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Abstract

Flexible protection systems represent the most widespread and economic passive

mitigation structure for rockfall hazard. Originally adapted from anti-torpedo meshes

fromWorld War 2, they have seen very little evolution in the past decades. The prac-

tical design and dimensioning for a given site are still based on arbitrary decisions

and the experience of the engineer assigned to the job, while a series of guidelines

for manufacturers to assess and compare barrier performance has only been released

in recent years (ETAG027). Still, this is only useful for comparison purposes, as the

effective barrier capacity on the field appears to depend on a variety of parameters,

not accounted for in the guidelines. While research on the topic is advancing, with

innovative monitoring systems and sophisticated numerical models being developed,

the procedures used to characterise barrier behaviour and the underlying constitu-

tive laws for the numerical models stay the same. In this thesis, a combination of

numerical modelling and laboratory testing is used to improve the current practices

in the numerical simulation of double-twisted hexagonal meshes.

First, a series of Discrete Element simulations is carried out to investigate the

influence of the assumptions typically adopted in literature. Successively, the model

is used to quantify the energy dissipation occurring during impact tests, the load

on the structural elements and the effect of repeated loading cycles. It was found

that the geometry discretisation typically adopted produces an overestimation of the

mechanical stiffness of the system, while the effect of multiple overlapping types of

mesh designs changes according to the loading conditions and rates (i.e. quasi-static

vs dynamic). Depending on the impact position, the percentage of energy dissipated

through different processes changes (i.e. friction, mesh plasticisation, etc..), while

the direction of the loads acting on the structural elements changes even within the

same test, inducing bending, compressive and tensile actions.

Successively, the wire-scale barrier behaviour is characterised through a combina-

tion of laboratory testing and Finite Element modelling, in order to provide a more

robust dataset for successive studies. An image analysis procedure was developed,

calibrated and used to quantify wire slippage, correcting the experimental data.

Overall, a much stiffer material behaviour, characterised by both necking and shear-

ing failure modes, was observed compared to the limited literature data available.
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The numerical model was validated against the experimental results, compared to

analytical and semi-analytical solutions and used to carry out hybrid tensile/bend-

ing tests, difficult to reproduce experimentally.

The data was summarised in a novel contact model for DEM, developed within

the macro-element framework. The model is based on isotropic plastic hardening,

with a non-associated flow rule. Non-linear plasticity is integrated by means of the

third-order Runge-Kutta method. The model has been implemented in the com-

mercial code PFC3D by means of a dynamic link library, compiled in C++.

In order to aid model validation, an experimental procedure was developed to

obtain continuous mesh deformation through low-cost, consumer grade instruments.

The procedure was validated against LIDAR data and then used to record a series

of mesh-scale barrier impact tests. Finally, the data has been compared to the nu-

merical results obtained using the contact models presented here and those available

in literature. While the latter were also able to capture the peak displacement at

the barrier centre, i.e. what is typically used for validation, only the novel model

was produced a realistic deformation field. This is important because it affects the

energy repartition during the impact, changing the direction and modulus of the

forces acting on the structural elements.
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Chapter 1

Introduction

1.1 Rockfall mitigation

Rockfall and related phenomena are a family of natural hazards, defined as the

detachment of rock blocks from a source area, typically an outcrop, and their sub-

sequent downslope acceleration by means of free fall, bouncing, rolling and sliding

mechanisms. They represent a common and widespread hazard, bound to increase

in the next years due to climate change, i.e. increased erosion and extreme weather

events, and the re-urbanisation of mountainous areas. Although they possess a lower

level of economic risk than large-scale landslides, the high velocities associated result

in a similar number of fatalities as those killed by all other landslide types (Ferrari

et al., 2016; Hoek, 2000) even when elements with low degrees of exposure are in-

volved, e.g. road traffic (Ferrari et al., 2016; Bunce et al., 1997). In this scope, the

mitigation procedures can be split into active and passive measures.

The former aims to prevent the detachment of the block, through source identi-

fication and securing. This can be carried out at different scales, which range from

regional, to municipality, to site-specific characterisation. For large-scale analysis,

GIS-based (Geographical Information System) approaches employ spatial queries on

parameters such as slope inclination, terrain type and water flow patterns in order

to identify potential source areas (Dorren, 2003). While this type of approach is

ideal for distributed hazards such as shallow landslides and snow avalanches (Suk

and Klimánek, 2011), they have also been employed to predict rockfall (Dorren and
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Seijmonsbergen, 2003; Loye et al., 2009). Conversely, site-specific characterisation

include traditional methods based on naked eye observation, manual measurement

and empirical correlations, such as Rock Mass Rating (RMR) and the Geological

Strength Index (GSI) (Budetta, 2004; Pantelidis, 2009); as well as more innova-

tive remote sensing approaches such as drone photogrammetry (i.e. SfM, Surface

from Motion) (Menegoni et al., 2019) and Light Imaging, Detection And Ranging

(LIDAR) (Agliardi et al., 2018; Ferrero et al., 2011; Salvini et al., 2017). Once the

source area is known, the rock outcrop can be made safe by removing unstable blocks

or by securing them through bolting and drapes (Bertolo et al., 2009; Marchelli and

De Biagi, 2019). However, this type of active threat management is difficult to im-

plement with remote or vast source areas.

In contrast, passive threat management aims to prevent a block already in mo-

tion from impacting an element at risk, i.e. infrastructure. Examples of this are

reinforced earth embankments (Figure 1.1), rock gabion walls, flexible protection

systems, rockfall shelters and galleries (Figure 1.2) (Volkwein et al., 2011a).

Flexible Protection Systems (FPS), also known as Falling Rock Protection Kits

(EOTA, 2013), are perhaps the most widespread passive system due to their rela-

tively low cost, approximatively 1/10th of a rockfall gallery (Volkwein et al., 2011a),

and ease of installation (Volkwein et al., 2009). These flexible structures, originally

adapted from anti-torpedo steel ring nets, typically consist of one or more mesh lay-

ers attached to fence posts through steel strand rope wires, referred to as selvedge

wires or support ropes (Volkwein et al., 2011a). Depending on the specific rockfall

energy level considered and available manufacturers, multiple panel designs exist,

such as chain-link, spliced strand rope panels, and steel rings (Figures 1.3,1.4). Fig-

ure 1.5 and 1.6 show the selvedge of two mesh panels connected through different

types of steel clips. While steel ring meshes are currently the ones with the high-

est bearing capacity, they are also quite expensive as they cannot be manufactured

ready for the field but require a lengthy manual installation procedure (Volkwein

et al., 2011b). Therefore, they are typically only used for high-energy barriers, char-

acterised by a large sieve size. To prevent smaller rocks from passing through the

barrier, additional mesh panels are typically used, such as the chain-link and double-

twisted (DT) wire meshes. The chain link design is constituted by a diamond shaped

pattern of interwoven steel wire. However, this type of mesh is prone to stress con-
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Figure 1.1: Illustration of various rockfall protection embankments, from Lambert and
Bourrier (2013): rock assemblies of rock gabions (1,3,5), reinforced earth (4) and hybrid
structures (2-6).

Figure 1.2: Di�erent types of shed structures, from left to right: reinforced-concrete slab,
shell type, in situ reinforced concrete, and steel-concrete-composite type, from Volkwein
et al. (2011a).

centration and material wear at the diamond vertices, where the wires intertwine

(Escallón et al., 2015), meaning higher quality steel is required (e.g. Geobrugg

TECCO meshes). The double-twisted wire mesh design adds an additional twist to

the interweavement, changing the pattern from diamond to hexagonal shaped and

increasing the wire area subject to contact forces. Additionally, this limits the rel-

ative wire movement, lowering the risk of unravel following material failure. These

characteristics made the DT design one of the most versatile, which is used for a

variety of applications, ranging from chicken wire, to gabions and retaining walls
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(Bertrand et al., 2005), to flexible protection barriers (Buzzi et al., 2013; Li and

Zhao, 2018; Thoeni et al., 2013). Depending on the use of the target application,

different steel qualities and mesh sizes are employed. In order to prevent rusting

and chemical erosion, gabions typically use softer steel with a PVC sheath; while

adherent meshes and FPS use zinc primers. Additional structural elements are typ-

ically used to improve the overall barrier bearing capacity, such as horizontal strand

ropes (Li and Zhao, 2018), uphill and downhill anchors connected to the fence post

heads, and energy dissipation devices (EDD), dampers that dissipate kinetic energy

through non-reversible plastic deformation, reducing the peak load on the posts (see

Figure 1.4, 1.7) (Castanon-Jano et al., 2018). These individual components are typ-

ically tested by the manufacturers, using standard quasi-static tensile tests (i.e. for

steel cables and wire rope clips), mesh panel scale pull (Mentani et al., 2018a) and

punch tests (Bertolo et al., 2009; Bonati and Galimberti, 2004).

Figure 1.3: Di�erent mesh types: original anti-submarine net, hexagon mesh and spliced
rope net, ring net, rope net with clamps; from Volkwein et al. (2011a).

Barrier dimensioning for a specific site is either carried out by the manufacturers,

following an invitation to tender by the stakeholder, or by a third party, depending

on the scale and importance of the site. In some countries, i.e. Switzerland, the

design procedure is carried out following national guidelines. In the UK, there cur-

rently exists a standard for rock netting (Koe and Clifford, 2018), while guidelines

for passive structures are still under development. Anyhow, the typical procedure

can be generalised as follows:

1. The block size is obtained from field investigation and/or remote sensing.

2. The kinetic energy at the impact is estimated using empirical correlations

or block propagation codes (Dorren and Seijmonsbergen, 2003; Crosta et al.,
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Figure 1.4: Components of a Flexible Protection Barrier. From Qi et al. (2018).

Figure 1.5: Heavily galvanised rope grips (EN13411-5,type B). From Maccaferri, Steelgrid
® HR Installation Manual.

2015).

3. The barrier model is chosen and dimensioned, also taking into account the

available space for deformation during the impact and site accessibility (for

management purposes).

It follows that barriers must be characterised by a set of standard parameters, such

as the maximum bearing capacity and the peak deformation during the event. All

of these parameters are obtained using full scale dynamic tests (Gao et al., 2018a;

Volkwein et al., 2011a; Volkwein, 2004), using either free trajectory impacts, that
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Figure 1.6: Steel strand rope HR-Link connectors and HR-PVC. From Maccaferri, Steel-
grid ® HR Installation Manual.

Figure 1.7: (a)Numerical model of an EDD subject to non-reversible plasticisation, (b)
physical analogue, from Gentilini et al. (2013a). (c) Ring-based EDD, from Grassl (2002).

replicate the natural phenomenon but do not provide a precise impact location and

energy value, vertical free-falling or cable car guided impacts, in which the impact

position and/or energy are known but some of the boulder kinematics, i.e. spin, are

lost (Figure 1.8). The two most common parameters tested for are (i) the Maximum

Energy Level (MEL), the peak kinetic energy that must be withstood once and (ii)

the Service Energy Level (SEL), the kinetic energy that can be withstood multiple

times, typically assumed to be 1/3rd of MEL. Until recently, the specifics of the tests

depended entirely on the subjective decisions of the manufacturer, which prevented

the rigorous comparison of different barrier models. Even seemingly straightforward

parameters such as MEL and SEL can change significantly depending on the im-

pact position, the loading conditions and the size and geometry of the block (Coccolo

and Paronuzzi, 1995a). In 2008, the European Organisation for Technical Approvals
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Figure 1.8: Di�erent testing methods for rockfall protection systems: (A) cable guided,
(B) free trajectory and (C) free fall.

(EOTA) issued a series of guidelines, which traces the boundaries of what can be

considered a valid test (EOTA, 2013). Although this document is superseded by

successive documents (EOTA, 2018), and discussion on the topic is still ongoing, its

release still caused a surge in the research and development of flexible barriers and

introduced a set of unified principles for barrier characterisation. Peila and Ronco

(2009) provides a good reference for the significance of the ETAG027 in the context

of European Laws (i.e. EUROCODE). However, it is reasonable to assume that

most of the barriers currently on the field were put in place before the introduction

of these new procedures and therefore do not necessarily conform to the current

guidelines. For example, a recent field survey in the Italian regions of Valle d’Aosta

and Piemonte showed that the installation date for roughly 75% of the sampled

barriers is either unknown or antecedent to the guidelines and present a myriad of

installation and maintenance issues (Dimasi et al., 2015). Resilience is an important

topic in risk mitigation, which can be challenging to assess and improve. While the

majority of rockfall events are well below SEL and MEL values, they still affect the

barrier, even just through the cumulation of dead load.

To reduce the necessity of expensive field surveys, new barrier models have been

proposed, such as self-cleaning barriers (Wang et al., 2018b) and loose drapers

(Thoeni et al., 2014). Unfortunately, this type of barrier occupies a larger sur-

face than conventional designs and therefore cannot be used in every situation (i.e.
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for most of railway tracks affected by rockfall in the UK, the source area is located

directly above the track). For situations in which the immediate response to failure

is required, e.g. sending the stop signal to the incoming trains if a block falls onto

the railroad track, continuous monitoring represents the only viable strategy. While

there are historical examples, such as Anderson’s Piano on the West Highland Line

in Scotland (https://www.railsigns.uk/info/stonesig1.html), the emergence of IoT

(Internet of Things) technology provided a significant boost to the development of

an automated monitoring network for FPS in both industry and academy (Volkwein

et al., 2016; Barile et al., 2017; Yan et al., 2019). In this context, the use of machine

learning has shown promising results to quantify rockfall hazard using spectral anal-

ysis (Hibert et al., 2022).

In recent years, numerical methods have been used to aid barrier development

and optimisation (Castanon-Jano et al., 2018; Xu et al., 2019), as well as the in-

vestigation of complex loading conditions, which can be difficult to reproduce ex-

perimentally (Mentani et al., 2016a) and the estimation of the bearing capacity of

the currently installed barriers (Luciani et al., 2018a). It is important to note that,

while the literature is advancing in regards to complex, i.e. realistic, boundary con-

ditions, the fundamental constitutive models are still rather simplistic, as described

in Chapters 2 and 3.

