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Abstract: The mechanical properties and structure alteration (e.g., layer morphology and thickness)
of the oesophagus wall can reflect its pathological conditions. Hence, quantitative measurement
of the above-mentioned properties can play a significant role in aiding the disease diagnosis in
clinical application. As a fast and non-invasive imaging modality, Optical coherence tomography
(OCT) and vibrational elastography can provide high resolution (<10 µm) structural and mechanical
mapping of soft tissue. This study is a preliminary study to explore the potential of OCT and
VOCE to evaluate both structural and mechanical properties of the oesophagus wall. Jn total,
52 oesophageal tissue samples were acquired from seven human Thiel-embalmed cadavers and were
examined by the vibrational OCE. Both the OCT structure image and quantitative elasticity of each
sample layer were obtained. In the OCT structure image, the averaged thickness for each sample
layer was measured and corresponded with the histological image. Lamina propria has the largest
thickness of 158.14 ± 8.75 µm, submucosa is the thinnest with a thickness of 143.19 ± 10.11 µm, and
the thickness of muscularis mucosa is 149.49 ± 10.85 µm. Averaged intensity of back-scattered light
from each sample layer was evaluated. Intensity of lamina propria layer, muscularis mucosa layer,
and submucosa layer have an average value of 79.27 ± 0.51 dB, 69.83 ± 0.56 dB, and 76.10 ± 0.55 dB,
respectively. The quantitative elasticity of each sample layer was evaluated in OCE. Elasticity
of the lamina propria layer, muscularis mucosa layer, and submucosa layer were estimated as
115.64 ± 8.80 kPa, 60.28 ± 5.27 kPa, and 205.25 ± 19.03 kPa, respectively. The quantitative elasticity
results obtained by vibrational OCE corresponded with the collagen distribution trend in each sample
layer. This study demonstrates the ability of OCT and vibrational OCE in the characterisation and
quantitative evaluation of human cadaver oesophagus wall-structure properties and mechanical
properties. The feasibility of applying OCT and vibrational OCE in clinical diagnosis of oesophageal
disease is also discussed.

Keywords: tissue elasticity; optical coherence tomography; optical coherence elastography; human
Thiel cadaver oesophagus; lamina propria; muscularis mucosa; submucosa

1. Introduction

Cancer is still one of the top diseases which causes death in the world [1]. In the past
few decades, there has been apparent fast growth in the incidence rate of oesophageal
cancer [2–4]. Due to its aggressive nature and poor survival rate [5], an early diagnosis
of oesophageal cancer is important and could contribute to the treatment. The clinical
diagnosis golden standard for oesophageal cancer is gastroscopy. The diagnosis and staging
of oesophageal cancer can be verified with histopathological results from a target biopsy [6].
In the field of staging of oesophageal cancer, computed tomography (CT), endoscopic
ultrasound (EUS) and endosonography are involved as well. Some studies reported that
staging oesophageal cancer by using EUS and enosonography should be reconsidered
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due to its low diagnostic accuracy [7,8]. Histopathology analysis is time consuming; in
addition, the outcome of the histopathology analysis is highly dependent on the examiner’s
consistency, for example, the pathologist’s experience [9–11]. From a biological perspective,
carcinoma causes pathological change to the tissue, not only the biological properties, but
also the tissue’s physical properties. In practical diagnosis, clinicians perform a general
diagnosis methodology which includes palpation where the tumours can be differentiated
from the healthy tissue based on the elasticity properties. For example, breast cancer and
prostate cancer tissue show different elastic properties from normal tissue, which can be
considered a biomarker for cancer diagnosis [12,13]. An understanding of the quantitative
mechanical characteristics of tissues constituting the human oesophagus wall is necessary
to investigate its behaviour as well as the conditions of failure. It will contribute to the
disease diagnosis and to developing the biomaterial for replacement, when needed.

As a high-resolution, non-invasive technique, OCT is capable of providing a cross-
section micro-structure image of tissue by measuring back-scattered light energy inten-
sity [14]. The reflected light power intensity is subjected to the optical properties of
tissue [15,16]. The optical properties of the tissue could be applied to the characterisation
and differentiation of the histopathological change of soft tissue [17,18]. By combining
external stimulation devices, OCT is integrated into OCE, in which the quantitative me-
chanical properties can be estimated. Our research group raised the vibrational OCE by
combining OCT with an external vibration stimulator in 2013 [19]. Vibrational OCE has
shown promising results in soft-tissue elastic property characterisation [20,21]. Across the
types of OCE methods, the resolution of vibrational OCE is higher than the SAW-OCE
and SW-OCE [22]. The vibrational OCE has been reported to be used in detecting and
characterising cancerous tissue, such as suspected prostate cancer [23,24]. Thus, OCT and
vibrational OCE could be applied to investigate both structural and elastic properties of
human cadaver oesophageal tissue.

