



 

Figure 1: Chemical structures of the 6 SCRAs analyzed in this study and CB antagonists and/or inverse agonists rimonabant, 
SR144528 and AM251. Structures were made using ChemDraw 19 software. 

 

Materials and Methods  

Materials and chemical reagents 

Dulbecco’s modified Eagle’s medium (DMEM) (GlutaMAXTM), Opti-MEM I Reduced Serum, penicillin, 

streptomycin and amphotericin B were procured from Thermo Fisher Scientific (Waltham, MA, USA). 

Fetal bovine serum (FBS), poly-D-lysine and dimethylsulfoxide (DMSO) were from Sigma-Aldrich 

(Darmstadt, Germany). The Nano-Glo® Live Cell reagent and the Nano-Glo® LCS Dilution buffer were 

purchased from Promega (Madison, WI, USA). Methanol was obtained from Chem-Lab NV (Zedelgem, 

Belgium). The reference standard CP55,940 was obtained from Sigma Aldrich, and JWH-018 was from 

LGC (Wesel, Germany). The reference standards for 5F-3,5-AB-PFUPPYCA (purity ≥98%) (N-[(1S)-1-

(aminocarbonyl)-2-methylpropyl]-1-(5-fluoropentyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxamide), 

5F-3,5-ADB-PFUPPYCA (purity ≥98%) (N-[1-(aminocarbonyl)-2,2-dimethylpropyl]-1-(5-fluoropentyl)-3-

(4-fluorophenyl)-1H-pyrazole-5-carboxamide), 3,5-ADB-4en-PFUPPYCA (purity ≥98%) ((S)-N-(1-amino-

3,3-dimethyl-1-oxobutan-2-yl)-3-(4-fluorophenyl)-1-(pent-4-en-1-yl)-1H-pyrazole-5-carboxamide), 

5,3-ADB-4en-PFUPPYCA (purity ≥98%) ((S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-5-(4-

fluorophenyl)-1-(pent-4-en-1-yl)-1H-pyrazole-3-carboxamide), 3,5-AB-CHMFUPPYCA (purity ≥ 98%) 

((S)-N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(cyclohexylmethyl)-3-(4-fluorophenyl)-1H-pyrazole-5-



carboxamide) and 5,3-AB-CHMFUPPYCA (purity ≥98%) (N-[(1S)-1-(aminocarbonyl)-2-methylpropyl]-1-

(cyclohexylmethyl)-5-(4-fluorophenyl)-1H-pyrazole-3-carboxamide) were kindly provided by Cayman 

Chemical (Ann Arbor, MI, USA). 

Methanol, dichloromethane (high-performance liquid chromatography (HPLC) grade), and water 

(liquid chromatography-mass spectrometry (LC-MS) grade) were purchased from Fisher Scientific 

(Loughborough, UK). Bupivacaine and formic acid were obtained from Sigma Aldrich (Poole, UK). The 

reference standard for 5F-3,5-AB-PFUPPYCA (98.2% purity) used for seized sample analysis was 

obtained from Chiron (Trondheim, Norway). The reference standards for 3,5-ADB-4en-PFUPPYCA 

(purity ≥ 98%) and 5,3-ADB-4en-PFUPPYCA (purity ≥98%) were kindly provided by Cayman Chemical. 

The reference standard for ADB-BUTINACA (purity > 98%) (ADB-BINACA, N-[1-amino-3,3-dimethyl-1-

oxobutan-2-yl]-1-butyl-1H-indazole-3-carboxamide) was synthesized and supplied by the Sutcliffe 

Group at Manchester Metropolitan University (Manchester, UK) as described previously[36]. 

Detection in seized samples from prisons 

The extraction of SCRAs from infused papers, such as those commonly found within prison 

establishments, and analysis by gas chromatography-mass spectrometry (GC-MS) has been described 

previously[36,37]. In brief, paper samples were examined, photographed, and 2 × 1 cm2 samples were 

taken from opposite corners of the paper and extracted in 0.5 mL of 0.25 mg/mL bupivacaine in 

methanol by ultrasonication (5 min).  

Sample extracts were qualitatively analyzed using GC-MS and compound identification required 

comparison of compound retention times and mass spectra in seized samples to a reference standard. 