Finally, the adoption of these sophisticated models in the industry and geolog-

ical research institutions is still lagging behind due to their computational burden

and steep learning curve (i.e. end-users carrying out hazard assessment are typi-

cally more versed in field investigation and GIS mapping than numerical modelling

and coding). In order to account for parametric uncertainty, block propagation

codes typically employ stochastic analysis, meaning tens of thousands of simulation

runs are required. In order to bridge the gap between modellers and end-users,

some authors propose surrogate models, hyper-parametric functions that replicate

the desired physical behaviour without the requirement for costly calculations (Toe

et al., 2018; Lambert et al., 2020; Previtali et al., 2023). However, as these mod-

els are physics-agnostic, it is important that they are trained on large and reliable

datasets, for which numerical tools are required.
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1.2 Aims and objectives

This study aims to improve the current practice on the simulation of double-twisted

hexagonal meshes. This is done by first reviewing the state of the art and then

through a hands-on approach, implementing the models from literature within the

Discrete Element framework and running different boundary value problems. After

assessing the limitations of the current practices, the aim is to improve on existing

experimental data, using wire-scale laboratory tests and through the development

of a novel procedure to obtain quasi-continuous mesh deformation data from meso

and full-scale tests. The mechanical response at the wire-scale is further investigated

through Finite-Element analysis, in order to bridge the gap in experimental data,

specifically under hybrid tensile-bending conditions. This improved knowledge of the

mechanical behaviour is brought back into the Discrete Element framework through

a novel contact model. Finally, the model is verified through comparison with the

experimental results obtained using the self-developed procedure and compared with

models from the literature. The thesis is structured as follows:

• Chapter 2, Flexible protection barriers: literature review, illustrates the nu-

merical approaches typically adopted to simulate rockfall barriers, with a focus

on the work to date regarding double-twisted hexagonal meshes.

• In Chapter 3, DEM models of double-twisted hexagons for BVPs, the influence

of the assumptions typically adopted for the contact model and discretisation is

investigated through simple boundary value problems in the Discrete Element

framework.

• In Chapter 4, Mechanical characterisation of SW and DT wires, a series of lab-

oratory tests are carried out to obtain an experimental dataset of the response

of individual wires and double-twisted interweavements to different loading

conditions.

• Chapter 5, FEM simulation of double-twisted wires, uses the experimental data

from Chapter 4 to calibrate a Finite Element Model of the double-twisted inter-

weavement. This model is used to carry out numerical experiments of hybrid

loading conditions, difficult to obtain in the laboratory. Results are compared
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to analytical and semi-analytical solutions, available in the Appendix (Section

10.3.1).

• Chapter 6, Development of a novel model for double-twisted hexagons within

the macro-element framework, describes the procedure used to define and cal-

ibrate a set of equations that replicate the wire behaviour as an elastoplastic

constitutive model. The theoretical background for the elastoplastic frame-

work is provided in the Appendix (section 10.1).

• Chapter 7, Development of a low-cost procedure to measure barrier deforma-

tion, establishes a scalable procedure that combines data from consumer grade,

low-cost sensors to obtain a quasi-continuous displacement field of a given bar-

rier, allowing for a more robust calibration and validation of numerical models.

The procedure is used to record the data from a mesh-scale impact test.

• In Chapter 8, Comparison of the macro-element model with literature ap-

proaches, the experimental data obtained in the previous Chapter is used to

validate the novel constitutive model and assess its accuracy when compared

to those found in the literature. The model proposed appears to provide sim-

ilar results to those available in the literature in terms of peak deformation,

whilst also capturing the overall mesh shape and the deformations orthogonal

to the direction of the wire interweavements.

• The Appendix contains the basics of plasticity theory employed for the devel-

opment of the macroelement model, the analytical/semi-analytical solutions

for thin beams used for comparison in Chapter 3, the summary of the macroele-

ment equations and parameters, the electrical schematics for the low-cost sen-

sor, and the codes developed during the PhD project.
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Chapter 2

Numerical simulation of Flexible

protection barriers, state of the art

In order to simulate the mechanical behaviour of flexible protection system, the nu-

merical framework adopted needs to be capable of solving the following problems:

(i) non-linear boundary conditions (boulder-barrier contact, mesh panel-fence post

and pole-anchorage cable connections), (ii) large deformations, (iii) non-linear ma-

terial response and failure, (iv) inertial effects. In the following, a brief outline of

the two most common frameworks is presented: the Finite Element Method (FEM)

and the Discrete Element Method (DEM). Successively, the state of the art for the

application of these methods to the simulation of barriers is presented, focusing on

the various DEM implementations. Finally, the current practices for double-twisted

(DT) wire meshes are presented due to their widespread adoption (refer to Chapter

1).

2.1 The finite element method

In classical continuum mechanics (CCM), a body is modelled as a continuous mass

under smooth deformation and the material characteristics are assumed as homoge-

neous inside a subpart of the body called Representative Elementary Volume (REV)

(Hill, 1963). In the classic approach, the constitutive model is formulated in terms

of stress and strain, which are assumed to be homogenous inside the REV. A con-
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tinuum body is characterised by three groups of equations: (i) equilibrium equation;

(ii) compatibility equations and (iii) constitutive equations. These form a Partial

Differential Equation (PDE) system, which is usually integrated by means of nu-

merical techniques (i.e. FDM, FEM) (Ang, 2013; Dill, 2006; Euler, 1768; Malvern,

1969). Typically, due to the geometric complexity of real problems, the domain is

discretised into a mesh, which is a network of nodes at which the PDE equations are

evaluated. The Finite Element Method (FEM) discretises the domain into several

finite sub-regions of space, called the elements, which can have different shapes, en-

abling for the accurate representation of the problem geometry. The solution at each

node is interpolated in the subdomain using the shape function, which depends on

the shape of the element and its order, i.e. the number of nodes. Follows that regular

element shapes are desirable, making mesh distortion becomes a common issue in

large-displacement problems, which can be overcome through adaptive re-meshing,

hybrid Lagrangian-Eulerian (Anderson et al., 2004) and mesh-free approaches (Be-

lytschko et al., 1996; Nguyen et al., 2008).

2.2 The Discrete Element Method

Discrete mechanics is a family of numerical methods that compute the motion of

a large number of small particles, following Newton’s Laws of Motion, typically

through forward explicit time-stepping schemes (Šmilauer, 2010; Itasca, 2010), al-

though implicit approaches have also been presented (Noble and Weinzierl, 2022).

The main advantage of this family of methods is that they compute large displace-

ments and account for inertial terms in their basic formulation. The individual

methods differ in the way they consider particles and their interactions. The Dis-

crete Element Method (DEM) considers objects possessing both shape, typically

spheres, and mass, moving in 3D space with six degrees of freedom: translational

(x ) and rotational velocity (! ) (Figure 2.1). Particles interact through contacts,

which are function of their shape and material. A simplified DEM cycle can be

defined as follows, Figure 2.2:

1. The timestep is determined given the contact stiffness, particle size and mass,

i.e. the Courant–Friedrichs–Lewy condition (O’Sullivan and Bray, 2004).
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Figure 2.1: A contact between the pieces of two bodies. From Itasca Consulting Group
(2021).

2. The change in particle momentum is computed based on the timestep and the

acting forces, following Newton’s Laws of Motion.

3. The simulation time is advanced and the particle positions and momentum

are updated according to the previous step.

4. Contacts are detected at the updated particle position.

5. The forces acting on the particles are calculated based on the changes in rel-

ative position/orientation (Figure 2.3) and contact models (Figure 2.4).

Particle detection is carried out by progressively subdividing the domain and ap-

plying more expensive detection algorithms in smaller subsections, see Figure 2.5

(Boon et al., 2012; Houlsby, 2009; Mousakhani et al., 2021).

In the real phenomenon, two particles in contact undergo compressive defor-

mation, accumulating elastic energy. In the Soft Sphere DEM formulation, this

phenomenon is implemented through particle overlaps, also known as the penalty

method (Zang et al., 2011). The repulsive force of the contact is calculated con-

sidering the overlap length as the compression of a spring, following Hooke’s Law

(Figure 2.4). Normal ˙� n and shear ˙� s components of the resulting displacement are

then calculated using two different springs, kn and ks, respectively. To this end, a
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Figure 2.2: Sequence of primary operations that occur during each cycle, termed the cycle
sequence. From Itasca Consulting Group (2021).

Figure 2.3: Kinematics of a contact for the 2D model showing contact plane with relative
rotation and motion of piece surfaces. From Itasca Consulting Group (2021).

plane is identified, normal to contact branch n̂ c. The relative motion �̇ between the

two particles is then split into normal and shear components on the plane:

˙� n = (�̇ � n̂ c)n̂ c (2.1)
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Figure 2.4: Behaviour and rheological components of the linear parallel bond model with
inactive dashpots and Force-displacement law for the parallel bond force. Modi�ed from
Itasca Consulting Group (2021).

Figure 2.5: Types of bounding volumes: sphere, axis-aligned bounding box (AABB),
oriented bounding box (OBB), eight-direction discrete orientation polytope (8-DOP) and
convex hull. From (Ericson, 2004).

˙� s = �̇ � ˙� n (2.2)

The repulsive force F is then incremented following Hooke’s Law:

F := F + k∆�̇ (2.3)

where ∆�̇ is the product of generic strain �̇ and the time increment dt. The generic
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spring stiffness k depends on the contact model: for a linear elastic model, it is

equal to the Young’s Modulus of the material, multiplied by the contact area be-

tween two particles and divided by their distance. While the contact resolution is

always carried out this way, the system behaviour is modified by employing differ-

ent contact models. Both open-source and commercial DEM codes typically allow

customisation through the addition of user-defined subroutines in the cycle, Figure

2.2, modifying the system state. Depending on the code, these subroutines can be

implemented by recompiling the entire code or through scripting languages. Since

the latter are interpreted and not compiled, they are significantly less efficient and

provide less freedom than compiled code, but allow for quick and easy prototyping.

The two main drawbacks of DEM are its computational burden and representa-

tiveness: the meso-scale (i.e. REV) physical behaviour emerges from the interaction

of a statistically significant number of objects. This complicates model scalability:

the computational expense increases linearly with the problem size (i.e. order of

three for 3D models). Particle scaling (Sharif et al., 2020) and discrete-continuum

coupling (Zheng et al., 2022) have recently been proposed to simplify the model

outside the region of interest. It is important to note that this affects not only the

precision (as it does in continuum approaches) but also accuracy of the physical

behaviour. On the other end, the model relies on the assumption that the adopted

boundary conditions and particle discretisation/interactions are representative of

reality. In the literature authors have used X-Ray tomography to measure the po-

sition of each individual particle during element tests (Wiebicke et al., 2019) and

compare with its digital analogue (Kawamoto et al., 2018). To this end, multiple

techniques to represent the real particle geometry have been developed, such as

clumps of spheres, level sets, spherical harmonics and polyhedra (Rui et al., 2020;

Cho et al., 2006; Su and Yan, 2020). Alternatively, the effect of particle shape can

be prescribed in their interaction (i.e. contact model) (Ciantia et al., 2015). Notable

examples include the rolling-resistance model by Iwashita and Oda (1998), imple-

menting particle interlocking for spheres; the historic Hertz model (Hertz, 1882),

that analytically represents the contact area increase due to particle deformation at

high stress levels; and the JKR adhesive model (Johnson et al., 1971), that extends

the Hertzian model to account for adhesion in highly deformable materials (i.e. due

to surface forces).
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DEM has also been used to simulate cemented materials, generating bonded as-

semblies that fail at prescribed force thresholds. This approach, generally referred to

as Bonded Particle Method (BPM), originally developed by Potyondy and Cundall

(2004). By implementing classic beam theory into the bonded contact interaction

(e.g. Parallel Bond, Edinburgh BPM, Figure 2.4), DEM becomes a tool to carry

out dynamic structural analysis (Brown et al., 2014; Effeindzourou et al., 2017a;

Potyondy, 2011).

2.3 The multi-scale approach

Regardless of the numerical framework employed, flexible barriers are typically sim-

ulated using a multi-scale approach: first, the response of small-scale structure el-

ements, such as wires, rings and energy dissipating devices are characterised. This

can be done through physical tests (Moon et al., 2014; Thoeni et al., 2013; Volkwein,

2004), obtained analytically (Argatov, 2011; Bertrand et al., 2005) or numerically

(Gentilini et al., 2013a). Successively, the small-scale barrier element is substituted

at the meso-scale, i.e. mesh panel, by an equivalent numerical object that behaves

following the previously characterised behaviour. For FEM analysis, structural el-

ements are employed due to their low computational cost and high aspect ratio.

Examples include truss (Gentilini et al., 2012), beam (Mentani et al., 2016a), shell

(Mentani et al., 2018a) and hinge (Buzzi et al., 2015; Cheung et al., 2018; Gentilini

et al., 2012; Mentani et al., 2016b) elements. Within the Discrete Element frame-

work, the known micro-scale behaviour is prescribed to the contact bond between

two particles, refer to Chapter 3.