In this research project, a Phase-sensitive OCT (PhS-OCT) with ultra-high resolu-
tion [25] and integrated vibrational OCE were applied to explore the layers’ structure
and elastic properties of human cadaver oesophageal tissue. This is the first study which
quantitatively evaluates both the optical properties and elastic properties of human Thiel-
embalmed cadavers, as well as the structural information, by employing OCT/OCE. This
study reveals the feasibility of OCT and OCE in investigating both optical and elastic
properties of human cadaver oesophageal tissue which could potentially contribute to the
clinical diagnosis of oesophageal disease.

2. Materials and Methods
2.1. OCT/OCE System Configuration and Imaging Protocol

The system setup is schematically shown in Figure 1. This OCE system consisted of
two main parts, which are the signal detection part and the signal stimulation part. For
signal detection, the PhS-OCT system employed a super luminescent diode (Thorlabs S5FC
series) for the laser source. The laser source had a central wavelength of 1310 nm, the
spectral bandwidth was 85 nm and the axial resolution was 8.8 µm theoretically. A 50 mm
focal length objective lens was selected, which resulted in a lateral resolution of 16 µm in
air and 11.85 µm in the oesophageal sample with a refraction index n = 1.35. The interfered
signal was captured by a CCD camera (SUI-GL20448L; UTC Aerospace) with a 20,730 Hz
sampling frequency.

To stimulate the oesophageal tissue sample, a commercial electric–magnetic shaker
(LDS V201, Brüel & Kjær Sound and Vibration Measurement A/S, Teknikerbyen 28, DK-
2830 Virum, Denmark) was employed. The shaker is driven by a signal generator (33220A.;
Agilent Technologies, Santa Clara, CA 95051, USA) and a power amplifier (7724 DC-enabled
AC power amplifier; AE Techron, Elkhart, IN 46516, USA) directly with a sinusoidal
wave input signal to generate periodic stimulation to the sample. Based on the previous
work carried out by our research group regarding the optimal stimulation frequency for
vibrational OCE [26], the input sinusoidal signal was set at 650 Hz with a peak-to-peak
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amplitude of 30 milli-volts, which resulted in a vibration amplitude of 150–250 nm. The
vibration amplitude was transmitted from the shaker to the sample and reference material
via a solid-sample holder plate; the vibration amplitude was assumed to be uniformly
distributed both in the sample and reference material layers.
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Figure 1. System setup of PhS-OCT-based vibrational OCE for human cadaver oesophageal tissue
elasticity-evaluation. Dashed window (a) shows the sample and reference material placement on the
shaker; the vibration amplitude is transmitted uniformly to the sample and reference material.

For the data acquisition protocol, it was set as the MB-scan mode. Each A-line scan
represented depth information of the sample; 512 pixels were selected for depth information
based on the current system; 512 A-line scans formed an M-scan. Thus, one cross-section of
the sample consisted of 512 pixels × 512 pixels. Each B-scan consisted of 512 M-scans. The
scan protocol was controlled by the dual-axis galvanometer (Thorlabs, GVS002, New Jersey,
USA) and the CCD camera trigger. Based on the current system setup, the actual scanning
ranges in axial and lateral direction were 4.68 µm/pixel and 6.25 µm/pixel, respectively,
in OCT structure image.

2.2. OCT Intensity and Tissue Layer Thickness Measurement

In this study, the OCT structure images were obtained for each human cadaver’s
oesophageal tissue. Each two-dimensional image was reconstructed by the scattered OCT
signal intensity from the examined sample. The sample consisted of one reflective layer
at each depth position z, the spectral interferogram was a function of wavelengths of the
broadband source. In the current OCT setup, the spectral interferogram ID(k) is given
by [27]:

ID(k) ∝ S(k)∑N
n=1

√
RSRR(cos 2kzn) (1)

where k is the wavenumber, the ID(k) denotes power intensity of the interference pattern
captured by the linear detector, S(k) describes the power density of the light source. RSRR
describes the reflectivity from sample surface and reference surface and n is the depth
number. After a Fourier transformation of ID(k), the scattered OCT power intensity will be
given into a complex domain signal in logarithmic scale. In this study, each pixel in the
OCT structure image was represented by the power density of the interference light. To
evaluate the OCT intensity, the power density for each pixel was extracted.
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The thickness of each oesophagus layer was measured from the cross-sectional OCT
image, with pixel numbers from top to bottom of each layer. As each pixel represents
a certain length for current system setup, the thickness of the oesophagus layer can be
expressed as:

TL = Pl × NL (2)

where the TL represents the thickness of the oesophagus layer, Pl is the actual length of one
pixel, and NL is the number of pixels which cover each layer region.

The maximum thickness of each layer was extracted, and all the data were averaged
by the total sample numbers to represent the thickness of each layer.

2.3. OCE Results Processing Method

To obtain the elastography results from the vibrational optical-coherence elastography,
a mathematical model was proposed by our research group [19]. For each scanning position,
the A-scan was repeated 512 times, and the phase difference between the first scan with
each of the rest scans was obtained. Thus, fast Fourier transform (FFT) was applied to
the phase difference; the phase FFT amplitude as function of depth was procured. The
phase FFT amplitude was prompted by the vibration stimulation, and directly related to
the sample strain (ε) under the stress (σ), the higher elasticity material with a lower phase
FFT amplitude and lower elasticity material with a higher phase FFT amplitude. After
that, a linear polynomial model was applied to the phase FFT amplitude, by which the
slope of phase FFT amplitude was calculated. As the phase FFT amplitude is directly
correlated with the sample strain, the ratio of slopes from different elasticity samples
equals the strain ratio for different elasticity samples. In this model, the sample and the
reference material were considered as an elastic material and the vibration amplitude was
uniformly transmitted to the sample and reference material, which means the stress applied
on reference material and sample was the same. Therefore, the strain ratio of sample
and reference material was inversely proportional to the ratio of sample elasticity and
reference material. Sample elasticity was estimated by using the reference material’s known
elasticity multiplied by the ratio of reference material strain and sample strain, which can
be expressed as Equations (3) and (4):

Es

ER
=

σS/εS

σR/εR
=

σSεR
σRεS

≈ εR
εS

(3)

E ≈ ER ∗ εR
εS

(4)

where ES denotes sample elasticity, ER denotes reference material elasticity, σS denotes
sample stress, σR denotes the stress of reference material, and εS and εR are the strain of
sample and reference material, respectively. In the application of OCE, the constant stress
field is assumed to be applied to the sample and reference material. Thus, the stress applied
to sample and reference material can be considered the same.

In this work, the reference material was fabricated using a silicone material (Ecoflex
00-30; Smooth-on Inc., Macungie, PA, USA), according to the manufacturer’s manual with a
thickness of 0.5 mm, and 20 mm in length and 15 mm in width. The elasticity was evaluated
as 170.96 kPa with a mechanical compression test.

2.4. Oesophagus Wall Tissue Sample Handling

Samples from 7 human Thiel-embalmed cadavers, 3 male and 4 female, provided by
the Centre of Anatomy and Human Identification (CAHID) at the University of Dundee,
were used in this research (see Table 1). All cadavers with a cause of death related to
oesophageal disease or damage to the oesophagus were excluded from the study to ensure
that the elastic properties of normal human tissue were considered. The oesophagus was
incised through a longitudinal incision along the tissue wall allowing the entire luminal
surface to be exposed. Samples with a dimension of 20 mm × 10 mm were obtained. To



Appl. Sci. 2023, 13, 3844 5 of 13

achieve an ideal imaging depth, the mucosal and submucosal layers were microscopically
separated from the muscularis propria and adventitia and immediately preserved in Thiel-
embalming solution to prevent dehydration. The quantity of samples dissected from
each cadaver varied due to differences in tissue sample quality, with only the samples
that showed reasonable structural information being selected. A total of 52 samples were
prepared. After the incision process of the sample, the sample was placed on the sample
holder with the silicone reference material underneath it. Figure 2 shows the oesophageal
tissue sample handling process.

Table 1. Sample information, cadavers’ information and the number of samples obtained from
each cadaver.