If the compound identified was included in the SWGDRUG mass spectral library (version 3.11, released 

1 June 2022), a (reverse) match factor was required to be greater than 850/1,000 for identification. If 

no reference standard was available for the compound, such as for new compound detections, 

orthogonal qualitative confirmation using ultra-performance liquid chromatography combined with a 

photodiode array detector, coupled to quadrupole-time-of-flight mass spectrometry (UPLC-PDA-QToF-

MS) was required for compound identification. A more detailed description of the analytical method 

can be found in Supplementary Material (S1). 

In vitro CB1 and CB2 β-Arrestin2 recruitment assays 

Pharmacological characterization was performed using live cell βarr2 recruitment assays, monitoring 

the intrinsic receptor activation potential of this set of pyrazole SCRAs at both CB1 and CB2. Details on 

the development of the assay have been previously described[38–40]. Human embryonic kidney (HEK) 

293T cells with stable expression of either the CB1-βarr2 or CB2-βarr2 system were maintained at 37 



°C, 5% CO2, under humidified atmosphere in DMEM (GlutaMAXTM), supplemented with 10% heat-

inactivated FBS, 100 IU/mL penicillin, 100 µg/mL streptromycin and 0.25 µg/mL amphotericin B. 

Experiments were performed according to a two-day protocol. The day prior to the assay, cells were 

seeded in white opaque-walled poly-D-lysine coated 96-well plates at 5 x 104 cells/well. Stock solutions 

were prepared in Opti-MEM I Reduced Serum containing a total of 50% solvent (MeOH/DMSO) and 

used within 24 h. The next day, cells were rinsed with Opti-MEM and 100 µL of this medium was added 

to each well. The substrate was prepared by 20-fold dilution of the Nano-Glo® Live Cell reagent in 

Nano-Glo® LCS Dilution buffer. After this, 25 µL of the substrate mix was added to each well and 

luminescence was measured using a TriStar2 LB 942 Multimode Microplate Reader (Berthold 

Technologies GmbH & Co., Germany). After 10-15 min, allowing the signal to stabilize, 10 µL of a 13.5x 

concentrated stock solution was added. A concentration range of CP55,940, included as the reference 

standard, was taken along for normalization of the data. Luminescence was then monitored for 2 h. 

To evaluate potential antagonism, cells were pre-incubated for 5-6 min with 10 µM of the test SCRAs 

(10 µL, 13.5x concentrated), after which 10 nM (CB1-βarr2 assay) or 1 µM (CB2-βarr2 assay) of JWH-

018 (10 µL, 14.5x concentrated) was added. For both experiments, appropriate solvent controls were 

included on each plate. 

Data analysis 

Initial data processing was performed using Microsoft Excel 2019. Raw luminescence values were 

corrected for inter-well variability and area under the curve (AUC) values were calculated for each 

concentration of each test compound. A blank correction was performed by subtracting the AUC values 

of the solvent controls. Data was then normalized to the Emax of CP55,940, arbitrarily set at 100%. 

Potency (EC50) and efficacy (Emax) parameters were determined via curve-fitting of the concentration-

response curves (nonlinear regression, three-parameter logistic fit), using the GraphPad Prism 

Software (Version 9.3.0). Each datapoint represents the AUC ± standard error of the mean (SEM), 

derived from at least 3 independent experiments, run in duplicate. Normalized AUC values from the 

highest concentrations were excluded in case of a reduction of minimally 20% in comparison with the 

closest lower dilution. Possible outliers were detected using the Grubbs test, leading to exclusion from 

the dataset (applicable for 6 out of 994 data points (0.60 %), p value < 0.05). To assess the antagonistic 

behavior of the test compounds, JWH-018 activity data from solvent-treated cells was compared to 

the data from the pyrazole SCRA-treated cells. Using the GraphPad Prism Software, Kruskal-Wallis was 

used, followed by Dunnett’s multiple comparison post hoc test, to determine statistical significance (p-

value < 0.05). 

  



Results 

Detection in seized samples from prisons 

The authors received samples from the Scottish Prison Service (SPS) seized following either cell and 

prisoner searches or in situ detection in incoming mail using ion mobility spectrometry screening[37,41].  