To the best of the author’s knowledge, the only attempt to model Double-Twist

meshes without a multi-scale approach reported in literature is the one by Al-budairi

et al. (2017), which represented the interweavement geometry using Timoshenko

beam elements within the software Abaqus/Explicit, see Figure 2.6. This approach

significantly simplifies the model calibration, as uniaxial tensile tests are sufficient

to obtain the stress/strain curve and Poisson ratio, to calibrate classic plasticity

models such as Johnson Cook (Johnson and Cook, 1983). The geometric non-

linearities are then solved through contact interactions between the beams. Within

this manuscript, this type of approach has been deemed not computationally afford-
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Figure 2.6: A double-twisted mesh modelled using Abaqus/Explicit (Al-budairi et al.,
2017).

able for full-scale barriers with the available hardware. The general approach used

to simulate material failure is to delete a specific finite element/interaction when it

reaches a threshold value of deformation or stress, depending on the available simula-

tion variables. For example, Thoeni et al. (2013) employs a specific value of nominal

strain, while FEM-based papers such as Mentani et al. (2018b) consider a threshold

of equivalent plastic strain instead, and Effeindzourou et al. (2017b) employs a limit

force value. To the best of the author’s knowledge, there is no information available

in literature about the mesh response to cyclic loading conditions. Although it is

computationally inefficient to simulate small-scale failure mechanisms in full-scale

models, it is important to note that the threshold-based approach tend to be over-

simplistic: failure mode depends on the shear stress and loading path which should

be investigated at the local scale. Therefore, the multi-scale approach should also

apply to the definition of a failure criteria, in order to somewhat include shear mode

effects and eventually material fatigue. Although the investigation of failure in wire

systems is common for structural engineering, i.e. for the investigation of mooring

lines, it has never been applied to flexible protection barriers. Experimental test-

ing methods typically carried out include mechanical (i.e. tensile, cyclic bending,

torsion), metallographic (i.e. light microscope) and non-destructive tests (i.e. mag-

netic flux leakage) (Casey and Lee, 1989; Chaplin, 1999; Peterka et al., 2014; Torkar

and Arzenšek, 2002). Numerical tests have been employed to investigate the onset

46



Figure 2.7: (a) Barrier capacity depending on the block size, (b) A mesh panel perforated
by a small block. From Buzzi et al. (2011).

and propagation of failure following cyclic load, degradation of rope properties and

damage localisation (Beltrán and Vargas, 2012; Beltran and Williamson, 2005).

2.4 Current research trends in the simulation of FPS

The two main phenomena in this context are the curtain and bullet effect. The

former is a loose definition for all the energy dissipation phenomena caused by fric-

tional sliding of the mesh panel on the selvedge wires, reducing the peak load on

the fence posts. This problem has been investigated numerically by substituting the

classic pinned boundaries with Neumann-hybrid conditions, characterised by cable-

sliding parameters Coulibaly et al. (2019); Ghoussoub et al. (2014); Volkwein et al.

(2009). The bullet effect theory explains the perforation of a rockfall protection

mesh by impact of a small block, which has a kinetic energy lower than the barrier

design value, due to high localised stresses (Figure 2.7) (Buzzi et al., 2011; Buzzi

and Krummenacher, 2014; Hambleton et al., 2012). Another branch of studies in-

vestigates the response of non-standard barrier setups and conditions. For example,

Moon et al. (2014) numerically investigated the influence of the fence posts posi-

tioning and orientation, while Luciani et al. (2018b) and Xu et al. (2018) simulated

common scenarios of improper barrier installation and component damage. Other

studies focus on the other barrier components instead, such as EDDs and selvedge

ropes. Escallón et al. (2014) investigated the energy repartition between the dif-

ferent barrier components, while Castanon-Jano et al. (2019) and Gentilini et al.
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(2013b) explicitly modelled the energy dissipating device, typically implemented as

a two-node elastic-perfectly plastic truss element, to obtain data on the effect of

strain rate and cyclic loading. The investigation of the curtain effect promoted the

development of wire sliding models (Volkwein et al., 2009), both using explicit ge-

ometry representation (Albaba et al., 2017) and implicit three-nodes constitutive

laws (Boetticher and Volkwein, 2018; Coulibaly et al., 2018). Due to the aptitude

of DEM in describing granular phenomena, multiple authors applied the rockfall

barrier modelling concepts to the study of debris flow barriers (Albaba et al., 2017;

Ashwood and Hungr, 2016; Jiang et al., 2020; Leonardi et al., 2016; Li and Zhao,

2018; Liu et al., 2020; Shen et al., 2018; Song et al., 2019).

2.5 Mesh representation within the DEM framework

Depending on the project size and objectives, different approaches can be used to

reproduce the mesh geometry within the DEM framework. Herein, the loose defini-

tions provided by Pol and Mazzon (2020) and Pol et al. (2021) are adopted and added

upon: Cell-Based Approach (CBA), Node Wire Based (NWB), Cylinder Wire Based

(CWB) and Beaded Wire Based (BWB). The first one to be developed (Nicot et al.,

2001), CBA, is the most computational efficient as well as the one that makes the

strongest assumptions: the geometry of the mesh components itself is completely

disregarded and substituted by the mechanical behaviour, as characterised under

specific loading conditions. For example, two intertwined rings are substituted with

a single truss beam that replicates the tensile response (Figure 2.8). A slightly more

sophisticated model is constituted by the Node-Wire-Based approach, also known

as Element Wire Based (Bertrand et al., 2005): the net is still discretised with a low

number of particles connected by remote interactions, but their location is used to

reproduce the geometry of individual barrier components (Figure 2.8). For example,

a double-twisted steel wire hexagon is described by six particles. The main advan-

tage of these two remote approaches is their efficiency, as contact detection is only

carried out on the DEM particles. However, this means they can only be applied to

problems where the size of the geometry interacting with the barrier is significantly

larger than the gap between particles, i.e. the mesh sieve size. Therefore, it is apt
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Figure 2.8: On the left, the discretisation of a steel ring mesh with CBA, in which the
ring mass is discretised at its centre and tensile ring-ring interactions are represented as
remote contacts (Nicot et al., 2001). On the right, discretisation of a double-twisted wire
hexagon with six discrete elements, using NWB (Thoeni et al., 2013)

.

for simulating the impact of relatively large boulders in rockfall but not for granular

material, such as debris flows. Since the bonds themselves possess neither mass nor

volume, the density of individual DEM particles is set to an arbitrary high value so

that the barrier mass is kept consistent with reality. The CWB approach, developed

to detect contacts between wire-like structures and granular materials, substitutes

the remote bond with a cylinder. Proposed by Bourrier et al. (2013) to simulate

soil-root interactions, it extends the contact detection to the conjunction line be-

tween the two particles at its extremities, plus a buffer equal to the particle radii,

which is seen as the Minkowsky sum of sphere and segment. Although the cylinder

is only deformable along its longitudinal direction, twisting and bending moment is

applied to its two end nodes, so that a chain of cylinders can be used to simulate

a wire (Albaba et al., 2017). Contact detection is carried out by calculating the

distance between a point, i.e. the boulder/soil particle, and a line, while contact

resolution is carried out by introducing a virtual sphere positioned at the projection

of the sphere-cylinder contact point onto the segment connecting the two ends of

the cylinder, see Figures 2.9, 2.10. In the subsequent contact, the virtual sphere

possesses the same radius of the cylinder and its initial velocity is obtained by in-

terpolating the values of the particles at the two extremities. After the contact is

solved, the resulting force/momentum is then split between the extremities through

distance-weighted extrapolation. Effeindzourou et al. (2016) improved the original

model by introducing cylinder-cylinder contacts. Additionally, they generalised the

Minkowsky sum approach to triangular facets with the novel facet element (PFacet,

meaning triangular face described by three DEM particles); by splitting the contact
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Figure 2.9: The geometric resolution of sphere-cylinder contact interactions, from (Bour-
rier et al., 2013).

force calculated through a generic sphere-facet contact to the DEM particles at the

vertices of the triangle. While the approach is obviously less efficient than simple

NWB, as it increases the contact detection cycles, its main practical drawback is

that it requires a modification of the contact detection algorithm, which is typically

not allowed within proprietary software. While it is theoretically possible to im-

plement the modified contact detection algorithm on top of the existing one using

scripting subroutines, identifying the additional cylinder-ball contacts and applying

forces, it quickly becomes computationally unfeasible as the model size increases.

Finally, the Beaded Wire Based approach is virtually identical to NWB, with the

difference that the length of the remote contact interaction is minimised, introduc-

ing additional particles. While this approach is obviously the most computationally

intensive, it has a set of advantages: a more straightforward implementation than

CWB, a more continuous contact detection and failure localisation. This method

has been recently employed to simulate debris flow barriers, see Figure 2.11 (Jiang

et al., 2020), and steel ring meshes (Zhu et al., 2020). The latter in particular pro-

vides an example of the advantages of the BWB approach over NWB and CWB in

discretising failure. For example, steel rings are often subject to damage in the field,

see Figure 2.12 (Dimasi et al., 2015). However, they are typically modelled using

CBA in both the FEM and DEM frameworks (Gottardi and Govoni, 2010; Nicot

et al., 2001), which is unable to account for ring damage (Luciani et al., 2018a).
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Figure 2.10: Smooth ring-wire interaction using CWB, as implemented in Yade.

Figure 2.11: Front diagram of the 
exible net barrier using the Beaded Wire Based ap-
proach (Jiang et al., 2020).

The BWB approach overcomes this. While other papers also implement an explicit

representation of the steel wires using FEM (Liu et al., 2020; Xu et al., 2018), they

retain these flaws: representing discontinuities in a continuum framework is difficult

(typically, on material failure new contact interactions have to be prescribed), while

DEM is more suited to simulate granular material undergoing large displacements,

i.e. debris flows (Liu et al., 2020). However, there are some issues with the geo-

metric representation of smooth surfaces and their contact. For example, if BWB

is used to simulate ring-wire contact and frictional sliding, as done by Albaba et al.
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Figure 2.12: Example of a damaged steel wire ring (Dimasi et al., 2015).

(2017), the uneven surface of the wire causes a non-physical high-friction response

(Figure 3.13). Although herein the BWB approach has been dropped due to its poor

computational efficiency for the scale of barriers considered, in section 3.5 tentative

solutions to this issue are explored. Note that the above mentioned definitions for

DEM-based mesh representation approaches are very loose and only represent the

original intent of the respective authors. For example, it is possible to increase the

accuracy of NWB and CWB by increasing the number of particles, while still using

remote bonds. These approaches can be used to represent all the required boundary

conditions. Figure 2.13 shows an example: anchor cables are implemented with a

less dense spatial discretisation due to their negligible non-axial tension, refer to

Previtali et al. (2020a); while fence posts can be implemented as coupled FDM (Fi-

nite Differences Method) as depicted, or by fixing the mesh edges and/or using the

same bonded particle approach while considering the effect of secondary effects, i.e.

Timoshenko beams (Brown et al., 2014). The approach used to simulate ring-cable

interaction is described in section 3.5.

52



Figure 2.13: Example of full-scale barrier model implemented within DEM.

2.6 State of the art for double-twisted hexagons meshes

As described in Chapter 1, double-twisted meshes are one of the most common bar-

rier designs. To the best of the author’s knowledge, the first approach employed to

model these structures is the NWB (Bertrand et al., 2005), in which both single-wire

(SW) and DT interactions are substituted by one remote contact bond, characterised

by different stress-strain relationships. This simplified approach has been compared

with CWB (Duriez, 2018) and there appears to be no significant difference for the

interaction with large bodies, while they might become more relevant for problems

related to finer material such as soil retention and debris flows (Figure 2.14).

2.6.1 DT interactions, constitutive models from the literature

Regardless of the discretisation approach employed, the main challenge of mod-

elling double-twists using the multi-scale approach is the necessity of using accurate

constitutive models for the interactions. While SW can be approximated as thin

steel rods with elasto-plastic behaviour, double-twists behave in a fashion similar to

strand ropes, with non-uniform stress repartition within the sections of the wires,

as well as frictional sliding. In this context, the original model by Bertrand et al.

(2005) employed an experimental force-displacement curve for the single wires and

simplified the double-twist by considering it an assembly of two overlapping helices,

plugging the single-wire plastic behaviour into the analytical solution. Thoeni et al.
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(2013) characterised both the SW and DT behaviours through experimental quasi-

static uniaxial tensile tests (Figure 2.15). As this is currently the only experimental

dataset available for this wire type, it has been loosely employed for the calibration

of numerical models, even when the required assumptions are vastly different from

the original purpose (Duriez, 2018; Effeindzourou et al., 2017b; Gabrieli et al., 2017;

Xu et al., 2020; Li and Zhao, 2018; Mentani et al., 2016a; Xu et al., 2019). The

phenomenological description of plastic, frictional and pre-loading effects through

a single stress-strain curve complicates the treatment of energy terms, as plastic

dissipation can only be obtained as the difference between the total energy of the

system and other known components. Furthermore, since the physical test has been

carried out under axial quasi-static conditions, it may lose significance under non-

axial loading. In the literature, it is possible to find different assumptions about

the wire bending behaviour within the scope of flexible protection barriers: Thoeni

et al. (2013) assume negligible bending stiffness, while Albaba et al. (2017) and Li

and Zhao (2018) adopt beam-like stiffness, e.g. eq.10.55. In regards to strain-rate

effects, Al-budairi et al. (2017) carried out dynamic axial pulling tests on 2.7 mm

thick steel wire, which exhibited some strain rate effects. No information is available

therein for the response of the DT interaction itself. However, physical tests carried

out on single (Wang et al., 2018a) and double helix geometries (Shang et al., 2013)

suggest that strain rate effects may appear depending on the helix pitch angle, due

to inter-wire friction. Finally, it appears that the helix pitch angle and pre-stress

conditions influence the overall interaction stiffness due to increased contact surface.

The loading conditions acting on the DT interactions are investigated in section 3.1.

The experimental curves obtained from DT specimens exhibit a significant variabil-

ity within a small sample size due to the non-uniform pre-loading deformation of

the wires (Thoeni et al., 2013). This is implemented in the model by adding an

initial low-stiffness response, Figure 2.16. Two parameters are introduced, �u and

�F , which translate the experimental curves on the displacement axis and define

the wire stiffness in this zone, respectively (Thoeni et al., 2013). The model is de-

fined stochastic distortion because the entity of the curve translation depends on an

additional parameter, assigned randomly at model generation. The practical effect

is reduction of the average contact stiffness in the initial portion of the curve, which

is consistent with experimental data (e.g. Figure 4.9). The original author pro-
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Figure 2.14: (a) Example of a double-twisted wire mesh hexagon discretised with the two
methods. Numerical response of the mesh: (b) punch test, (c) mesh-soil test. From Duriez
(2018).