Cadaver No. Days in Tank Age at Death Gender Sample Number

1 444 85 Female 6
2 298 88 Female 14
3 164 90 Male 2
4 166 89 Female 1
5 161 89 Male 4
6 155 95 Male 3
7 478 81 Female 21
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Figure 2. The oesophagus was shown in (a), it was divided into five same length sections. (b) The
gastro–oesophageal transition zone is selected for the OCT/OCE examination. (c) indicates that a sam-
ple with 15 mm (Longitudinal) and 10 mm (Transverse) was incised off from the gastro–oesophageal
transition zone sample. The sample was placed on the sample holder with silicone reference material
(White) underneath it. A red line on the sample indicates the OCT/OCE scan position.

2.5. Histological Imaging

After the OCT/OCE examination, as a three-colour staining histology method, Mas-
son’s trichrome (MT) stain was selected to obtain histological results for all samples. This
method is a widely used histological stain to differentiate collagen cells and muscular
cells [28]. After the OCT/OCE examination, the samples were dehydrated in graded
ethanol and xylene by employing an automatic tissue processor. The samples were then
embedded in paraffin, and then sectioned with 5 µm thickness in preparation for the MT
stain. Moreover, the cutting orientation was kept the same as the OCT/OCE scan. In
the MT stain, the collagen cell and muscular cell were observed in blue and red colour,
respectively. Light red/pink represents the cytoplasm. Nuclei were in brown colour.
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3. Results
3.1. Cross-Section Observation of Oesophageal Tissue

Figure 3 shows an OCT structure image of oesophageal tissue sample (a) and its corre-
sponding MT-stained histological sample (b). The results highlight observable similarities
between the OCT result and the histological sample. The tissue sample was histologically
analysed in the same orientation as the OCT examination. By comparing with the histologi-
cal sample, the layers shown in the OCT result can be identified. In the histology result, the
lamina propria and submucosa are expected to demonstrate a high presence of collagen,
specifically type I and type III in the lamina propria [29–32] whereas the muscularis mucosa
is composed predominantly of muscle tissue [33,34], as shown in Figure 3. The layer
boundaries are clearly observed in the OCT structure image, which indicates three layers
were shown, which are lamina propria, muscularis mucosa, and submucosa from top to
bottom, respectively.
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Figure 3. OCT structure image (a), and corresponding histology results (b), respectively. The yellow
dashed lines indicate the boundaries between each layer.

The measurement results of the OCT intensity in multiple layers are depicted in
Figure 4a, which demonstrates the OCT intensity scattered back from each layer of the total
52 oesophageal tissue samples. The results are extracted from OCT structure image results,
the intensity images by selecting each individual layer region with a maximum effective
rectangle shape area, then the results are averaged to represent the OCT intensity of each
layer. The differences of the back-scattered intensity from each layer are clearly shown in
Figure 4a. Figure 4b represents a structure image of cadaver oesophageal tissue; layers
are indicated. The averaged back-scattered intensity of each oesophagus layer is given in
Table 2.
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Table 2. Averaged back-scattered OCT intensity from each oesophagus layer.

Lamina Propria Muscularis Mucosa Submucosa

79.27 ± 0.51 dB 69.83 ± 0.56 dB 76.10 ± 0.55 dB

3.2. Oesophagus Layer Thickness Measurement

The oesophagus layers’ thickness was measured from the OCT structure images
(Figure 5). Each layer was identified by cross-correlating the OCT structure image with the
histology result. The maximum thickness was selected to represent the layer thickness.
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Figure 5. An example of layer thickness measurement of oesophageal tissue layer.

The layer thickness for a total of 52 samples was evaluated. Figure 6 shows each
averaged layer thickness for all tissue samples. Lamina propria has the largest thickness of
158.14 ± 8.75 µm, the submucosa is the thinnest with a thickness of 143.19 ± 10.11 µm and
the thickness of the muscularis mucosa is 149.49 ± 10.85 µm.
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3.3. Vibrational OCE Results of Oesophageal Tissue Sample