5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA were first detected in the Scottish prisons on 19th 

July 2021 in an infused paper sample. In comparison, 3,5-ADB-4en-PFUPPYCA was notified by the EU 

EWS on 14th December 2021 following detection in yellow powder seized by Hungarian Police on 30th 

September 2021[42]. As regioisomers, 3,5-ADB-4en-PFUPPYCA and 5,3-ADB-4en-PFUPPYCA co-elute on 

the GC-MS but they have different mass spectra obtained using electron ionization (EI); however, when 

both compounds are present, the resulting mass spectrum changes, becoming essentially a 

combination of the spectra of the two compounds (see Supplementary Material (S2) for more 

information). 

Since their first detection in the SPS estate, 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA have 

been detected 9 times to date in two Scottish prisons, with the last detection on March 3rd 2022. These 

compounds were always detected in infused papers as a mixture of the two compounds, along with 

low, almost trace levels of ADB-BUTINACA. The purpose (if any) behind the mixture of these 

compounds is unknown. An overview of the sample details can be found in Supplementary Material 

(S2). 

Determination of potency and efficacy at CB1 and CB2 

Intrinsic receptor activation potential was assessed using two in vitro βarr2 recruitment assays, 

monitoring the interaction between the recruited βarr2 protein to the ligand-activated CB1 or CB2 

receptor. Figure 2 shows the activation profiles, obtained for the 6 pyrazole SCRAs, as well as for JWH-

018 and the reference CP55,940. Potency (EC50) and efficacy (Emax) values are provided in Table 1. 

 

 

 

 

 



Table 1: Potency (EC50) and efficacy (Emax) values for pyrazole SCRAs and JWH-018, relative to CP55,940 obtained using the 
CB1-βarr2 and CB2-βarr2 bioassay. The SCRAs that were identified in the Scottish prison samples are underlined. ND: not 
determinable. 

Compound 
CB1 CB2 

EC50 (nM) (95% CI) Emax (%) (95% CI) EC50 (nM) (95% CI) Emax (%) (95% CI) 

5F-3,5-AB-PFUPPYCA ND < 5a ND < 5a 
5F-3,5-ADB-PFUPPYCA ND 8b  ND < 5a  
3,5-AB-CHMFUPPYCA ND 57c ND 6c 
5,3-AB-CHMFUPPYCA 17.4 (1.05 – 27.1) 20.6 (13.1 – 31.7) ND < 5d 
3,5-ADB-4en-PFUPPYCA ND < 5b ND < 5a 
5,3-ADB-4en-PFUPPYCA 30.5 (8.98 – 103) 23.3 (18.6 – 28.8) ND < 5b 

JWH-018 36.6 (13.7 – 94.4) 313 (270 – 358) 9.80 (4.52 – 21.2) 57.0 (51.1 – 63.1) 

CP55,940 0.53 (0.18 - 1.45) 99.5 (85.8 – 114) 0.39 (0.19 - 0.78) 101 (90.8 - 111) 
aMaximal activation seen at a concentration of 1 µM. Accompanying EC50 values could not be calculated. 

bMaximal activation seen at a concentration of 10 µM. Accompanying EC50 values could not be calculated. 
cMaximal activation seen at a concentration of 25 µM. Accompanying EC50 values could not be calculated 

dMaximal activation seen at a concentration of 100 nM. Accompanying EC50 values could not be calculated 
 

In line with earlier findings, CP55,940 activated both receptors with high potency, with EC50 values of 

0.53 nM and 0.39 nM at CB1 and CB2, respectively[43,44]. By including JWH-018, which has previously 

been used as a reference agonist in the used assays, activity data obtained for these pyrazole analogs 

can be compared to earlier data on other common SCRAs. At CB1, JWH-018 showed a potency of 36.6 

nM, with an efficacy of 313%, compared to the maximum effect of CP55,940. At CB2, we found an EC50 

of 9.80 nM with a relative Emax of 57.0%. In general, all pyrazole-bearing SCRAs were either weakly 

active at CB1 or failed to activate it. None of the tested pyrazole SCRAs activated CB2. At CB1, 5,3-AB-

CHMFUPPYCA had a potency of 17.4 nM, while its calculated efficacy was only 20.6% compared to the 

Emax of CP55,940 (Figure 2, Panel B). Its regioisomer 3,5-AB-CHMFUPPYCA showed a maximum CB1 

activation of 57% at a concentration of 25 µM, however a plateau of maximum receptor activation 

could not be reached, which hampered accurate EC50 value calculation. Based on the pronounced shift 

of the concentration-response curve towards the right compared to that of 5,3-AB-CHMFUPPYCA, a 

lower potency can be deduced. For 5,3-ADB-4en-PFUPPYCA, we observed a potency of 30.5 nM at CB1, 

with an efficacy of 23.2% compared to CP55,940 (Figure 2, Panel C). No CB1 activity could be detected 

for its regioisomer 3,5-ADB-4en-PFUPPYCA. Both evaluated fluorinated analogs (5F-3,5-AB-PFUPPYCA 

and 5F-3,5-ADB-PFUPPYCA) were essentially inactive at both CB receptors (Figure 2, Panel A). 