Figure 2.15: Experimental force-displacement curves of the tested (a) single-wire and (b)
double-twists (Thoeni et al., 2013).

poses separate sets of parameter values that best fit different stages of quasi-static

tensile pulling and dynamic impact tests. Successive authors either adopted the

proposed values (Effeindzourou et al., 2017a; Mentani et al., 2016a; Xu et al., 2019)

or re-calibrated the model (Pol et al., 2017; Pol and Mazzon, 2020).
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Figure 2.16: Schematic representation of the stochastic distortion model (Thoeni et al.,
2013).

2.7 Implementing complex behaviour at the element scale:

the macro-element

The multi-scale approach typically used for wire meshes can be seen as a simplified

1D macro-element approach, as it provides a relation between forces and displace-

ments at the meso-scale. Follows that DEM is particularly suited for this approach,

as the system state is already expressed in terms of forces and displacements, while

the low time-step size simplifies the treatment of the yield surface evolution (Dattola

et al., 2014; Nguyen et al., 2017; Jiang et al., 2015). First developed to simulate, at

the constitutive level, the pre-failure response of a shallow foundation under different

loading conditions (Butterfield and Ticof, 1979; Roscoe and H., 1957), the ME ap-

proach replicates the small-scale model behaviour (e.g. soil-structure interaction of

a shallow strip foundation) at the meso-scale (i.e. the building), within the elasto-

plasticity framework (refer to Appendix 10.1). This removes the requirement for

local-scale calculations, only retaining the necessary generalised “stress” (i.e. forces

and bending moment) and “strain” (i.e. displacements and rotations) variables. The

ME approach has been employed to represent the response of a system of interact-

ing objects at the local scale such as shallow foundations (Chatzigogos et al., 2007;

Nova and Di Prisco, 2003), root-soil interactions (Dattola et al., 2016a), boulder-soil

impacts (Dattola et al., 2016b) and more (Pisanò et al., 2014). It is important to

note that the Macroelement is not equivalent to the system of non-linear p-y springs

developed by Winkler (1867) as the overall response is provided by the constitutive

56



model of one object and not by the sum of the actions of multiple springs.

2.8 Summary

This Chapter focuses of the numerical approaches currently employed to simulate

flexible protection systems. Both FEM and DEM models are based on the same

multi-scale approach, in which the small-scale response of a barrier element, e.g.

two intertwined rings, is first investigated analytically, numerically or experimen-

tally; and then implemented in the large-scale model as an equivalent numerical

object. This is typically done through experimental 1D force-displacement curves.

The research trend is now moving toward investigating the macroscopic response

of barriers subject to more complex loading (i.e. debris flow impacts) or bound-

ary conditions (i.e. incorrect installation procedures or new barrier models such

as draperies). However, the underlying small-scale behaviours being employed are

still the ones proposed years ago, which are often simplistic (i.e. 1D models that

ignore bending and buckling moments, refer to Section 2.6) or limited in scope (i.e.

calibrated on very specific loading conditions, such as uniaxial quasi-static tensile

tests). These flaws are typically compensated using non-physical fitting parameters,

back-calibrated on specific experimental results, e.g. the maximum barrier displace-

ment in vertical free-fall impact tests. However, this significantly limits the range

of applications for which the predictive capacity of the model is retained, both from

an user-base perspective (i.e. the end-user must understand the physical meaning

of the model assumptions and how they influence the result), as well as a founda-

tion for successive studies (i.e. a model back-calibrated on discrete boulder impacts

might not provide reliable results when subject to debris flows and diffuse loads).

There is no information available on how the current assumptions and practices

affect the results and no reliable model to fall back onto when in doubt.
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Chapter 3

DEM models of double-twisted hexagons

for BVPs

In the following, the multi-scale FPS model is implemented through Node Wire

Based approach and contact models from the literature (Thoeni et al., 2013), while

pinned boundary conditions are assigned by locking the necessary DoFs at the mesh

edges. A set of points relevant for the practical modelling practice is investigated

through boundary value problems:

• The effective orientation of the forces acting on the double-twisted contact

• The influence of these force orientations on the tensile response of the wire,

through the explicit representation of the double-twist geometry

• The superposition of different mesh design and its influence on the response

of the individual panel

• Mesh resolution sensitivity in the context of modelling flexible structures

• Explicit representation of smooth surfaces with DEM particles

• Reducing the computational burden associated to model setup for large bar-

riers

• Force repartition and energy dissipation during impact loading on a full-scale

rockfall barrier
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• The action of repeated loads on the mesh panel through numerical cyclic punch

test

Unless otherwise specified, all simulations described herein have been carried out

using the code Particle Flow Code 3D, 6.0 and 7.0 (Itasca Consulting Group, 2021).

In this scope, spherical DEM elements are called balls, while their interactions are

named contacts, which are defined as bonded if they possess tensile strength and

stiffness. Additions to the DEM cycle, Figure 2.2, are implemented through func-

tions, i.e. callbacks, written in Python. Additional information can be stored using

standard vectors and matrices or through an Object-Oriented approach, assigning

extra properties and groups to particles and contacts. Finally, contact models can

be defined by loading a dynamic link library (.dll) file, compiled from the contact

model source (C++) provided by Itasca.

3.1 Loading conditions for double-twisted interactions

A general assumption found in literature is that the individual mesh elements are

subject to uniaxial loading conditions, with negligible shearing. In order to investi-

gate the effective loading conditions, the dynamic impact test presented by Thoeni

et al. (2013) has been reproduced numerically. A 2x2 meters mesh panel, pinned

at its extremities in the direction of the double-twists orientation, is impacted by

a free-falling boulder (44.5 kg mass, truncated cube shape, side size 30 cm, impact

speed 3.2 m/s), see Figure 3.1A. Test specifics can be found in Gentilini et al. (2012);

Thoeni et al. (2013). The pulling angle � 1� 4 is calculated as angle between the force

vector and the double-twist orientation, Figure 3.1B. At the peak displacement (Fig-

ure 3.1C) the force distribution within the mesh assumes the characteristic X shape.

Follows that the double-twists near the edges of the cross, i.e. subject to high stress

gradient, are characterised by high force asymmetry and non-axial direction. As

shown in Figure 3.2, the pulling angle during the simulation ranges roughly from 37

to 63 degrees under self-weight, reaching peaks of 25 degrees (i.e. axis-aligned along

the double-twist direction in the symmetry axis of the barrier) and 78 degrees (i.e.

almost normal to the double-twist direction at the cross edges). This is especially

important as the latter approximates the pinned double-twist condition shown in
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the next section, lowering the peak force that can be withstood by the wires.

Figure 3.1: (A) Impact conditions, from Thoeni et al. (2013). (B) Scheme of the reference
system of the single-wires pulling angles. (C) Mesh deformation and wire stress at peak
displacement.

Figure 3.2: Distribution of the double-twist pulling angle during the impact test and
successive rebounds.

3.2 Explicit representation of the wire geometry

In order to verify the computational viability of the explicit wire representation

approach at the barrier scale, the double-twist wire geometry is replicated using
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the cylinder-cylinder contact model by Effeindzourou et al. (2016) within the code

YADE (Yet Another Dynamic Engine) (Václav Šmilauer et al., 2015).

Model generation and boundary conditions

The general idea is that cylinder elements would be able to replicate the beam geom-

etry by Al-budairi et al. (2016). To this end, plasticity is implemented at the scale

of the individual contact through the piecewise linear plasticity model by Thoeni

et al. (2013), which is also used as reference for the relevant geometric informations

(i.e. wire radius and length). The wire interweavement itself is discretised with

13 grid points (wire nodes) and 12 cylinder elements, Figure 3.3, extruded on the

two ends through an additional pair of cylinders. Successively, uniaxial tensile tests

have been carried out on the double-twist geometry to verify whether it is possible to

obtain the DT-scale force-displacement with the approach. During the pulling test,

the two wires develop compressive and tensile forces at their interface and between

the elements of each wire, respectively. The cylinder-cylinder contact interactions

are computed with the Hertz-Mindlin model (Thornton and Yin, 1991), where the

Young’s Modulus is obtained as the tangent of the plasticity curve, as described in

Appendix 10.5.1. The Poisson’s ratio is set to a value of 0.3, standard for steel.

The loading conditions of quasi-static uniaxial tensile tests are implemented by pre-

scribing the displacement of the grid points at the ends of the wire contact area,

represented in purple in Figure 3.3. By applying displacement-controlled boundaries

at its edges, frictional sliding is limited to the central portion of the double-twist.

The influence of the two missing parameters, i.e. contact friction and helix pitch,

can therefore be investigated using sensitivity analysis and compared to the DT-

scale tensile response from Thoeni et al. (2013). The initial friction value is set to

5 degrees, following Albaba et al. (2017). The helix pitch is expressed in terms of

wire-wire cross section centres distance, normalised by wire thickness, meaning a

value of 1.0 corresponds to a full rotation over a distance equal to the wire diame-

ter. In this case, the starting value is set to 1.3. Automatic calibration is carried

out using the Constrained Optimisation By Linear Approximation (COBYLA) al-

gorithm (Conn et al., 1997), through the SciPy optimisation package. The first sets

of simulations, carried out with unconstrained automatic optimisation are unable to
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converge. Therefore, sensitivity analysis is performed instead, with wire-wire dis-

tance and friction angle having an average value of 1.22 [-] and 18 [deg], standard

deviation of 0.046 and 4.66, and limit values of [1.09, 1.36] and [5, 32], respectively.

While a friction of 32 degrees is a very high value for steel-steel contacts, it has been

kept to see if such an overlier had an effect on the wire interaction. A second set

of simulations is carried out by applying the displacement at the ends of the single-

wires, with an angle of 47 degrees from the double-twist orientation, according to

the results shown in section 3.1. The main difference with the previous set of the

simulations is that the wire elements can slide out of the DT interweavement as it

tightens.

Figure 3.3: A single double-twisted interweavement using YADE (V�aclav �Smilauer et al.,
2015).

Results and discussion

Figure 3.4 shows that the low friction values capture the initial DT stiffness (green

line with circular markers), while friction increase causes a transition toward the

high-stiffness SW response (blue line with diamond markers). Increasing the wire-

wire distance lowers the stiffness of the initial response as it relaxes the confining

stress, while it has the opposite effect in the central portion of the curve due to

the lower helix pitch angle. However, neither reach the peak force recorded in

experimental tests. Note that the principal assumption adopted for the constitutive

model, i.e. shear stress does not affect plasticity, already introduces a non-physical

increase in system stiffness.
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As shown in Figure 3.5, the more realistic boundary conditions cause an initial

low-stiffness response as the interweavement tightens, until the confining force is such

that elastic tensile deformation becomes a significant factor at point (A). From (A) to

(B) both frictional sliding and elastic deformation govern the macroscopic response;

which is still comparatively very stiff as little to no plasticisation is achieved in

the wires. Unfortunately, at this point the model stops working as intended: at

(B) the low number of elements used in the wire discretisation causes the wires to

interlock and convert all the displacement into plastic strain; while, in reality, the

displacement would be accommodated by a combination of elastic, plastic and slip

deformation. Therefore, the model boundaries de-facto turns into a wire pinned

at both sides and the macroscopic stress-strain curve is equivalent to the single-

wire plasticity model until failure occurs at (C). The only way to overcome this

underlying issue would be to increase the wire resolution. However, as the current

code formulation does not allow particle overlap at model initialisation, this solution

would require a substantial modification of the YADE source code. The same model

has been reproduced in PFC using the negative gap approach, refer to section 3.5,

Figure 3.6, however this approach has also been discarded due to small timesteps

required.
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Figure 3.4: In
uence of contact friction (on the left) and wire-wire distance (on the right)
on the DT stress-strain response.

Figure 3.5: Comparison of the stress-strain curves obtained with YADE under uniaxial
and non-uniaxial pulling tests with the experimental data from Thoeni et al. (2013).
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Figure 3.6: Double-twisted interweavement produced using the negative-gap approach
within the code PFC3D. (a) Compressive (orange) and tensile (blue) contact interactions,
(b) DEM elements, coloured based on their position.
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3.3 Discretisation sensitivity

Another topic which is typically not discussed in literature is the number of DEM

elements used for the discretisation of a given structural element. Hereunder, the

accuracy of the Discrete Element representation of steel wires and its dependency

on the discretisation is evaluated by (i) comparing the numerical results to the

analytical solutions in the Appendix 10.3 and (ii) comparing the results of the same

boundary value problem with different discretisation values.

Comparison with the analytical solution

For this analysis, the model geometry is constituted by a two meters long, 10 cm

thick cylindrical beam, which is assumed to be representative of a thin beam due to

its aspect ratio of 20. The Young’s modulus E is set to 200 GPa and the Poisson’s

ratio � to 0.3 [� ]. For tensile and compressive tests, one end of the beam is clamped

(encastré), while the other end is loaded with a constant compressive/tensile force

of 10 kN . The same boundaries and load magnitudes are employed in the tip-load

cantilever beam (P = 10 kN ). For the symmetric test, both ends are subject to

a constant bending moment of 10 kN � m, in opposite directions. Since the test is

quasi-static, a local damping coefficient of 0.8 [� ] is applied to the DEM elements

to lower the residual inertial effects and decrease the simulation time. For all tests,

a constant force P or moment M is applied to the DEM elements and the resulting

displacement u or rotation ! at equilibrium (the ratio of inertial to elastic force is

lower than 10� 4 [� ]) is compared to the analytical solution. For each test, the beam

discretisation is carried out with 2 and 3 spherical elements. The normalised error

values for the loading tests of a steel beam are listed in Table 3.1. The error is

calculated from the displacement of the loaded particle, following Bernoulli’s theory

for thin beams, i.e. section 10.3.1, considering deformation entities under 1%. The

most significant result is the large error encountered for the two-elements tip loading

bending test. This is because the contact response is symmetric between the two

end elements, and problems with different boundary conditions at each end cannot

be represented correctly with a single contact. The same is valid for cylinder-based

models with two nodes (Effeindzourou et al., 2016). While it is not possible to
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compute the displacement of the beam centre (uC) in the 2-elements model for the

symmetric bending test, it can be expected that the error would be much lower than

for tip-load bending, due to the symmetric loads conditions.