To estimate the elastic properties of the oesophageal tissue sample quantitatively, the
elasticity values were extracted from the elasticity image by selecting a maximum effective
coverage region of each layer. Each sample was examined by the OCT/OCE. Both the OCT
structural and OCE elasticity images were obtained for each sample. The aim for generating
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both the structure and elasticity image is to associate the OCE elasticity image with the
OCT structure to investigate the elasticity variation regarding layer differences. Figure 7
demonstrates the OCT structure image (a), elasticity image (b) and the overlaid image (c)
of oesophageal tissue sample. The boundary between sample and reference material can be
observed in the structure image, which is indicated by the yellow arrow. Clear elasticity
differences are seen in (b) by following the tissue boundaries which are observed in the
OCT structure image.
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The mean elasticity value of each cadaver’s oesophagus layer was estimated for
52 samples and demonstrates remarkable differences in elasticity values between the layers
(see Figure 8). A trend was seen across all samples where the highest elasticity was
observed in the submucosa layer with the highest averaged elasticity of 205.25 ± 19.03 kPa
and followed by the lamina propria and muscularis mucosa layers, with an averaged
elasticity of 115.64 ± 8.80 kPa and 60.28 ± 5.27 kPa, respectively.
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4. Discussion

This study demonstrated the structural information of human Thiel-embalmed cadav-
ers by using PhS-OCT; in addition, the mechanical properties involving the three different
layers were evaluated quantitatively by vibrational OCE. Prominently, mechanical property
differences throughout layers were compared.

As a biological tissue, human oesophageal tissue contains several different layers.
There are limited studies and research focused on the mechanical behaviour of human
oesophageal cancer tissue; the mechanical behaviour of human oesophageal cancer tissue
is still under investigation, especially the heterogeneous mechanical properties of human
oesophageal tissue layers.

The most recent study investigated the muscular layer of human formalin solution-
embalmed cadaver oesophagus wall by using the tensile cyclic test, due to the anisotropy
and viscoelastic behaviour of the oesophagus wall. The mechanical behaviour in lon-
gitudinal and circumferential direction was compared. No quantitative evaluation was
performed [35]. Ultrasound was employed to investigate the human oesophagus wall
biomechanics, but the oesophagus wall was treated as a homogenous tissue [36]. Several
studies investigated layers of rat oesophageal tissues; the connection to human tissue is still
under doubt [37–39]. There is no standard method and technology to quantitatively mea-
sure the mechanical properties of human oesophageal tissue. In this study, the proposed
VOCE system generates the deformation to the sample without direct contact to study
the elasticity of different layers of the human cadaver oesophagus wall. The quantitative
mechanical properties of layered human cadaver oesophagus samples are presented. The
mechanical property differences between tissue layers were clearly shown in the results.

Quantitative optical properties of object sample tissue offer an extra classification
parameter [40]. Analysis of the optical properties of the oesophageal tissue sample could
allow us to differentiate the sample layers by the quantitative data, not the histological
results. The averaged OCT intensity for each oesophageal tissue layer was evaluated and
are presented in Figure 4a and Table 2. The contrast differences between each layer should
be caused by the coefficients of tissue attenuation and reflection. In Table 2, the OCT
intensity for each layer was presented. As the light penetrates from the top to bottom along
the depth direction within the OCT structure image, the light energy should decrease along
the depth direction as the light energy was absorbed by each layer. However, the OCT
intensity for the bottom layer which is the submucosa shows a relatively higher value than
the muscularis mucosa layer which is in the middle. It should be caused by the reflection
coefficient of submucosa being higher than the muscularis mucosa layer. From the results in
Figure 4a and Table 2, the clear differences and small standard error indicated that the OCT
intensity could be used as an objective parameter for layer classification in oesophageal
tissue investigation.

In the OCE experiment, the periodical sinusoidal vibrational deformation was as-
sumed to be uniformly distributed to the tissue sample and reference material. The strain
can be determined from displacement-generated vibration [41]. The peak-to-peak defor-
mation was measured as under a 200 nm range, which is lower than a 0.067% strain. This
deformation value ensures the strain was in pure linear-elastic regime. It has been de-
scribed that when evaluating the elasticity of a designated sample region, the strain values
extracted from the sample region and the reference material region were obtained; the
sample elasticity will be estimated by multiplying the strain ratio with the known reference
material elasticity. To obtain an accurate result, the strain value of the reference material is
obtained by calculating the mean value of the entire reference material region.

It has been described that collagen mainly provides the stiffness and strength in
biological tissues [42]. Compared with the collagen fibre, the elastic fibre is more flexi-
ble [43], which means the elasticity of the elastic fibre should be lower than the collagen
fibre. By comparing the histology results (see Figure 3b), the distribution of the collagen
fibre and elastic fibre are clearly shown. Those main elements significantly contribute to
the mechanical behaviour of the tissue. By evaluating the layers’ mechanical properties
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throughout 52 samples, the OCE results represent the same phenomenon depending on
the fibre composition of each layer. The different elements’ distribution in the tissue leads
to big differencesin the elastic properties which can be observed in Figure 8. The fact that
the samples were obtained from different human cadavers, as well as the preservation
conditions, could potentially lead to a variation in the elasticity value. However, a clear
trend was found, which is that the submucosa layer has the highest elasticity, muscularis
mucosa has the lowest elasticity and the lamina propria has the middle value. This quanti-
tative elasticity of the oesophagus layers could be used as a parameter to characterize the
pathological conditions.