 

Figure 2: CB1 (upper panel) and CB2 (lower panel) receptor activation profiles for (A) 5F-3,5-AB-PFUPPYCA and 5F-3,5-ADB-
PFUPPYCA; (B) 3,5-AB-CHMFUPPYCA and 5,3-AB-CHMFUPPYCA; (C) 3,5-ADB-4en-PFUPPYCA and 5,3-ADB-4en-PFUPPYCA. 
JWH-018 was included as a comparison. Data points represent the mean receptor activation ± standard error of the mean 
(SEM), obtained in 3 or more independent experiments, run in duplicate and are normalized to the maximum response of 
CP55,940.  

Evaluation of antagonistic potential  

To investigate the potential antagonistic behavior of these pyrazole SCRAs, cells expressing the CB1-

and CB2-βarr2 systems were pretreated for 5-6 min with 10 µM of the pyrazole test compounds, after 

which JWH-018 was added. Based on the obtained profiles, all 6 SCRAs were able to inhibit CB1 and 

CB2 activation by 10 nM and 1 µM JWH-018, respectively, with different degrees of antagonism exerted 

by different analogs (see Figure 3). Activation profiles at both CB1 and CB2 can be found in 

Supplementary Material (S3). 

 

Figure 3: Activation of CB1 (left panel) and CB2 (right panel) by JWH-018 (10 nM and 1 µM, respectively) in cells pretreated 
with solvent (grey, S) or 10 µM of the indicated pyrazole SCRAs (5F-3,5-AB-PFUPPYCA (1); 5F-3,5-ADB-PFUPPYCA (2); 3,5-AB-
CHMFUPPYCA (3); 5,3-AB-CHMFUPPYCA (4); 3,5-ADB-4en-PFUPPYCA (5); 5,3-ADB-4en-PFUPPYCA (6)) Data are given as % 
receptor activation (in comparison to receptor activation in solvent-pretreated cells) ± SEM (n = 3). Bars assigned with a (*) 
are significantly different from solvent-pretreated controls (p-value < 0.05). 

 



Discussion  

In the present study, we characterized the pharmacological behavior of the recently (re-)emerging 

pyrazole SCRAs 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA, along with structural analogs, at CB1 

and CB2 by means of in vitro activity-based bioassays. Given the overall low CB activation potential of 

these compounds, major trends regarding structure-activity relationship could not be identified. It is 

unclear whether the low potency and efficacy of these SCRAs, as determined here, contributed to the 

rather short-term appearance of compounds such as 3,5-AB-CHMFUPPYCA and 5F-3,5-AB-PFUPPYCA 

on the recreational drug market, potentially caused by consumers quickly losing interest in substances 

with limited or possibly even no psychotropic effect. One plausible explanation for the absence of 

relevant CB1 and CB2 activation potential may be found in the structural similarity of these pyrazole 

SCRAs with compounds with inverse agonistic or antagonistic properties, such as rimonabant 

(SR141716), SR144528 and AM251 (Figure 1)[45], as suggested earlier by Franz et al.[34] and Brandt et 

al.[46]. The SCRAs discussed here share both a pyrazole core and an amide linker structure with these 

compounds, whereas the substituted (chloro-, iodo-) phenyl groups also bear resemblance to the 

fluorophenyl moiety, present in these SCRAs. In this context, Wiley et al. synthesized a large set of 

rimonabant structural analogs, and found that some compounds could partially induce CB1 associated 

effects in mice, whereas others only showed antagonistic properties[47]. Based on this, we investigated 

potential antagonism by these SCRAs. Pre-treatment with 10 µM of pyrazole SCRA resulted in a 

substantial decrease in signal (caused by JWH-018 administration) compared to solvent control, 

demonstrating a clear antagonistic effect at CB1. The 5,3 regioisomers of the tested panel, 5,3-AB-

CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA, exerted the most pronounced CB1 antagonism, reducing 

the JWH-018 signal to the level of the blank signal, indicating an almost complete blocking of the 

receptor. Interestingly, these two compounds show the closest structural similarity with the inverse 

agonists and antagonists mentioned before. Similarly, at CB2, these two SCRAs showed the most 

outspoken antagonistic potential, substantially reducing the signal of 1 µM JWH-018. Based on our in 

vitro activity data and these antagonist experiments, the behavior of these pyrazole SCRAs seems to 

be predominantly antagonistic. It is therefore somewhat surprising that some of these compounds 

have been detected in plant material or seized in prisons, which clearly demonstrates that these 

substances were intended to be used for their alleged (SCRA-like) psychoactive effects[10,28–30,48]. 

However, there is no information on the effects of these substances in humans or animals. 

Our study included two pairs of regioisomers, in which the functional group was switched between the 

nitrogen atoms of the pyrazole core. Regioisomerism is a possible strategy to generate a variety of new 

analogs of already existing (and potentially controlled) substances, although isomers may also be 

unintended byproducts formed during synthesis[32,49,50]. We investigated the 3,5 regioisomers (3,5-AB-



CHMFUPPYCA; 3,5-ADB-4en-PFUPPYCA) and their 5,3 analogs (5,3-AB-CHMFUPPYCA; 5,3-ADB-4en-

PFUPPYCA), with the functional group switching from position 1 (N1) to position 2 (N2) of the pyrazole 

ring. Here, we found that both 5,3 analogs were more active at CB1 than their very weakly active 3,5 

counterparts. This indicates that proper tail placement is required to achieve activity at CB1, as all 3,5 

regioisomers were hardly capable of activating this receptor (3,5-AB-CHMFUPPYCA only showed CB1 

activation at a very high concentration of 25 µM). This is in line with findings reported by Longworth 

et al., who demonstrated that for a panel of indazole SCRAs, their 2H-indazole analogs, carrying the 

functional group on the corresponding nitrogen atom as the 3,5 pyrazole SCRAs, showed a pronounced 

decrease in potency at both CB1 and CB2
[49]. Of particular interest here is that only compounds with a 

functional group on N2 of the pyrazole core, in this case the 5,3 analogs, are covered by the Chinese 

generic ban. Compounds such as 5F-3,5-AB-PFUPPYCA, 3,5-AB-CHMFUPPYCA and 3,5-ADB-4en-

PFUPPYCA therefore bypass current legal restrictions, which may have triggered a renewed on illicit 

SCRA markets and may explain the detection of 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA in 

Scottish prisons in 2021 and 2022. Taking into account their lack of intrinsic CB1 and CB2 activation 

potential, these 3,5 SCRAs, although not scheduled, are not expected to have a pronounced abuse 

potential or cause major cannabinoid-associated toxicity. Obviously, we cannot exclude other (non-

CB-mediated) effects or toxicity of these compounds at this point. 

 

Conclusions 

Between July 2021 and March 2022, two (re-)emerging Chinese ban-evading pyrazole SCRAs, 5F-3,5-

AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA, have been detected in Scottish prisons. This study is the 

first to characterize the intrinsic CB1 and CB2 receptor activation potential of a panel of 6 pyrazole SCRA 

analogs (5F-3,5-AB-PFUPPYCA and 5F-3,5-ADB-PFUPPYCA; 3,5-AB-CHMFUPPYCA and 5,3-AB-

CHMFUPPYCA; 3,5-ADB-4en-PFUPPYCA and 5,3-ADB-4en-PFUPPYCA), including four 3,5-regioisomers 

which evade the 2021 Chinese generic SCRA ban. We found that most of these substances failed to 

activate either CB1 or CB2, with only 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-

PFUPPYCA being weakly active at CB1. 5,3-regioisomers were more active than their 3,5-analogs, 

matching structure-activity relationship trends previously observed for indazole SCRAs[49]. All tested 

compounds also showed antagonistic properties at both receptors, potentially linked to their structural 

resemblance to well-known inverse cannabinoid agonists and antagonists. Overall, despite the ability 

of some analogs to bypass legal restrictions, the immediate threat to public health is expected to be 

limited, due to their particularly low potency and efficacy at both CB receptors. This lack of cannabinoid 

activity may also explain the absence of new detections in Scottish prisons after March 2022. 
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