Number of particles 2 3

Uniaxial loading 3:8 � 10� 9 1:41 � 10� 10

Tip-load bending 24:88 0:765
Symmetric bending N=A 1:46

Table 3.1: Relative percentage error of the numerical results when compared to the ana-
lytical solution

Punch-test

The influence of discretisation is also investigated using the punch test setup dis-

cussed in section 3.4. For the mesh sensitivity analysis, each strand rope square side

is discretised with different number of particles. For the double-twisted mesh, three

scenarios are considered: (i) each wire is discretised using three particles and the

contacts possess the bending stiffness of a beam of equivalent cross-section (Study

1), (ii) the wires are discretised with two particles and present zero bending stiffness,

following Thoeni et al. (2013) (Study 2) and finally, (iii) in which equivalent bend-

ing stiffness is applied to a 2-elements wire, following Li and Zhao (2018) (Study 3).

Regarding the square-mesh punch test (Figure 3.7a), the 2 particles discretisation

simulation shows a significantly stiffer response, consistent with the results obtained

for the beam bending tests. No significant difference in the results is observed start-

ing from the three-particles wire onwards, except for the initial portion of the curve,

where an increase in the number of particles causes the cone-wire contact detection

to happen at lower displacement values. This is assumed to be caused by the choice

of simulating the wire with NWB and it could be overcome by transitioning into

a CWB representation (Gabrieli et al., 2017). Finally, the results for the double-

twist mesh punch-test (Figure 3.7b) show a similar trend, with the 2-balls model

(Study 3) exhibiting a stiffer response. For most of the test, the difference between

the force-displacement curves for a 3-element beam and a 2-element beam with no

bending stiffness (Study 1 and 2, respectively) appears to be minimal, as the wires
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still behave mostly in tension. Toward the end, when the out-of-plane components

become significant, the stiffness of the 3-balls beam model increases, following the

same trend as study 3.

Figure 3.7: a) Force-displacement curves for the cone punch-test on the square mesh. b)
Force-displacement curves for the platter punch-test on the double-twist hexagonal mesh.
The 2 and 3 particles wire models are shown in the hexagons sketch. From Previtali et al.
(2020a).

Conclusions

A series of mesh sensitivity analyses for the response of a system of bonded DEM

particles is carried out and the numerical results are compared with the correspond-

ing analytical solution. The potential pitfall inherent in a model balanced up to a

certain inertial energy threshold is shown: the model accuracy appears to decrease

with number of elements due to spurious energy dissipation mechanisms. The two

elements beam representation show significantly higher effective bending stiffness,

as the fixed displacement conditions on the beam extremities make the system prone

to rounding errors magnification. The flaw propagates to the macro-scale response,

where 2-particle wire meshes exhibited a significant stiffer behaviour compared to

3-particle ones. It is important to note that the requirement of a third particle

for the discretisation of beams for which bending is expected is typically ignored

in literature, e.g. (Albaba et al., 2017; Li and Zhao, 2018; Bertrand et al., 2005).

This causes a non-physical stiffer response under quasi-tensile loading conditions.
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No significant variation is shown for pure axial conditions. Further increasing the

number of particles appears to have a minimal effect on the overall response.

3.4 Comparison of quasi-static and dynamic response of a

compound mesh

Flexible protection systems are typically tested using either quasi-static axial tensile

and punching tests, refer to section 1.1, or experimental dynamic impact tests, with-

out comparing the mesh response in the two cases (Bertolo et al., 2009; Gao et al.,

2018b; Mentani et al., 2018a). Additionally, the few studies that investigate the

influence of additional structural elements on top of the mesh are typically limited

to longitudinal cables (Albaba et al., 2017; Mentani et al., 2018a). In this section, a

discrete element model of a mesh panel is calibrated using experimental data from

the literature. The model is then employed to investigate the force repartition on

the individual wire types and the effect of adding different mesh panels under both

quasi-static and dynamic tests. The compound mesh is composed by a hexagonal

double-twisted mesh and a steel strand-rope square mesh.

Model setup

In the following, the punching test setup is chosen due to the availability of exper-

imental results for strand rope square meshes (Bonati and Galimberti, 2004) and

the existence of a previously calibrated numerical model for hexagonal meshes (Pol

et al., 2017). For the latter, Bertrand et al. (2008) produced both an experimental

dataset and a numerical model of a punch test. However, said dataset is not em-

ployed herein because no information on the platter size used for the physical test

is provided. Furthermore, in the numerical model, instead of the typical squashed

semi-spheroid geometry, the author employed a sphere, characterised by larger cur-

vature. This causes the mesh-platter contact area to increase at a lower rate, mod-

ifying the test. For all the punch tests presented hereunder, the net panel is pinned

on all sides and indented by a displacing a platter, upon which the reaction force is

measured, at a velocity of 1 cm/sec. A few tests are carried out, not reported for

brevity, to verify that the velocity is sufficiently low to assume quasi-static loading
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conditions, i.e. lack of inertial effects. For the hexagonal meshes, the standardised

semi-spheroid platter geometry presented by Pol et al. (2017) is employed, while for

the square mesh, the conic geometry proposed by Bonati and Galimberti (2004) is

used instead. Finally, as the pre-loading conditions of the panel for the literature

tests are unknown, here the panel is pre-loaded by fixing the degrees of freedom of

the discrete elements at the net extremities along the gravity direction and pulling

them apart until a maximum vertical displacement of 1 cm is achieved in the centre.

This is done to (i) verify the model results against those by Thoeni et al. (2013) and

(ii) to provide information on mesh pre-loading for the sake of repeatability, as it

is a very easy parameter to compare to for both experimental and numerical tests.

The last translational degree of freedom is maintained, i.e. orthogonal to both the

pulling direction and to the gravity axis, to avoid the generation of localised stress

at the mesh corners.

The same mesh geometry, properties and initial conditions are employed in the

dynamic test. In this case, the boulder consists in a 45 cm side truncated cube, 44.5

kg in mass, following the European guidelines (EOTA, 2018). The impact velocity

is fixed to 10 m/s. Additional details can be found in Previtali et al. (2020b).

Pol et al. (2017) employed both the the piece wise linear plasticity curves and

the stochastically distorted mesh model proposed (Thoeni et al., 2013) to model

punch tests. In the following, only the former are employed, as the calibrated

values found in literature for the latter differ between quasi-static and dynamic

tests, with an average curve translation of 1% (Pol et al., 2017) and 10% strain

(Thoeni et al., 2013), respectively. Regarding the square mesh wires, the param-

eters (E = 60GPa; � = 0:3) proposed by Albaba et al. (2017) are adopted. Note

that the Young’s modulus represents the axial stiffness of the stand rope per se, and

not that of the steel it is made of. In the paper, the author validated the model on

the experimental data by Bonati and Galimberti (2004) and the values appear con-

sistent with what is typically reported in literature (Bertrand et al., 2012; Mentani

et al., 2016a). No steel plasticity model is introduced for as strand ropes exhibit

very limited plastic behaviour (Kalentev et al., 2017; Wang et al., 2015).

In this thesis, all the calibration procedures and tests are carried out with a

linear contact model between platter/boulder and mesh (Normal kn = 109 [Nm � 1]

and shear stiffness ks = 108 [Nm � 1], friction 0.2 [� ]), following Thoeni et al. (2013).
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For the dynamic tests, spurious energy dissipation is accounted for through local

damping on the DEM elements (Damping factor = � = 0:5[� ]), following Thoeni

et al. (2013). No damping is applied to the impacting boulder itself. Finally, in

absence of a complete description of the strand wire type, the bending stiffness of

the wire, after being calibrated on the punch test results, is expressed here as the

ratio between its bending stiffness and that of a cylinder with equivalent section.

Only five simulation results are shown for brevity (Table 3.2) Figure 3.8 shows

that the best fitting is obtained for steel wires characterised by 5% of bending stiff-

ness of the equivalent section cylinder beams. Additionally, the influence of this

parameter is shown to decrease progressively. After calibration, a punch test on

both the hexagonal double-twist mesh and the composite hexagonal plus square

mesh using the semi-spheroid platter is carried out.

Simulation Index 1 2 3 4 5
Bending Stiffness Ratio 0.0 0.01 0.05 0.025 1.0

Table 3.2: Bending sti�ness ratio of the strand-rope wires over that of an equivalent
circular section beam, refer to Figure 3.8

.

Results and discussion

During the test, the total and maximum tensile forces in the bonds are monitored

within a circular area with radius of one meter, located at the center of the mesh

panel, to investigate the behaviour in proximity of the platter/boulder contact. The

results for the punching tests are plotted in Figure 3.9, while Figure 3.10 shows a

snapshot of the test. Both the double net and hexagonal mesh plots exhibit similar

trends and the difference is assumed to be caused by the pre-loading conditions, i.e.

the hexagonal mesh is subject to higher initial loading when the strand rope mesh is

not providing bearing capacity. Double-twisted interactions are individually subject

to higher loads (Figure 3.9a) but contribute less to the total mesh capacity (Figure

3.9b).

The force-displacement curve for the pure strand-rope model does not exhibit

any significant difference with the combined mesh test, reaching a value of 22.5 MN

for the total force and 11.5 kN for the maximum individual bond force. The impact
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Figure 3.8: Force-displacement curves for the numerical punch tests carried out on the
square mesh using the cone geometry. From Previtali et al. (2020a).

Figure 3.9: Tensile force in the mesh during the test, subdivided per element type: double-
twist (DT) and single-wire (SW). (a) Peak force acting on individual contacts, (b) total
force on all the contacts of a given type. From Previtali et al. (2020a).
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Figure 3.10: Punch test on the composite strand rope square mesh + hexagonal double
twist mesh. Contacts are coloured by axial tensile stress magnitude. Modi�ed from
Previtali et al. (2020a).

test results, Figure 3.11, show the same overall trend as during quasi-static punch

tests, with the single-wire contacts bearing most of the total load and double-twist

interactions achieving higher individual contact force. During the first impact (i.e.

t = 0 s), the total force acting on the strand rope mesh is equal to the force acting

on the single wire contacts during the hexagonal mesh simulation (500 kN , green

dashed line in Figure 3.11). The maximum force acting on double-twist interactions

during the first impact appears to be significantly higher than that acting on the

square mesh, as the hexagonal mesh is solicited first, while this effect disappears

during the second impact. Figure 3.12 compares the force acting on the square

mesh whether the hexagonal mesh is present. The peak force is approximatively 1

MN higher in the former scenario. As shown by the successive rebounds (t = 0:25 s

and t = 0:7 s), the maximum force is similar for both mesh configurations, while

the total force is higher for a pure square mesh.

During both quasi-static and dynamic conditions, double-twist interactions bear

the maximum individual load, while the overall capacity of the mesh depends on

single-wire contacts and seem to have no significant affect on the load acting on the

strand rope mesh. Conversely, during impact tests, the presence of the strand rope

mesh in the compound structure halves the total force acting on the wires, but not

the maximum individual load, which can cause local failure at the contact position.

At the same time, the presence of the hexagonal mesh lowers the peak force in the

square mesh panel, which in turn decreases the load acting on the fence posts.
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Figure 3.11: Force repartition on the hexagonal mesh wires during the impact tests. From
Previtali et al. (2020a).

Figure 3.12: Force repartition on the square mesh wires during the impact tests. From
Previtali et al. (2020a).
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3.5 Tentative approaches to obtain a smooth contact surface

with Bonded Spheres

In order to properly implement ring-wire (Figure 3.13) sliding interactions without

CWB, a few tentative approaches have been tested with BWB. The first, most

intuitive idea is the negative-gap approach (Figure 3.14): if two spheres in contact

have a gap distance of zero and the gap between spheres in NWB has a positive value;

by adopting a negative gap distance, a significant degree of the particle overlaps

without the development of compressive forces, making the wire surface roughness

a function of particle size and distance.

Alternatively, a way to avoid artificial interlocking is represented by the Smooth-

Joint model, Figure 3.15 (Potyondy, 2015; Zhou et al., 2017), typically used to

represent smooth joint surfaces in BPM assemblies. The direction of the repulsive

contact forces is modified to be normal to a prescribed surface, regardless of the

effective contact orientation. The desired surface direction at a given point of the

wire can be calculated at runtime from the relative positions of the adjacent wire

particles within an arbitrary distance. The main issue encountered while pursuing

the smooth-joint BWB approach consisted in the progressive increment of particle

overlaps under quasi-zero energy oscillations, due to the angle between contact and

force direction, that eventually causes one of the wires to slip through the other.

The author suggests adding a maximum overlap condition or increasing the contact

stiffness based on overlap distance in the smooth-joint formulation to overcome this

issue. Finally, a simplified cable-cart model is implemented by applying a force

orthogonal to the branch vector of the two closest DEM particles belonging to the

cable geometry, Figure 3.16, considering a stiffness proportional to the tensile force

in their contact, i.e. so that loose cable contacts allow the ring element to slide

further away.
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Figure 3.13: Rough ring-wire interaction using BWB.

Figure 3.14: Scheme for the negative gap approach using a parallel bond contact method.
(A) positive gap, (B) negative gap.

Figure 3.15: (a) Relative normal and shear displacement with respect to contact orien-
tation within the linear contact model; (b) Smooth Joint model and relative normal and
shear displacement with respect to joint orientation. From Bahaaddini et al. (2016).
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Figure 3.16: Force applied to the upper DEM element belonging to the wire based on the
relative position of the two closest DEM particles belonging to the cable.
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3.6 Full-scale simulation of flexible protection systems

A full-scale representation of the barrier, modelled after Coccolo and Paronuzzi

(1995b), has been produced to carry out a series of dynamic impact tests. The sys-

tem, is constituted by two interweaved meshes, characterised by different sieve sizes

and strength. The stronger mesh, consisting of a stranded rope (SR) steel mesh

with a repeating square pattern (25 cm side size), is the main structural element,

while a double-twisted (DT) steel wire mesh, characterised by a repeating hexagons

pattern (10 x 8 cm), provides a finer sieve size that catches smaller blocks (Previtali

et al., 2020b). The edges of both meshes are framed by a thicker steel strand wire

rope, the selvedge (18 mm wire diameter), which is connected to the fence posts on

the sides and to ground anchors on the bottom (Figure 3.17a).