It is noticed that the silicone reference material shows an appearance of inhomogeneity
in OCE results, which can be observed in Figure 7b. The yellow arrow in Figure 7a indicates
the boundary between the sample and the silicone reference material. The silicone reference
material region shows an unsmooth, plaque pattern. This phenomenon may affect the
sample elasticity evaluation. In practice, the commercial silicone material (Ecoflex, 00-30;
Smooth-on Inc., Macungie, PA, USA) was fabricated via an aqueous emulsion process.
From the technical data, there is no information supplied regarding the silicone particle
size, whereas the study investigated the silicone elastomeric particle size in silicone rubber
and demonstrated that the mean size of the silicone particle is 2 µm to 10 µm [44]. Due to
the resolution of the OCE result being in micro-metre scale, the relatively large particle size
caused the pattern to appear in the reference material region. As the mean strain value of
the reference material is obtained for the elasticity evaluation, the impact of the reference
material’s inhomogeneous appearance is minimized.

We performed both OCT and OCE results for 52 specimen samples from 7 different
human Thiel-embalmed cadavers. By comparing the corresponding histology results,
the boundaries between layers were clearly observed within OCT/OCE results. Optical,
structure and elastic properties were quantitatively evaluated and summarized. The results
demonstrated the clinical feasibility of OCT/OCE in the investigation of oesophageal tissue.
By way of the OCT/OCE results which indicate the clear differences between layers in
quantitative data, the characterizing of layers and monitoring of tissue abnormality can
be achieved. Studies have shown that ultrasound elastography can be easily included in
clinical diagnosis of oesophageal cancer, and the staging of oesophageal cancer can be
improved [45,46]. Compared with ultrasound elastography imaging, OCT/OCE could offer
higher resolution results in both structure and elasticity images which could potentially
contribute to the future diagnosis and staging of oesophageal cancer.

However, the imaging depth may limit the application of OCT/OCE in clinical prac-
tice. Even the literature indicates that OCT/OCE can reach the depth of 4 mm to 5 mm [47].
Based on the system setup in this study and practice with human Thiel-embalmed oe-
sophageal tissue, the actual imaging depth is around 1.5 mm to 2 mm. To scan the entire
oesophagus wall, multiple scanning can be considered to solve this limitation.

Another limitation of this study is that there was no control group of fresh human
tissues used. The Thiel-embalmed oesophageal tissue was obtained from bodies that
had been previously used for teaching. Therefore, cadaveric tissue was exposed to air
for periods of time. The tissues were consistently sprayed with Thiel fluid to minimise
drying out. All samples used in this study were stored in a small quantity of Thiel fluid to
prevent drying out. Moreover, the Thiel embalming technique can preserve the cadaver
with a soft texture and close to living organism colour; it has been demonstrated that Thiel
embalming can cause an increase in the elastic property of the tissue [48]. Additional
investigation should be carried out to investigate fresh human cadavers or fresh human
oesophageal tissue.

5. Conclusions

In conclusion, we demonstrate the capability of PhS-OCT and vibrational OCE in the
characterisation of human cadaver oesophageal tissue. A quantitative measurement of
human cadaver oesophageal tissue layer elasticity was carried out by using the VOCE.



Appl. Sci. 2023, 13, 3844 11 of 13

This is the first study about the mechanical property quantitative-evaluation of human
Thiel-embalmed oesophageal tissue. Three different layers’ elasticity of the oesophageal
tissue were estimated, and we demonstrated the differences in each oesophageal tissue
layer. The inhomogeneity in the layer’s elastic properties was evaluated quantitatively.
Meanwhile, the optical property of each oesophageal tissue layer was investigated based
on the OCT intensity in dB scale quantitatively. The proposed techniques and method
are capable of characterizing the mechanical properties of human oesophageal tissue, and
can be applied in the assessment of the pathological changes in the human oesophagus.
Moreover, the feasibility of the OCT/OCE in clinical diagnostic of oesophageal diseases
was discussed.
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