During installation, the anchor wires (i.e. the 12 mm diameter wires that connect

the lower corners of the mesh to the ground anchors, 6 meters upslope) are pulled

until the net is no longer hanging loose, generating a 1.2 m deep pocket-like struc-

ture. The coordinate system is relative to the barrier: the X-axis is the downslope

direction, the Y-Axis is the fence post orientation and the Z-axis is the mesh extent

(Figure 3.17b,c). The posts are 4.5 meters tall, have a centre-to-centre distance

of 9 meters and angle with the horizon of 70 degrees. The boulder is modelled as

a polyhedron, referred to as rigid block (rblock in PFC), with the truncated cube

shape prescribed in the European guidelines (EOTA, 2018). Since the boulder size

(side size 0.3 m, mass 60 kg) is bigger than the mesh holes (4 cm), it is assumed that

the NBW approach is suited to represent the barrier and the criteria employed for

mesh discretisation are model efficiency and accuracy under uniaxial and bending

conditions.

Therefore, each side of a SR mesh square is discretised using 5 DEM elements

(Previtali et al., 2020a) as they are assumed to have significant (Albaba et al.,

2017); while 2 elements are used for each segment of the DT mesh, following the

assumption of negligible bending stiffness (Thoeni et al., 2013). The mesh-boulder

interactions are solved using the linear contact model, characterised by the nor-

mal stiffness kn = 109 Nm� 1, shear stiffness ks = 108 Nm� 1 and dynamic friction

coefficient � = 0:2[� ], following Thoeni et al. (2013). To obtain the correct (i.e.

consistent with reality) contact surface curvature in the mesh-boulder interactions,
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Figure 3.17: (A) Test con�guration in the X-Y plane, (B) coordinate system in reference to
the fence post, (C) 3D representation of the mesh model with the boulder impact positions
in the sensitivity analysis. The DEM particles are pinned at the edges of the mesh and to
the ground anchor rope. From Previtali et al. (2021b).

the DEM elements possess the same radius of the wires they represent, while their

density is set so that the total mass of the mesh is consistent with that of the real

mesh (steel density of 8050 kg/m3) (Thoeni et al., 2013). The local damping coef-

ficient � = 0:5 [� ] is adopted, as in Section 3.4. For simplicity, the deformation of

the fence posts and upslope anchors is assumed to be negligible, meaning that these

structures are implemented by applying pinned boundary conditions to the DEM

elements at the edges of the domain (Figure 3.17). The DEM elements representing

the mesh are pinned along the upper 4 meters of the fence post. The two nodes

of the bottom corners of the mesh are pinned to a fixed point using a bond with a

stiffness representing a 6 meters long steel wire. The composite mesh system, a DT

hexagonal mesh interweaved with a SR square mesh, can be implemented in multiple

ways, depending on their configuration and test type. During the quasi-static punch

tests presented in section 3.4, the contact area is always large enough so that both

meshes are loaded at the same time. Additionally, as the load increases monotoni-

cally under quasi-static conditions, there are no shock waves propagating within the
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Barrier component Contact bond model E [GP a] G[GP a] L [mm ] r [mm ] � u [� ] � F [� ]

Single Wire Thoeni et al. (2013) 20.44 0.0 5.0 1.5 0.02 0.8
Double Twist Thoeni et al. (2013) 10.01 0.0 4.0 1.5 �2 0.02 0.8
Square Mesh Potyondy and Cundall (2004) 60.0 23.07 6.25 5.0 N/A N/A
Selvedge Wire Potyondy and Cundall (2004) 60.0 23.07 6.25 9.0 N/A N/A
Anchor cable Potyondy and Cundall (2004) 60.0 23.07 6.25 6.0 N/A N/A
Mesh-Mesh contact Potyondy and Cundall (2004) 60.0 N/A 4.0 5.0 N/A N/A

Table 3.3: DEM contact models and parameters

wires and their deformation depends entirely on the platter displacement. There-

fore, their deformation profile overlaps, regardless of whether they are connected or

not, meaning no additional operation is required to connect them (Previtali et al.,

2020b).

During an impact test, even if the boulder is large and impacts both meshes at

the same time; the two affect each other due to the onset of inertial effects: the

shockwave propagates faster in the stiffer mesh, which then transmits the actions

to the finer one. Since the meshes discussed here are interweaved, their relative

displacement is minimal and their connection is modelled through additional con-

tact bonds between the DEM elements of the two meshes. The distance threshold

for mesh-mesh bond generation is set equal to the DT contact length (Table 3.3),

which provides a homogeneous connection between the meshes without affecting the

behaviour of the DT wires distant from the SR wires. As contact stiffness influences

the maximum timestep allowed for numerical stability (O’Sullivan and Bray, 2004),

the contact stiffness of these interactions is set equal to that of strand rope wires.

For non-interweaved composite mesh system, where mesh detachment and sliding

interactions may occur, the use of cylindrical DEM elements would be more appro-

priate (Effeindzourou et al., 2017a). The reference scenario is so defined: the boulder

impacts the centre of the barrier with a translational velocity of 15 m/s, with a 10

degrees angle to the barrier normal (Figure 3.17A), and no rotational velocity. The

centre of the barrier is defined as the average of the barrier extents, which differs

from the centre of the mesh due to the way the mesh folds at the bottom. Two

sensitivity studies are carried out: (i) impact position and (ii) boulder velocity. The

simulation parameters are listed in Table 3.4, while the boulder position in the im-

pact location analysis, are shown in (Figure 3.17C).

When the boulder impacts the barrier, its kinetic energy is progressively dissi-
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Simulation Number Boulder Velocity [ m=s] Impact Energy [ kJ ] Position Z [ m] Position Y [ m]

1 15 6.75 4.5 0.15
2 15 6.75 2.475 0.15
3 15 6.75 0.45 0.15
4 15 6.75 4.5 2.25
5 15 6.75 2.475 2.25
6 15 6.75 0.45 2.25
7 15 6.75 4.5 4.35
8 15 6.75 2.475 4.35
9 15 6.75 0.45 4.35

10 7.5 1.68 4.5 2.25
11 15 6.75 4.5 2.25
12 22.5 15.19 4.5 2.25
13 30 27 4.5 2.25

Table 3.4: Simulation list for the parametric study

pated through irreversible processes. The following energy components are consid-

ered: (i) kinetic energy, (ii) frictional energy, (iii) elastic energy, (iv) plastic energy,

(v) wire sliding energy and (vi) damping energy. Kinetic energy (EK ) is computed

from the mass m and velocity v of the boulder (EBK ) and the mesh (EMK ) following

Newton’s laws of motion. The frictional energy (EF ) represents the energy dissi-

pated by the boulder through frictional contact with the steel mesh, given a normal

force Fn . Damping energy ED is used to account for the energy dissipating phenom-

ena non explicitly modelled herein (e.g. air drag, selvedge-mesh ring friction) and

reduce numerical instabilities (Cundall, 1987).

EK =
1

2
mv2 (3.1)

EF =

Z u

0
Fn �du (3.2)

ED = �m v̇2 (3.3)

Mesh-mesh contact friction is not considered as the two meshes are inter-weaved.

The elastic energy (EE ) is the mechanical potential energy stored in the contact

bonds after deformation, following Hooke’s law (Figure 3.18b):

EE = 0:5AE (∆L)2 (3.4)

The sliding (EW ) and plastic (EP ) energy components depend on the loading path.

Their increments are obtained as the area subtended by the force-displacement curve
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for the given barrier element.

EW =

Z u

0
f (u)du � EE if u � rd� uL (3.5)

EP =

Z u

rd� u L
f (u)du � EE � EW if u > rd� uL (3.6)

Figure 3.18: (A) The plastic hardening model, translated by the stochastic distortion
model (Thoeni et al., 2013). The inclination of the dashed line is the axial sti�ness of
the wire under elastic conditions, used for unloading/reloading. (B) Energy components
for an individual mesh element, calculated as the area subtended by the curves. From
Previtali et al. (2021b).

3.6.1 Results and discussion

When a boulder impacts the barrier, it produces a deformation cone within the

mesh. This transmits a shock in the net, which propagates following the direction

of maximum mesh stiffness (i.e. along the Y-axis, due to the orientation of the DT

hexagons, see Figure 3.19). As the cone expands, its circumference increases and,

consequently, the energy required to expand further also increases, decelerating the
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boulder. Once increasing the wires’ strain within the cone becomes more energeti-

cally efficient than increasing the cone radius, the boulder reaches its deceleration

peak. Eventually, the boulder stops and the peak barrier deformation is achieved.

The total mesh deformation continues to increase for some time due to the iner-

tial movement of the wires (i.e. wave propagation), although the maximum mesh

displacement decreases as the boulder bounces off the mesh. As the impact force

reaches the edges of the mesh, it propagates to the upslope anchor wires and fence

posts. If the boulder is deflected by the barrier, its kinetic energy is not entirely

transmitted to the mesh and it is partially dissipated by friction. Therefore, it will

keep decelerating after the peak barrier displacement and will not reach a zero-

velocity condition. These are all sub-events of the impact process, and they can be

recognised and linked to measurable quantities in both experimental and numerical

tests. During experimental tests, the peak boulder deceleration (PBD) and mini-

mum boulder velocity (MBV) can be recorded using Inertial Measurements Units

(IMU) built into an artificial boulder (Caviezel et al., 2018a) or using video frames

from high-speed cameras (Gao et al., 2018b; Caviezel et al., 2019b). The peak mesh

deformation (PMD) is also obtained through video frames and is one of the most

commonly employed parameters to describe the barrier response (Volkwein, 2005;

EOTA, 2018). The peak force acting on the upslope anchors (PFA) is typically ob-

tained from the deformation of wires and energy dissipating devices (Gentilini et al.,

2013a) while measuring the bending moment acting on the fence posts (BMP) is

more difficult (Gottardi and Govoni, 2010). Finally, although the maximum total

barrier deformation (TBD), which includes selvedge and anchor wires, is not typi-

cally measured experimentally, it is possible to obtain a quasi-continuous dataset of

the barrier displacement through Particle Tracking Velocimetry (PTV) or Particle

Imagery Velocimetry (PIV) by placing targets on the barrier (?). Further details

are available in Chapter 7. Under reference testing conditions (EOTA, 2018), the

times for peak mesh deformation and minimum boulder velocity overlap, while the

maximum barrier deformation, peak anchor wire force and fence post moment fol-

low. These parameters are obtained from the simulation data as follows: the peak

boulder deceleration is obtained as the 95th percentile of the boulder velocity time

derivative (v̇B ) in order to remove outliers. The bending moment acting on the fence

posts is calculated from the simulation data as the dot product between the forces

83



acting on the DEM elements at the edges of the barrier and their position, following

the coordinate system convention shown in Figure 3.17b. The peak barrier defor-

mation is the maximum displacement of the DEM elements, while the total barrier

deformation is expressed as the elastic energy within the wires.

In Figure 3.19, 3.20 and 3.21 the wave propagation for Test #4 (centred), Test

#1 (centred on the lower portion of the mesh) and Test #9 (upper corner of the

mesh) are shown. The impact position is highlighted in the first step through a blue

cross marker. During the centred impact, the shock-wave follows the direction of the

maximum mesh stiffness, i.e. the Y-axis, due to the orientation of the DT hexagons.

In particular, the wave propagates upward due to the increased tension within the

wires, caused by the self-weight mesh deformation. Successively, it propagates radi-

ally from the centre in one uniform and compact front; is reflected on the boundaries,

the fence posts, and slowly dissipates within the mesh. For Test #1 (Figure 3.20),

although a similar radial behaviour is shown, most of the wave propagates on the

lower selvedge first and, from there, along the Y-axis, in well distinct waves. At the

end of the simulation, most of the kinetic energy of the system is still confined to

the lower portion of the mesh. Finally, in Test #9 (Figure 3.21), the kinetic energy

transmits across the whole barrier; although it still first propagates on the selvedge

and successively toward the rest of the mesh as a series of well distinct waves.

Energy dissipation

Figure 3.22 shows the energy dissipation through wire sliding and plasticisation for

Test #4 and #9. In the former, a large portion of the wires bears the impact

load and the irreversible deformation is concentrated to the impact centre. In the

latter, due to the boundary effect of the fence post head, a higher degree of localised

deformation is achieved in a uniform area. The same behaviour is shown in Figure

3.23. The boulder deceleration follows a sigmoid and the impact sub-events occur

within a short interval (< 5 ms), with most of the energy being dissipated within

the first 0.03 seconds. After that point, there is no significant increment in mesh

plasticity and the wire strain gradually increases as the wave propagates downward.

The behaviour of Test #1, not depicted herein for brevity, shows a time-energy

trend similar to Test #4. The impact sub-event are equally spaced within the
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Figure 3.19: DEM elements acceleration during test #4, centred impact, the shockwave
�rst propagates toward the upper selvedge and successively in a large elliptical wave from
the centre. From Previtali et al. (2021b).

Figure 3.20: DEM elements acceleration during Test #1, impact in the bottom of the
mesh, the wave �rst propagates within the pocket structure and from there into the rest
of the mesh. From Previtali et al. (2021b).
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Figure 3.21: DEM elements acceleration during Test #9, impact in the top right portion
of the mesh. The shockwave transmits on the selvedge and near the fence post in well
distinct sinusoidal waves. From Previtali et al. (2021b).

entire simulation as energy is conserved for a longer time. The behaviour of the

rest of the tests imitates one or more of these scenarios, depending on the impact

position and boulder velocity (Figure 3.24). Approximatively 85% of all plastic

energy EP and 80% of all wire sliding energy EW is released by the single-wire

bonds. The energy dissipated by frictional sliding of the block (EF ) on the wires is

relatively insignificant for all the tests and reaches its peak at the mesh edges, where

the boulder is partially deflected. The boulder velocity sensitivity analysis (Figure

3.24b) shows an exponential increase of the energy dissipation components, while

the forces acting on the structural components increase linearly. Note: EF and ED

both reach negligible values throughout the simulation. In Figure 3.23, the author

chose to plot ED instead as it quantifies the amount of energy dissipated through

non-physical means. Both are shown in Figure 3.24.

Forces acting on the structural elements

The load acting on the structural elements is quantified as (i) maximum tensile

force on the ground anchors (FGA ), (ii) downslope (MDS ) and inward (M IW ) tilting
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(A)

(B)

Figure 3.22: Comparison ofEW at the maximum mesh deformation. (A) Centred impact,
test #4, wire deformation is spread in a large portion of the mesh andEW decreases
radially from the impact position. (B) Impact in the proximity of the post head, test #9,
EW is roughly uniform within the a�ected area, which is limited to the upper section.
From Previtali et al. (2021b).
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(A)

(B)

Figure 3.23: Energy components within the simulation for (a) centred impacts and (b)
impact near the post head. From Previtali et al. (2021b).

bending moments and (iii) forces at the base of the fence post (FX;Y;Z ). Figure 3.25

shows the distributions of forces and moment acting on the fence posts for Tests

#1, #4 and #7. Test #1 shows, due to the proximity of the impact to the bottom
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(A)

(B)

Figure 3.24: Energy dissipated by the mesh at the peak mesh deformation. (A) Impact
position sensitivity, the mesh plasticisation is the principal energy dissipation component,
while the boulder friction on the mesh is only signi�cant for the impacts near the edges of
the mesh. (B) Impact velocity sensitivity. From Previtali et al. (2021b).

of the mesh, compressive (FY < 0), inward (FZ ) and toppling (FX > 0) loading on
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the fence posts. Successively, as the wave reflects on the fence post and travels in

the lower portion of the mesh, the normal force becomes tensile (FY > 0) and the

toppling force decreases. The centred impact, Test #4, shows an initial increase in

downslope shearing force (FX ), followed by an increase in tensile force (FY ). On the

X � Z plane there is an identical increase in force on both the X and Z directions

for Test #4 and #9. However, while Test #4 exhibits successive unloading along

X and Z , in Test #9 the downslope force FX keeps increasing linearly until the

maximum mesh displacement is achieved, before unloading.

The bending moments acting on the fence posts (Figure 3.25C) exhibit the following

behaviour: an initial increase in the inward bending moment (M IW ), followed by an

increase in downslope bending (MDS ) and successive unloading. This behaviour is

present in all the tests, although only Test #7 and #9 are shown for visual clarity

(i.e. they have the highest moment branch length, meaning higher moment values

and overall signal to noise ratio, see Figure 3.26 for the bending moment modules).

As the impact location gets closer to the fence post, the downslope toppling moment

MDS increases (Figure 3.26, right post), while the force is converted entirely into

inward bending behaviour on the opposite post (Figure 3.26, left post). Table 3.5

lists the outputs for all the simulations.

T est # FX FY > 0 FY < 0 FZ FGA M IW M DS P BD P MD
[� ] [kN ] [kN ] [kN ] [kN ] [kN ] [kN � m] [kN � m] [m=s2 ] [m]

1 3.2 7.9 -7.9 16.7 3.0 13.4 4.4 740.7 0.2
2 7.4 13.0 -13.0 24.7 4.0 16.9 8.0 750.9 0.2
3 34.8 46.8 -24.9 39.1 3.7 13.4 26.7 771.8 0.2
4 1.9 4.7 -1.4 63.3 0.3 117.7 3.1 534.7 0.3
5 8.5 26.6 -4.3 66.4 9,3 122.3 17.4 406.5 0.4
6 40.0 93.6 -2.5 69.9 0.3 130.6 86.9 1054.0 0.2
7 9.2 10.3 -1.0 52.5 0.3 198.8 32.3 444.4 0.5
8 17.2 20.4 -2.2 62.0 0.3 240.8 61.4 424.7 0.4
9 53.0 69.5 -3.8 72.3 0.4 286.3 200.8 951.6 0.2

10 0.8 3.0 -1.0 43.2 0.2 90.0 0.4 122.0 0.31
11 1.9 4.7 -1.4 63.3 0.3 117.7 3,1 534.7 0.36
12 4.1 11.3 -8.5 225.0 2.8 510.0 120.0 582.0 0.41
13 9.3 23.5 -13.9 349.9 3.6 969.0 187.0 881.0 0.44

Table 3.5: Peak forces and moments acting on the structural elements in the di�erent
tests.
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(A)

(B)

(C)

Figure 3.25: Distribution of the forces and moments on the fence posts. (A) Compres-
sive/tensile force vs downslope shear force, (B) shear force parallel to the structure vs
downslope shear force, (C) downslope and inward bending moments on the fence posts.
From Previtali et al. (2021b).

Conclusions

Herein, a numerical model of an idealised rockfall barrier constituted by a double-

twisted mesh and a strand rope mesh is developed within the framework of DEM to

analyse its response when subject to dynamic impact loads. The plastic hardening
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curves presented by Thoeni et al. (2013) are employed to investigate the spatial

and temporal evolution of energy dissipation within the double-twisted mesh. An

efficient model generation procedure, aimed at setting the initial conditions of the

composite strand rope and double-twist mesh is proposed to overcome the com-

putational cost of the model initialisation. The effect of non-centred impacts is

investigated through parametric analysis, revealing that:

• The boulder impact location has both qualitative and quantitative effects on

the barrier response, changing, de facto, the way the barrier behaves.

• The kinetic energy transmission is shown to follow preferential pathways when

the boulder impacts the edges of the mesh, which can significantly increase

the peak load acting on either the fence posts or the ground anchors.

• Independently on the location of the impact, the loading on the fence posts

transmitted on the foundation is highly coupled, showing combined shear,

tensile and moment loading. The magnitude and direction of these forces

change according to the step in the simulation and the proximity to the fence

posts.

• The maximum toppling behaviour occurs when the boulder impacts in the

proximity of the fence post head, while significant tensile forces develop within

the fence post when the impact is more centred along the vertical.

• Overall, the inward bending moment exhibits higher values than its downslope

equivalent. The worst-case scenario for the total mesh plasticisation occurs

when the barrier is hit in its lower portion, and the peak plasticisation occurs

near the fence post head.
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(A)

(B)

Figure 3.26: Maximum forces (A) and moments (B) acting on the fence posts during the
impact position sensitivity tests. The right post is the one close to the impact position.
Signi�cant compressive forces are only achieved when the boulder impacts the bottom of
the mesh. From Previtali et al. (2021b).
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3.7 Fast model generation

One of the drawbacks of DEM is the computational burden required to obtain the

target initial conditions for large scale models. This has led to the development

of techniques to facilitate the model generation (Ciantia et al., 2018). Since the

initial stress state within the wires is not known a-priori, it is necessary to carry

out a preliminary simulation to obtain an approximation of the initial system state.

To this end, it is essential to consider the simulation time (computational burden)

and (ii) the effect on the procedure on the internal wire stress for both the final

state and load path-dependent constitutive models (i.e. plasticity). The following

assumptions are made: (i) in the final configuration it is assumed that the SW and

DT are in their state of maximum load history (i.e. they do not experience pre-

plasticisation during the setup), (ii) the strand rope wires bear most of the load

(Previtali et al., 2020b), (iii) the double-twisted mesh is characterised by plastic

behaviour (Bertrand et al., 2008; Thoeni et al., 2013) whereas (iv) the strand rope

is not (Wang et al., 2015; Albaba et al., 2017; Kalentev et al., 2017). The most

straightforward approach to obtain the correct initial conditions is to replicate the

real installation process. For the model, this means letting the mesh deform under

self-weight and successively drag the lower portion of the mesh upward and let the

model run until it equilibrates (i.e. the ratio of inertial forces to elastic forces is

lower than a threshold). Unfortunately, this approach is only feasible with a low

number of elements and low contact stiffness, i.e. high timestep values following

O’Sullivan and Bray (2004), as done by Thoeni et al. (2013). The full-scale barrier

model presented in the previous section is constituted by 23,600 DEM elements and

43,200 contact interactions, while the maximum timestep allowed for numerical sta-

bility is 1.07E-08 seconds due to the presence of high-stiffness SR contacts, meaning

it would take approximatively 3 months to obtain the target initial state of the full-

scale barrier with this approach and the available workstation (Inter Core i7-7820X,

8 cores, 3.6 GHz; 32 GB RAM). A multi-step approach is adopted to overcome this

limitation. Since the strand rope wires are assumed to be the primary structural

component within the net, a simplified mesh model, constituted solely of SR con-

tacts and elements, is used to obtain the initial target state. Successively, the DT

contacts and elements are introduced by interpolating the spatial data of the SR
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elements. The complete procedure follows:

1. The entire mesh model is generated (i.e. both the DT mesh and SR mesh

contacts and elements) to establish the geometrical relations between the ele-

ments (Figure 3.27a). After the mesh contacts have been generated, ball-ball

contact detection is deactivated.

2. For each square of the strand rope mesh, the position of the double-twist

mesh elements is recorded. The relative positions of the double-twist DEM

elements and square mesh DEM elements in the initial configuration are used

to calculate the linear shape function (Zienkiewicz et al., 2005) of each strand

rope mesh square (Figure 3.27b).

3. The DT elements are classified depending on their degree of separation with

the closest SR element, considering the DEM elements as nodes in a graph

(Figure 3.27c), (Dijkstra, 1959). Starting from the internal elements with the

highest degree of separation, the DT elements are deleted, and their weight

force is split between the elements to which they are connected. This is carried

out recursively until the final weight is applied as a force to the SR elements.

4. The edges of the SR mesh are pulled to their target position (Figure 3.27d)

using the time-step scaling function (Itasca Consulting Group, 2014) This func-

tion consists in temporarily increasing the particle mass to achieve numerical

stability with a higher time-step value. While this approach does introduce

non-physical stresses within the wires, it removes, de facto, the simulation

time required to obtain the target displacement. Therefore, the entire com-

putational effort can be directed toward stabilising the elastic model at the

end of the displacement. Due to the assumption of no plasticity within the

strand rope wires, the stress path has no influence on the system state, and

this approach can be adopted. Afterwards, the model is cycled to a stable

state (i.e. the ratio of inertial to elastic energy is lower than a threshold) and

the new position of the SR elements is stored (Figure 3.27e). This step took

8 hours to complete for the specific case study (approx 1e4 elements).
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5. The complete mesh is regenerated. The SR elements are placed in the position

computed by the simplified model, while the position of the DT elements is set

by interpolating the displacement of the SR elements using the shape function

obtained during the third step (Figure 3.27f). Since the geometric relationship

between the two meshes is maintained, the DT mesh is also deformed. The

model is then again cycled to stability, which is achieved in less than 1e5 steps

(roughly 10 minutes in terms of computational time).

Figure 3.27: Multi-step mesh generation procedure. (A) The initial compound mesh is
generated and connected, (B) the relative element position is used to calculate the linear
shape function, (C) the degrees of separation of the DEM elements is used to assign the
weight to the square mesh, (D,E) the mesh corners are pulled upward to their �nal position.
(F) The double-twisted mesh is reintroduced and (G) its deformation is derived from that
of the strand rope mesh. Note: the particle size in the plots is not representative of their
actual size. From Previtali et al. (2021b).

3.8 Mesh panel response to cyclic loads

The barrier response to individual impacts, investigated in section 3.6, is only reliable

for single impacts. Follows that a meta-model that does not implement progressive
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fatigue cannot make use of the available information for rockfall frequency to aid

informed decision making (Janeras et al., 2017; Favillier et al., 2017). To this end,

the punch-test model presented in section 3.4 is employed as it is already validated

against experimental data and the numerical results obtained can be easily compared

to experimental data. Implementation details can be found in Previtali et al. (2020b)

and Previtali et al. (2022). The initial test conditions are obtained by placing a

horizontal wall 0.1 meters beneath the base of the mesh and letting the barrier

deform under self-weight. A preliminary test is carried out through a displacement-

controlled platter, in order to identify the force and displacement at which the mesh

fails under monotonic loads. Successively, three cyclic load tests are carried out

through a force-controlled servo with a maximum speed of 0.02 m/s. The target

forces (F � ) employed are 3kN, 15kN and 20 kN, respectively 12%, 60% and 80% of

the force recorded at failure during the monotonic loading test (25 kN). Finally, a

second monotonic load test is carried out to the pre-plasticised mesh. For this test,

the final state of the 15 kN cyclic test is employed. The platter is brought back to

a zero-force condition before applying the constant displacement rate.

3.8.1 Results and discussion

During the preliminary test, see Figures 3.28 and 3.29, the force acting on the platter

increases slowly as the mesh is displaced without causing any tensile deformation of

the mesh elements. In this phase the platter load corresponds to the mesh weight.

When the platter displacement uP reaches 20 cm, point (a) in Figure 3.29, the

mesh starts loading and the force on the platter increases exponentially (Bertrand

et al., 2008; Pol et al., 2017; Previtali et al., 2020b). The tensile forces within

the mesh assume a cross-like pattern, section 3.1 (Mentani et al., 2018a), which

progressively transform in a cross-like shape (point b, c). At uP = 0:42 m, most of

the wires reach the yield point and the energy dissipated through plastic deformation

increases linearly with the platter displacement. Before mesh failure occurs, the SW

contacts exhibit higher plasticisation than the DT contacts (Figure 3.30). The area

affected by plasticisation is mostly limited to the platter contact area for the single

wires, while for the DT it is oriented in the direction of maximum tension, parallel

to the DT interweavements due to their higher stiffness (Figure 3.31). The peak
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contact force (25 kN ), occurs at uP = 0:53 m, (point c) as the wires in contact with

the platter reach the plastic strain threshold. In the final portion of the simulation

(point d, e, f), the force on the platter increases in-between failure events: the

mesh develops a cut parallel to the direction of maximum tension and of minimum

resistance, the DT and SW orientations, respectively. As the failure path propagates

to the bottom of the mesh, Figure 3.29f, it changes direction in order to satisfy the

criteria of minimum resistance.

Figure 3.28: Force-displacement curve of the platter during the monotonic displacement
test, from Previtali et al. (2022).

During Test #1, the minimum and maximum barrier displacement do not change

during the test as negligible mesh plasticisation is achieved (Figure 3.32a). In Test

#2, plastic energy increment of 0.55 kN is attained during the first cycle, which

progressively decreases, becoming negligible from the 4th cycle (Figure 3.32). Most

of the plasticisation occurs within the first cycle, as the plastic energy only increases

by 0:5 kJ (from 0.36 to 0.41) during the cyclic portion of the test. Finally, during

Test #3, the same amount of energy is dissipated in cycle 2 and 3 (0:4 kN ). The

platter displacement at F = 0 kN (i.e. unloading) and F = F � (i.e. peak load) also

increases with cycles as the wires plasticise. A portion of the wires fails during the

3rd cycle, while mesh failure occurs during the 4th cycle. During the monotonic test

on pre-plasticised meshes, the force-displacement curve of the platter is similar to
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Figure 3.29: Top-down view of the mesh and the platter in contact at di�erent time
instants, from Previtali et al. (2022).

Figure 3.30: Relative frequency histograms of the plastic strains within the wires before
failure, from Previtali et al. (2022).

the one of the first monotonic displacement test, reaching a peak force value of 24.5

kN. The main difference is the initial and final plastic energy within the mesh differs

due to mesh pre-plasticisation (Figure 3.31 vs 3.35). The fact that the double-twist

interactions also present plasticity before the maximum load (Figure 3.34) causes

them to fail during post-peak, which does not occur under direct loading.
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Figure 3.31: Maps of the plastic strains within single wires and the double-twists before
failure, from Previtali et al. (2022).

Conclusions

A numerical model of a double-twisted wire mesh, based on the remote contact

DEM approach, is employed to investigate the mesh response to cyclic loads. Two

displacement controlled and three force-controlled cyclic tests have been carried

out. The low energy cyclic test (3 kN ) shows that the mesh is unaffected by cyclic

impacts of low entity. A cyclic force equal to 60% of the peak induces significant

plasticisation in the mesh but it is however insufficient to induce failure on its own

as the plastic energy increments become negligible after a few cycles. Although this

can cause structural problems within the mesh (i.e. excessive sagging), it does not

significantly increment the risk of wire failure when the mesh is again loaded until

failure (4% decrease in peak force). On the other hand, this can pose a problem for

the mesh resilience under post-failure conditions: the higher overall plasticisation

causes the double-twist contacts to fail as well, allowing the laceration in the mesh to

propagate in other directions, widening the potential hole. Finally, the cyclic loading

at 80% of the peak strength quickly produces material failure, during the 3rd cycle.

The tests also highlight the inadequacy of total mesh plasticisation as an indicator

of mesh deterioration, as the various plasticisation patterns that can develop within

the mesh under the differed loading conditions have a greater influence in lowering
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(A)

(B)

(C)

Figure 3.32: Platter displacement during the (a) Test #1, (b) Test #2 and (c) Test #3,
from Previtali et al. (2022).

the peak strength of the mesh compared to the absolute value.
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Figure 3.33: Force-displacement curve for the monotonic load on the pre-plasticised mesh,
from Previtali et al. (2022).

Figure 3.34: Monotonic load test on the pre-plasticised mesh, relative frequency histograms
of the plastic strain within the wires, from Previtali et al. (2022).
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Figure 3.35: Monotonic load test on the pre-plasticised mesh, maps of the plastic strains
within single wires and double-twists, from Previtali et al. (2022).
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3.9 Conclusions

In this Chapter, the Node-Wire-Based approach and the plastic hardening consti-

tutive model proposed by Thoeni et al. (2013) are used to simulate the behaviour

of flexible protection systems within the commercial software Particle Flow Code

(Itasca Consulting Group, 2021). While the various simulations and analyses carried

out herein are not particularly novel on their own, they are nonetheless useful to un-

derstand how the different approaches and assumptions found in literature to model

flexible structures affect the result. The assumptions of zero and beam-equivalent

bending stiffness, opposite and yet both employed in literature, can have an effect

that ranges from negligible to very significant, depending on the problem type, i.e.

the entity of out-of-plane loads, and its discretisation (Previtali et al., 2020a). While

simplified models can exhibit a response comparable to more computationally in-

tensive approaches, e.g. Figure 3.7 from section 3.3 (Previtali et al., 2020b), there

is no underlying rationale to justify this, complicating the model application as a

predictive tool. Sections 3.6 and 3.8 showed that, while it is possible to use uni-

axial experimental response curves to carry out energy balance considerations and

evaluate barrier damage (Previtali et al., 2022), doing so relies on (i) the negligi-

ble bending stiffness/plasticity assumption and (ii) the lack of spurious low energy

fluctuations. The latter is especially problematic because it ties the effective plastic

energy to non-physical parameters such as numerical damping. The next chapters

showcase the work carried out to produce a contact model for the double-twisted

mesh, which accounts for the full tensile-compressive-bending behaviour of the wire

and directly provides the required information on plastic energy dissipation, provid-

ing a reference model to fall back on for complex cases where the applicability of

simplified models is uncertain.
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Chapter 4

Mechanical characterisation of SW and

DT wires

To the best of the author’s knowledge, the only experimental dataset available in

literature for the local-scale behaviour of double-twisted meshes is that presented

by Thoeni et al. (2013), which refers to tensile tests carried out by the University

of Bologna in 2006 (DISTART. Certificato n. 571/06/1. Tech. rep., University of

Bologna; 2006). Therefore, a series of tests has been carried out in the University

of Dundee to obtain a more complete dataset. Two DT mesh types are investi-

gated: gabions; cages of wire filled with rocks, used as retaining walls and as impact

attenuators; and rockfall net meshes. The wire characteristics are listed in Table

4.1. In the following, both mesh types are described and test results are listed;

while in the rest of the thesis only the rockfall mesh is considered. The material is

characterised using an Instron 4204 Tensile Tester, under displacement-controlled

conditions (2 mm=min ). Each piece of wire is clamped using High-Force Wedge

Table 4.1: Meshes Tested

Mesh type Gabion Rockfall Net

Manufacturer Maccaferri Maccaferri
Coating Type PVC sheath Zinc primer
Steel Wire Thickness [mm] 3.1 2.7
Single Wire Length [mm] 60 60
Double Twist Length [mm] 35 40
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Action Tensile Grips. The jaws model used is 2703-001 with a diamond serrated flat

contact surface, 16 teeth per square inch and an aperture width that ranges from 0

to 0.25 inches (6:4 mm). Only a moderate force is applied to tighten the jaws, to

prevent wire damage at the interface with the grip as a consequence of excessive com-

pression. For this reason, as well as frame compliance and the fact that wedge jaws

tighten their grip following displacement, a significant amount of wire slippage is ex-

pected. Follows that the effective wire strain is not obtained from the displacement

rate of the tensile tester itself but through the use of an Axial Extensometer (Epsilon

Technology, Model 3542, see Figure 4.1). The extensometer and tensile tester mea-

surements are not connected to the same data acquisition system but synchronised

using the time at which wire failure occurs as the reference point. Unfortunately, the

extensometer can only be used for single-wires, as the double-twist interweavement

tightens during the test, slipping through the clamps of the extensometer. This issue

has been overcome by introducing an additional strain measurement, through image

analysis, see Figure 4.2. The image-analysis approach has been validated using the

extensometer data obtained during the single-wire tests, showing a maximum and

average error, i.e. NSTD, of 3.6e-3 [� ] and 2.6e-3 [� ], respectively (Figure 4.3).

Figure 4.1: Example steel wire testing showing the development of Necking in the central
portion. The extensometer is used to obtain the e�ective wire strain rate.

Due to the highly reflective nature of the wire and wedge grips, the wire shape is

extracted through Black and White image binarisation from greyscale. Therefore, a
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Figure 4.2: The complete acquisition system: the tensile apparatus is used to carry out the
quasi-static test and measure the force, while the axial extensometer and image analysis
are used to obtain the e�ective wire deformation.

black draper is placed behind the wires and a lamp is placed next to the camera to

provide high contrast. For each frame, a globally determined threshold is obtained

using Grey-Level histograms (Otsu, 1979). Then, from the binary image, the wire

area is extracted using 8-connected component analysis (Figure 4.3). In layman’s

terms, the largest portion of the image constituted by adjacent pixels with the same

value. The wire length and thickness are obtained from the normalised second cen-

tral moments of the region, i.e. object oriented bounding box (Rizon et al., 2006),

which are then used to calculate the nominal strains " and Poisson ratio � .

" =
�L
L

(4.1)

� = �
@"radial

@"
(4.2)

4.1 Single-Wires

The parameters obtained for the rockfall net and gabion are listed in Table 4.2,4.3,

while the tensile curves are shown in Figures 4.4 and 4.5, respectively. A total of �

100 tests are carried out in total, while only 20 are kept due to problems during the

test (e.g. significant sliding, early development of necking within the clamps), see

Figure 4.6. Following Al-budairi et al. (2016), a series of dynamic tensile tests have
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been carried out to investigate the effect of strain rate. The results have proven

inconclusive, as the variation in yield strength appeared lower than the natural

variability of the material, observed during quasi-static tests.

Axial compression tests have also been carried out using fixed end boundary

conditions and a loading speed of 1 mm/min and wire length of 50 mm, see Figure

4.7. The results, Figure 4.8, exhibit limited variance, with an average peak force of

1.51 kN and normalised standard deviation � of 0.13 [-]. The residual force, obtained

by fitting the post-peak with a negative exponential function, has a mean value of

0.55 kN and normalised standard deviation of 0.14 [-].

Figure 4.3: (A) Single-wire tensile test. The wire boundaries highlighted in red. (B)
Comparison of the strain evolution measured using the extensometer and image analysis.
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Figure 4.4: Nominal stress-strain curve for the rockfall net steel. The individual curves
are shown as coloured dashed lines, while the mean is shown in continuous black line.

Figure 4.5: Nominal stress-strain curve for the gabion steel. The individual curves are
shown as coloured dashed lines, while the mean is shown in black.
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Figure 4.6: True stress-strain curve for the rockfall net steel.

Figure 4.7: Steel wire subject to axial compression with post-buckling residual force of 600
N. The material developed a plastic hinge in the center, inducing a 16.15 degrees kink.
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Figure 4.8: Force-displacement curves for single-wires undergoing axial compression with
�xed ends. Note: the data has not been corrected using image analysis or extensometers
and therefore only peak and residual forces constitute reliable data: the behaviour of the
green line can be explained by wire slippage or frame compliance issues.
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4.2 Double-Twists

Tensile testing has also been carried out on the Double-Twisted interweavements.

Unfortunately, the wire-jaw contact surface required to get a good grip on the ex-

tremities of a DT is larger than that achieved by the wedge clamps. Therefore, two

metal plates (9 x 5 x 1.5 cm) with inclined grooves (45 deg, 1.5 mm depth) have been

machined by the University of Dundee’s Civil Engineering workshop to block the

wires. The plates are kept in contact using M10 bolts. Roughly 30 tests are carried

out, although only 10 are kept as in the other cases individual wire slippage breaks

the system’s symmetry and invalidates the test. No additional tests are carried out

as bolt erosion prevents proper tightening of the metal plates. It is assumed that

tests do not present a progressive reduction in friction as the grooves exhibit no

damage from a visual inspection, i.e. the only parts of the plate system that failed

are the bolts, from over-tightening them with an Allen Key. As shown in Figures

4.9,4.10 the force-displacement curve exhibits an initial low-stiffness response as the

wires slide on each other and the interweavements tightens.

The entity of this initial portion is qualitatively obtained by first manually select-

ing the plastic yield point, i.e. when the response stops being linear after the initial

low-stiffness zone, and then projecting the linear elastic behaviour to the horizontal

axis. Successively, the wire starts exhibiting significant plasticity and, after reaching

peak force, shear failure starts developing at the interface between single-wires and

double-twists. The gabion mesh exhibits a slightly different behaviour, Figure 4.11,

as the force displays sudden drops which are assumed to be caused by sliding be-

tween the wire and the PVC sheath and, possibly, the failure of the latter. Failure

still occurs due to the combination of tensile and shearing forces at the interface

between double-twist and single-wire (Figures 4.13, 4.14), while the PVC sheath is

cut on the internal portion of the interweavement due to friction at the steel-PVC

interface (Figure 4.15). Finally, a few three-point bending tests has been carried

out on the rockfall net double-twisted interweavement, using steel cylinders of 2 cm

radius to apply the boundary conditions. Fitting the elastic portion of the curve,

Figure 4.12, results in a second moment of inertia I m equal to 4.16e-6 mm4.

A few compression tests have been also been carried out using fixed end boundary

conditions, using the clamps from Figure 4.13, with a loading speed of 1 mm/min and

112



Figure 4.9: Force-displacement curve obtained from the tensile tester for the rockfall net,
individual test.

Figure 4.10: Force-displacement curves obtained from the tensile tester for the rockfall
net, multiple tests.

total displacement of 80 mm. The results, Figure 4.16, are more difficult to interpret

than the single-wire due to the overlapping effect of wire plasticity, buckling and wire

sliding. The overall behaviour can be described as elastic perfectly plastic, with the
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Figure 4.11: Force-displacement curve obtained from the tensile tester for the gabion mesh.

Figure 4.12: Force-displacement curve for the experimental three-point bending test.

force settling to approximatively 350 N.
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Figure 4.13: The double-twisted geometry is clamped between two steel plates. Failure
occurs at the interface between the single-wire and the double-twist.

Figure 4.14: (A) Wire failure in necking under tensile conditions. (B) Wire failure in
shearing at the interface between single-wire and double-twist (see Figure 4.13).
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Figure 4.15: A double-twisted wire in which a portion of the PVC sheath has been cut
during the test.

Figure 4.16: Force-displacement curves for double-twisted undergoing axial compression
with �xed ends within the clasps (Figure 4.13). Note: the data has not been corrected
using image analysis or extensometers.
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